光伏逆变器简介完整版.ppt

上传人:本田雅阁 文档编号:3141333 上传时间:2019-07-16 格式:PPT 页数:57 大小:9.57MB
返回 下载 相关 举报
光伏逆变器简介完整版.ppt_第1页
第1页 / 共57页
光伏逆变器简介完整版.ppt_第2页
第2页 / 共57页
光伏逆变器简介完整版.ppt_第3页
第3页 / 共57页
光伏逆变器简介完整版.ppt_第4页
第4页 / 共57页
光伏逆变器简介完整版.ppt_第5页
第5页 / 共57页
点击查看更多>>
资源描述

《光伏逆变器简介完整版.ppt》由会员分享,可在线阅读,更多相关《光伏逆变器简介完整版.ppt(57页珍藏版)》请在三一文库上搜索。

1、光伏逆变器的概述:,一:逆变器的概述: 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。,光伏逆变器产品发展历程:,SMA是全球最早生产光伏逆变器的生产企业,占全球市场33%左右的市场份额,为全球光伏逆变器领军企业,其产品发展历程具有一定的代表性。 SMA公司光伏逆变器产品发展情况 国内外技术对比分析: 目前我国在小功率逆变器上与国际处于同一水平,在大功率并网逆变器上,合肥阳光电源大功率逆变

2、器2005年已经批量向国内、国际供货。该公司250KW、500KW等大功率产品都取得了国际、国内认证,部分技术指标已经超过国外产品水平,并在国内西部荒漠、世博会、奥运场馆等重点项目上运行,效果良好。,光伏逆变器供应企业,国内逆变器的主要生产企业,光伏逆变器的分类:,光伏逆变器按宏观可分为: 1.普通型逆变器 2.逆变/控制一体机 3.邮电通信专用逆变器 4.航天、军队专用逆变器,按逆变器输出交流电能的频率分: (1)工频逆变器 工频逆变器的频率为的逆变器 (2)中频逆器 中频逆变器的频率一般为到十几 (3)高频逆变器 高频逆变器的频率一般为十几K到。,按逆变器输出的相数分可分为: (1)单相逆

3、变器 (2)三相逆变器 (3)多相逆变器 按照逆变器输出电能的去向分可分为: (1)有源逆变器 (2)无源逆变器 按逆变器主电路的形式分可分为: (1)单端式逆变器 (2)推挽式逆变器 (3)半桥式逆变器 (4)全桥式逆变器,按逆变器主开关器件的类型分可分为: (1)晶闸管逆变器 (2)晶体管逆变器 (3)场效应逆变器 (4)绝缘栅双极晶体管(IGBT)逆变器 按直流电源分可分为: (1)电压源型逆变器(VSI) (2)电流源型逆变器(CSI) 按逆变器控制方式分可分为: (1)调频式(PFM)逆变器 (2)调脉宽式(PWM)逆变器 按逆变器开关电路工作方式分可分为: (1)谐振式逆变器 (2

4、)定频硬开关式逆变器 (3)定频软开关式逆变器,按逆变器输出电压或电流的波形分可分为: (1)方波逆变器 方波逆变器输出的电压波形为方波,此类逆变器所使用的逆变电路也不完全相同 ,但共同的特点是线路比较简单,使用的功率开关数量 很少。设计功率一般在百瓦至千瓦之间。 方波逆变器的优点是:线路简单,维修方便,价格便宜。 缺点是方波电压中含有大量的高次谐波,在带有铁心电感或变压器的负载用电器中将产生附加损耗,对收音机 和某些通讯设备有干扰。此外,这类逆变器还有调压范围不够宽,保护功能不够完善,噪声比较大等缺点。 (2)阶梯波逆变器 此类逆变器输出的电压波形为阶梯波。逆变器实现阶梯波输出也有多种不同的

