四中队吴毓立.ppt

上传人:本田雅阁 文档编号:3200428 上传时间:2019-07-30 格式:PPT 页数:11 大小:822.55KB
返回 下载 相关 举报
四中队吴毓立.ppt_第1页
第1页 / 共11页
四中队吴毓立.ppt_第2页
第2页 / 共11页
四中队吴毓立.ppt_第3页
第3页 / 共11页
四中队吴毓立.ppt_第4页
第4页 / 共11页
四中队吴毓立.ppt_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《四中队吴毓立.ppt》由会员分享,可在线阅读,更多相关《四中队吴毓立.ppt(11页珍藏版)》请在三一文库上搜索。

1、四(2)中队 吴毓立,宇宙大无穷,太阳只是一颗非常普通的恒星,在广袤浩瀚的繁星世界里,太阳的大小和物质密度都处于中等水平。只是因为它离地球较近,所以看上去是天空中最大最亮的天体。其它恒星离我们都非常遥远,即使是最近的恒星,也比太阳远27万倍,看上去只是一个闪烁的光点。太阳光球就是我们平常所看到的太阳圆面,通常所说的太阳半径也是指光球的半径。光球层位于对流层之外,属太阳大气层中的最低层或最里层。光球的表面是气态的,其平均密度只有水的几亿分之一,但由于它的厚度达500千米,所以光球是不透明的。光球层的大气中存在着激烈的活动,用望远镜可以看到光球表面有许多密密麻麻的斑点状结构,很象一颗颗米粒,称之为

2、米粒组织。它们极不稳定,一般持续时间仅为510分钟,其温度要比光球的平均温度高出300400。目前认为这种米粒组织是光球下面气体的剧烈对流造成的现象。光球表面另一种著名的活动现象便是太阳黑子。黑子是光球层上的巨大气流旋涡,大多呈现近椭圆形,在明亮的光球背景反衬下显得比较暗黑,但实际上它们的温度高达4000左右,倘若能把黑子单独取出,一个大黑子便可以发出相当于满月的光芒。日面上黑子出现的情况不断变化,这种变化反映了太阳辐射能量的变化。太阳黑子的变化存在复杂的周期现象,平均活动周期为11.2年。,太阳,月球也称太阴,俗称月亮,是地球的伴星和卫星,也是离地球最近的天体,还是被人们研究得最彻底的天体。

3、人类至今第二个亲身到过的天体就是月球。月球的年龄大约有46亿年。月球有壳、幔、核等分层结构。最外层的月壳平均厚度约为60-65公里。月壳下面到1000公里深度是月幔,它占了月球的大部分体积。月幔下面是月核,月核的温度约为1000度,很可能是熔融状态的。月球直径约3476公里,是地球的1/4、太阳的1/400。月球的体积只有地球的1/49,质量约7350亿亿吨,相当于地球质量的1/80左右,相当于太阳的1/400,月球表面的重力约是地球重力的1/6。月球永远都是一面朝向我们(原因见后面解释),这一面习惯上被我们称为正面。另外一面,除了在月面边沿附近的区域因天秤动而中间可见以外,月球的背面绝大部分

4、不能从地球看见。在没有探测器的年代,月球的背面一直是个未知的世界。月球背面的一大特色是几乎没有月海这种较暗的月面特征。而当人造探测器运行至月球背面时,它将无法与地球直接通讯。月球27.32166天绕地球运行一周,而每小时相对背景星空移动半度,即与月面的视直径相若。与其他卫星不同,月球的轨道平面较接近黄道面,而不是在地球的赤道面附近。,月球,水星是太阳系中仅次于地球,密度第二大的天体。事实上地球的密度高部分源于万有引力的压缩;或非如此,水星的密度将大于地球,这表明水星的铁质核心比地球的相对要大些,很有可能构成了行星的大部分。因此,相对而言,水星仅有一圈薄薄的硅酸盐地幔和地壳。巨大的铁质核心半径为

5、1800到1900千米,是水星内部的支配者。而硅酸盐外壳仅有500到600千米厚,至少有一部分核心大概成熔融状。 事实上水星的大气很稀薄,水星温度如此之高,使得这些原子迅速地散逸至太空中,这样与地球和金星稳定的大气相比,水星的大气频繁地被补充更换。水星的表面表现出巨大的急斜面,有些达到几百千米长,三千米高。有些横处于环形山的外环处,而另一些急斜面的面貌表明他们是受压缩而形成的。据估计,水星表面收缩了大约0.1(或在星球半径上递减了大约1千米)。水星上最大的地貌特征之一是Caloris盆地,直径约为1300千米,人们认为它与月球上最大的盆地Maria相似。如同月球的盆地,Caloris盆地很有可

6、能形成于太阳系早期的大碰撞中,那次碰撞大概同时造成了星球另一面正对盆地处奇特的地形。除了布满陨石坑的地形,水星也有相对平坦的平原,有些也许是古代火山运动的结果,但另一些大概是陨石所形成的喷出物沉积的结果。水手号探测器的数据提供了一些近期水星上火山活动的初步迹象,但我们需要更多的资料来确认。令人惊讶的是,水星北极点的雷达扫描(一处未被水手10号勘测的区域)显示出在一些陨石坑的被完好保护的隐蔽处存在冰的迹象。,水星,木星可能有一个石质的内核,相当于1015个地球的质量。内核上则是大部分的行星物质集结