5、线路。输出波形的阶梯数目差别很大。 阶梯波逆变器的优点是 :输出波形比方波有明显改善 ,高次谐波含量减少,当阶梯达到17个以上时输出波形可实现准正弦波,当采用无变压器输出时整机效率很高。 缺点是阶梯波叠加线路使用的功率开关较多,其中还有些线路形式还要求有多组直流电源输入。这给太阳能电池方阵的分组 与 接线和蓄电池的均衡充电均带来麻烦 。此外阶梯波电压对收音机和某些通讯设备仍有一些高频干扰。,(3)正弦波逆变器 正弦波逆变器输出的电压波形为正弦波 正弦波逆变器的优点是:输出波形好,失真度很低,对收音机及通讯设备 干扰小,噪声低。此外,保护功能齐全,整机效率高。 缺点是:线路相对复杂,对维修技术要

6、求高 ,价格昂贵。 按隔离方式光伏逆变器可分为: (1)独立光伏系统逆变器 独立逆变器包括边远地区的村庄供电系统,太阳能户用电源系统,通信信号电源,阴极保护,太阳能路灯等带有蓄电池的独立发电系统。,(2)并网光伏系统逆变器 并网发电系统是与电网相连并向电网输送电力的光伏发电系统。通过光伏组件将接收来的太阳辐射能量经过高频直流转换后变成高压直流电,经过逆变器逆变后转换后向电网输出与电网电压同频、同相的正弦交流电流。 逆变器的特点: 逆变器的主要特点包括:,(1)要求具有较高的效率 由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。 (2)要求具有

7、较高的可靠性 目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如 :输入直流极性接反保护、交流输出短路保护、过热、过载保护等。 (3)要求输入电压有较宽的适应范围 由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在10V16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。,光伏逆变器的工作原理:,逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。 逆变器简单原理

8、图,几种逆变技术分析,1.低频环节逆变技术 此技术可以分为:方波逆变、阶梯合成逆变、脉宽调制逆变三种,但这三种逆变器的共同点都是用来实现电器隔离和调整变压比的变压器工作频率等于输出电压频率,所以称为低频环节逆变器,该电路结构由工频或高频逆变器、工频变压器以及输入、输出滤波器构成,如图1 所示,具有电路结构简洁、单级功率变换、变换效率高等优点,但同时也有变压器体积和重量大、音频噪音大等缺点。 图1 低频环节逆变原理图,2.高频环节逆变技术 高频环节逆变电路如图2 所示,就是利用高频变压器替代低频变压器进行能量传输、并实现变流装置的一、二次侧电源之间的电器隔离,从而减小了变压器的体积和重量,降低了

9、音频噪音,此外逆变器还具有变换效率高、输出电压纹波小等优点。此类技术中也有不用变压器隔离的,在逆变器前面直接用一级高频升压环节,这级高频环节可以提高逆变侧的直流电压,使得逆变器输出与电网电压相当,但是这样方式没有实现输入输出的隔离,比较危险,相比这两种技术来讲,高频环节的逆变器比低频逆变器技术难度高、造价高、拓扑结构复杂。 图2 高频环节逆变原理图,单相逆变电路拓扑的介绍: 实现逆变有很多种典型的电路拓扑,主要有推挽逆变拓扑、半桥逆变拓扑、全桥逆变拓扑三种,下文将对这三种拓扑进行介绍。 推挽逆变拓扑: 图3 所示的推挽电路只用两个开关元器件,比全桥电路少用了一半的开关器件,可以提高能量利用率,

10、另外驱动电路具有公共地,驱动简单,适用原边电压比较低的场合,但由于本身电路的结构特点,推挽电路拓扑无法输出正弦电压波形,只能输出方波电压波形,适用于1KW 以下的方波电压方案。 图 3 推挽逆变原理图,半桥逆变拓扑: 图4 所示的半桥逆变电路,其功率开关元器件也比较少,结构简单, 但主电路交流输出的电压幅值仅为ui/2,在同等容量下,其功率开关的额 定电流为全桥逆变电路中的功率元器件额定电流的2 倍,由于分压电容的作用,该电路还具有较强的抗电压输出不平衡能力。 图 4 半桥逆变原理图,全桥逆变拓扑: 图5 所示的全桥逆变电路,使用了4个开关元器件,开关端电压为Ui,在相同的直流输入电压下,其最

11、大输出电压是半桥逆变电路的两倍。这就意味着在输出相同功率的情况下,全桥逆变器输出电流和通过开关元器件的电流均为半桥逆变电路的一半,但驱动电路相比于前面两种来得复杂。 图 5 全桥逆变电路,并网逆变器的电路结构:,上图 为并逆变器内部功能模块框图。光伏输入在逆变器直流侧汇总,升压电路将输入直流电压提高到逆变器所需的值。MPP 跟踪器保证光伏阵列产生直流电能能最大程度地被逆变器所使用。IGBT 全桥电路将直流电转换成交流电压和电流。保护功能电路在逆变器运行过程中监测运行状况,在非正常工作条件下可触发内部继电器从而保护逆变器内部元器件免受损坏。,逆变器的控制方案: 逆变器的控制方法主要有采用经典控制

12、理论的控制策略和采用现代控制理论的控制策略两种。 (1)经典控制理论的控制策略 1、电压均值反馈控制 他是给定一个电压均值,反馈采样输出电压的均值,两者相减得到一个误差,对误差进行PI调节,去控制输出。他是一个恒值调节系统,优点是输出可以达到无净差,缺点是快速性不好。 2、电压单闭环瞬时值反馈控制 电压单闭环瞬时值反馈控制采用的电压瞬时值给定,输出电压瞬时值反馈,对误差进行PI调节,去输出控制。他是一个随动调节系统,由于积分环节存在相位滞后,系统不可能达到无净差,所以这种控制方法的稳态误差比较大,但快速性比较好。 3、电压单闭环瞬时值和电压均值相结合的控制方法 由于电压瞬时值单闭环控制系统的稳

13、态误差比较大,而电压均值反馈误差比较小,可以再PI控制的基础上再增设一个均值电压反馈,以提高系统的稳态误差。,4、电压电流双闭环瞬时控制 电压单闭环控制在抵抗负载扰动方面的缺点与直流电机的转速单闭环控制比较类似,具体表现在只有当负载(电流、转矩)扰动的影响最终在系统输出端(电压、转速)表现出来后,控制器才开始有反应,基于这一点,可以再电压外环基础上加一个电流内环,利用电流内环快速,及时的抗扰性来抑制负载波动的影响,同时由于电流内环对被控对象的改造作用,使得电压外环调节可以大大的简化。 (2)现代控制理论的控制策略: 1、多变量状态反馈控制 多变量状态反馈控制的优点在于可以大大改善系统的动态品质

14、,因为它可以任意的配置系统的极点,但是建立逆变器的状态模型时很难将负载的动态特性考虑在内,所以,状态反馈只能针对空载或假定负载进行,对此应采用负载电流前馈补偿,预先进行鲁棒性分析,才能使系统有好的稳态和动态性能。 2、无差拍控制 无差拍控制的基本思想是将给定的正弦参考波形等间隔的划分成若干个周期,根据每个采样周期的起始值采用预测算法计算出在采样结束时,负载应输出的值,通过合理计算这个值的大小使系统输出在采样周期结束时与参考波形完全重合,没有任何相位和幅值偏差。 3、滑模变结构控制 滑模变结构控制是一种非线性的控制方法。他的基本思想是利用某种不连续的开关控制策略来强迫系统的状态变量沿着某一设计好

15、的滑模面运动。滑模变结构控制的优点是对系统参数变化和外部扰动不敏感,具有较强的鲁棒性。然而,对逆变电源系统来说,要确定一个理想的滑模面是很困难的。并且,在用数字式方法来实现这种控制方式时,开关频率必须足够高。 4、模糊控制 模糊控制属于智能控制的范畴,与传统的控制方式相比,智能控制最大的优点是不依赖于系统的数学模型,它是控制理论发展的高级阶段,主要用来处理哪些对象不确定性,高度非线性的问题。 5、重复控制 重复控制是根据内膜原理,对指令和扰动信号均设了一个内膜,因此可以达到输出无净差,缺点是:动态响应比较慢,且需要比较大的内存。,正弦脉宽调制技术:,采样控制理论中有一个重要结论:冲量相等而形状

16、不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可以改变输出频率。 如果把一个正弦半波分成N等分,然后把每一等份的正弦曲线与横轴包围的面积,用与它等面积的等高而不等宽的矩形脉冲代替,矩形脉冲的中点与正弦波每一等分的中点重合,根据冲量相等,效果相同的原理,这样的一系列的矩形脉冲与正弦半波是等效的,对于正弦波的负半周也可以用同样的方法得到PWM波形。像这样的脉冲宽

17、度按正弦规律变化而和正弦波等效的PWM波形就是SPWM波。 SPWM 有两种控制方式,一种是单极式,一种双极式,两种控制方式调制方法相同,输出基本电压的大小和频率也都是通过改变正弦参考信号的幅值和频率而改变的,只是功率开关器件通断的情况不一样,采用单极式控制时,正弦波的半个周期内每相只有一个开关元器件开通或关断,而双极式控制时逆变器同一桥臂上下两个开关器件交替通断,处于互补工作方式,双极式比单极式调制输出的电流变化率较大,外界干扰较强。,单相桥式SPWM 逆变电源采用单极式倍频调制方式时的输出SPWM 波形如图6 所示,它是采用2个相位相反的而幅值相等的三角波与一正弦波相比较,可看成将三角载波

18、进行全波整流(将虚线三角波沿X 轴往上翻),再由正弦波进行调制,得到了2 个二阶SPWM 波,使2 个二阶SPWM 波相减,就可得到三阶SPWM 波,即在调制波正半周,三阶SPWM 波主要由Ug1 和Ug3 相减得到,在调制波的负半周,三阶SPWM 波主要由Ug2 和Ug4 相减得到。 图6单极性倍频式SPWM 控制波形,光伏阵列工作点跟踪控制:,光伏阵列工作点的控制主要有恒电压控制(CVT)和MPPT这2种方式。 CVT是通过将光伏阵列端电压稳定于某个值的方法, 确定系统功率点。其优点是控制简单, 系统稳定性好。但当温度变化较大时, CVT方式下的伏阵列工作点将偏离最大功率点。 MPPT是当

19、前较广泛采用的光伏阵列功率点控制策略。它通过实时改变系统的工作状态, 跟踪阵列的最大工作点, 从而实现系统的最大功率输出。它是一种自主寻优方式, 动态性能较好,但稳定性不如CVT。其常用方法有“ 上山”法、干扰观察法、电导增量法等。 现在对MPPT的研究集中在简单、高稳定性的控制算法实现上, 如最优梯度法、模糊逻辑控制法、神经元网络控制法等, 也都取得了较显著的跟踪控制效果。,逆变器对于孤岛效应的检测及控制:,逆变器直接并网时, 除了应具有基本的保护功能外, 还应具备防孤岛效应的特殊功能。从用电安全与电能质量考虑, 孤岛效应是不允许出现的;孤岛发生时必须快速、准确地切除并网逆变器, 由此引出了

20、对于孤岛效应进行检测的控制。 孤岛效应的检测一般分成被动式与主动式。被动式检测是利用电网监测状态如电压、频率、相位等作为判断电网是否故障的依据。如果电网中负载正好与逆变器输出匹配, 被动法将无法检测到孤岛的发生。主动检测法则是通过电力逆变器定时产生干扰信号, 以观察电网是否受到影响作为判断依据, 如脉冲电流注入法、输出功率变化检测法、主动频率偏移法和滑模频率偏移法等。它们在实际并网逆变器中都有所应用, 但也存在着各自的不足。当电压幅值和频率变化范围小于某一值时, 频率偏移法无法检测到孤岛效应, 即存在“ 检测盲区。输出功率变化检测法虽不存在“ 检测盲区” , 然而光伏并网系统受到光照强度等影响

21、, 其光伏输出功率随时在波动, 对逆变器加入有功功率扰动, 将会降低光伏阵列和逆变系统的效率。为了解决这个问题, 光伏并网的有功和无功综合控制方法经常被提出来。 随着光伏并网发电系统进一步的广泛应用, 当多个逆变器同时并网时, 不同逆变器输出的变化非常大, 从而导致上述方法可能失效。因此, 研究多逆变器的并网通信、协同控制已成为其孤岛效应检测与控制的研究趋势。,锁相环控制技术:,在光伏并网发电系统中, 需要实时检测电网电压的相位和频率以控制并网逆变器, 使其输出电流与电网电压相位及频率保持同步,即同步锁相。 同步锁相是光伏并网系统的一项关键技术, 其控制精确度直接影响到系统的并网运行性能。倘若

22、锁相环电路不可靠, 在逆变器与电网并网工作切换中会产生逆变器与电网之间的环流,对设备造成冲击,缩短设备使用寿命,严重时还将损坏设备。 目前,对基于DSP 的数字锁相环的应用较多。,光伏逆变器的主要技术指标:,输出电压的稳定度 在光伏系统中,太阳电池发出的电能先由蓄电池储存起来,然后经过逆变器逆变成220V或380V的交流电。但是蓄电池受自身充放电的影响,其输出电压的变化范围较大,如标称12V的蓄电池,其电压值可在108144V之间变动(超出这个范围可能对蓄电池造成损坏)。对于一个合格的逆变器,输入端电压在这个范围内变化时,其稳态输出电压的变化量应不超过额定值的5,同时当负载发生突变时,其输出电

23、压偏差不应超过额定值的10。 输出电压的波形失真度 对正弦波逆变器,应规定允许的最大波形失真度(或谐波含量)。通常以输出电压的总波形失真度表示,其值应不超过5(单相输出允许l0)。由于逆变器输出的高次谐波电流会在感性负载上产生涡流等附加损耗,如果逆变器波形失真度过大,会导致负载部件严重发热,不利于电气设备的安全,并且严重影响系统的运行效率。,额定输出频率 对于包含电机之类的负载,如洗衣机、电冰箱等,由于其电机最佳频率工作点为50Hz,频率过高或者过低都会造成设备发热,降低系统运行效率和使用寿命,所以逆变器的输出频率应是一个相对稳定的值,通常为工频50Hz,正常工作条件下其偏差应在l 以内。 负

24、载功率因数 表征逆变器带感性负载或容性负载的能力。正弦波逆变器的负载功率因数为0709,额定值为09。在负载功率一定的情况下,如果逆变器的功率因数较低,则所需逆变器的容量就要增大,一方面造成成本增加,同时光伏系统交流回路的视在功率增大,回路电流增大,损耗必然增加,系统效率也会降低。 逆变器效率 逆变器的效率是指在规定的工作条件下,其输出功率与输入功率之比,以百分数表示,一般情况下,光伏逆变器的标称效率是指纯阻负载,80负载情况下的效率。 由于光伏系统总体成本较高,,因此应该最大限度地提高光伏逆变器的效率,降低系统成本,提高光伏系统的性价比。目前主流逆变器标称效率在8095之间,对小功率逆变器要

25、求其效率不低于85。在光伏系统实际设计过程中,不但要选择高效率的逆变器,同时还应通过系统合理配置,尽量使光伏系统负载工作在最佳效率点附近。 6、额定输出电流(或额定输出容量) 表示在规定的负载功率因数范围内逆变器的额定输出电流。有些逆变器产品给出的是额定输出容量,其单位以或表示。逆变器的额定容量是当输出功率因数为(即纯阻性负载)时,额定输出电压为额定输出电流的乘积。 7、保护措施 一款性能优良的逆变器,还应具备完备的保护功能或措施,以应对在实际使用过程中出现的各种异常情况,使逆变器本身及系统其他部件免受损伤。,(1)输入欠压保户: 当输入端电压低于额定电压的85 时,逆变器应有保护和显示。 (

26、2)输入过压保户: 当输入端电压高于额定电压的130时,逆变器应有保护和显示。 (3)过电流保护: 逆变器的过电流保护,应能保证在负载发生短路或电流超过允许值时及时动作,使其免受浪涌电流的损伤。当工作电流超过额定的150 时,逆变器应能自动保护。 (4)输出短路保户 逆变器短路保护动作时间应不超过05s。 (5)输入反接保护: 当输入端正、负极接反时,逆变器应有防护功能和显示。,(6)防雷保护: 逆变器应有防雷保护。 (7)过温保护等。 另外,对无电压稳定措施的逆变器 ,逆变器还应有输出过电压防护措施,以使负载免受过电压的损害。 8起动特性 表征逆变器带负载起动的能力和动态工作时的性能。逆变器

27、应保证在额定负载下可靠起动。 9噪声,电力电子设备中的变压器、滤波电感、电磁开关及风扇等部件均会产生噪声。逆变器正常运行时,其噪声应不超过,小型逆变器的噪声应不超过。,光伏逆变器的简单选型:,逆变器的选用,首先要考虑具有足够的额定容量,以满足最大负荷下设备对电功率的要求。对于以单一设备为负载的逆变器,其额定容量的选取较为简单。 当用电设备为纯阻性负载或功率因数大于09时,选取逆变器的额定容量为用电设备容量的11115倍即可。同时逆变器还应具有抗容性和感性负载冲击的能力。 对一般电感性负载,如电机、冰箱、空调、洗衣机、大功率水泵等,在起动时,其瞬时功率可能是其额定功率的56倍,此时,逆变器将承受

28、很大的瞬时浪涌。针对此类系统,逆变器的额定容量应留有充分的余量,以保证负载能可靠起动,高性能的逆变器可做到连续多次满负荷起动而不损坏功率器件。小型逆变器为了自身安全,有时需采用软起动或限流起动的方式。 另外,逆变器还要有一定的过载能力,当输入电压与输出功率为额定值,环境温度为25时,逆变器连续可靠工作时间应不低于4h;当输入电压为额定值,输出功率为额定值的125时,逆变器安全工作时间应不低于lmin;当输入电压为额定值,输出功率为额定值的150时,逆变器安全工作时间应不低于10s,应用举例: 光伏系统中主要负载是150W 的电冰箱,正常工作时选择额定容量为180w 的交流逆变器即能可靠工作,但

29、是由于电冰箱是感性负载,在起动瞬间其功率消耗可达额定功率的56倍之多,因此逆变器的输出功率在负载起动时可达到800W,考虑到逆变器的过载能力,选用500W逆变器即能可靠工作。 当系统中存在多个负载时,逆变器容量的选取还应考虑几个用电负载同时工作的可能性,即“负载同时系数”。,光伏逆变器的安装注意事项及维护:,逆变器安装维修的注意事项: 1、在安装前首先应该检查逆变器是否在运输过程中有无损坏。 2、在选择安装场地时,应该保证周围内没有任何其他电力电子设备的干扰。 3、在进行电气连接之前,务必采用不透光材料将光伏电池板覆盖或断开直流侧断路器。暴露于阳光,光伏阵列将会产生危险电压。 4、所有安装操作

30、必须且仅由专业技术人员完成。 5、光伏系统发电系统中所使用线缆必须连接牢固,良好绝缘以及规格合适。 6、所有的电气安装必须满足当地以及国家电气标准。 7、仅当得到当地电力部门许可后并由专业技术人员完成所有电气连接后才可将逆变器并网。,8、在进行任何维修工作前,应首先断开逆变器与电网的电气连接,然后断开直流侧电气连接。 9、等待至少 5 分钟直到内部元件放电完毕方可进行维修工作。 10、任何影响逆变器安全性能的故障必须立即排除方可再次开启逆变器。 11、避免不必要的电路板接触。 12、遵守静电防护规范,佩戴防静电手环。 13、注意并遵守产品上的警告标识。 14、操作前初步目视检查设备有无损坏或其

31、它危险状态。 15、注意逆变器热表面。例如功率半导体的散热器等,在逆变器断电后一段时间内,仍保持较高温度。,光伏逆变器的安装流程:,逆变器的总体安装流程如图 3-1 所示,安装流程说明如表3-1 所示: 图3-1 安装流程,表3-1 安装流程说明,逆变器安装位置的要求: 1、勿将逆变器安装在阳光直射处。否则可能会导致额外的逆变器内部温度,逆变器为保护内部元件将降额运行。甚至温度过高引发逆变器温度故障。 2、选择安装场地应足够坚固能长时间支撑逆变器的重量。 3、所选择安装场地环境温度为-25C 50C,安装环境清洁。 4、所选择安装场地环境湿度不超过 95%,且无凝露 5、逆变器前方应留有足够间

32、隙使得易于观察数据以及维修。 6、尽量安装在远离居民生活的地方,其运行过程中会产生一些噪声。 7、安装地方确保不会晃动。,电气连接:,1、所有的电气安装必须符合当地电气安装标准。 2、确保交流侧和直流侧的断路器都处于断开状态。 3、在进行连接过程应选择不同颜色线缆以作区别。如正极连接器连接红色线缆,负极连接器连接蓝色线缆。 4、为保证各路光伏组串之间的平衡,所选择的各路直流线缆应具有相同的横截面积。 5、在光伏发电系统中,所有非载流金属部件和设备的外壳都应该接至大地,如光伏模块的支架,逆变器外壳等。,配电系统的防雷与接地:,通讯连线:,单台逆变器通讯连接: 单台逆变器的通讯连接方法如下图所示,

33、需将逆变器的 RS485 通讯口接RS485/232 转换器,再连接到监控PC 机。 图 逆变器通过RS485-RS232 转换器与电脑连接,多台逆变器通讯连接: 单台或多台逆变器通过 RS485 标准串口与SunInfo Logger 数据采集器进行通讯,与上位PC 机通讯,通过SunInfo Insight 光伏系统监控软件进行监控。 图 多台逆变器通讯连接,通讯线连接步骤:,1、使用1 根双芯屏蔽电缆作为RS485 总线,在起始端串接一个120电阻。 2、 将逆变器RS485 连接通讯线缆,并引出接至RS485 总线 3.、按照步骤2 将所有的逆变器通讯端连接至RS485 总线。 4.、

34、将RS485 总线连接至数据采集器RS485/RS232 转换器。 说明: 为了保证通讯质量,RS485 通讯线缆需采用双绞屏蔽线。 屏蔽线的屏蔽层连接后,在监控终端处采用单点接地的方式。,光伏逆变器的应用:,表 光伏逆变器国内主要的应用领域,国家体育馆,国家体育馆,国家体育馆,国家体育馆,国家体育馆,实例-国家体育馆,采用485总线通讯模式的通讯系统可采集气象和系统运行数据,并实现、故障报警、远程监测和显示等功能。,世博会城市最佳实践区英国伦敦馆光伏系统设计及应用:,世博会伦敦馆建筑示意图,太阳电池组件与楼顶、阳台、露台的完美结合,太阳电池组件与楼顶、阳台。露台的完美结合,伦敦馆并网光伏系统

35、防雷示意图,光伏逆变器的发展前景:,并网光伏项目是光伏逆变器的主要应用领域,从项目建设地域来看,项目主要集中在北京、西藏、深圳、上海等地,目前光伏发电项目大多处于示范期,多集中在经济发达城市,随着技术的成熟和国家政策的扶持,预计未来将向中西部光照资源丰富地区发展 。 2009年4月份以来,国家发改委的不同级别的领导多次表示将出台新能源发展规划。各种媒体预测的新能源规划中,到2010 年光伏发电总容量达到250MW,到2020年达到2000MW,将极大支持我国光伏产业的发展。,56,按照这一发展目标,预计20092010年国内光伏发电用逆变器的市场规模将达到130MW左右。2011年以后,国内光伏逆变器的年均需求量在100MW以上。 发展前景是非常好的!,由于主讲人王智强的 水平有限,不足 之处在所 难免, 还望大家多多指教! 谢谢大家!,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1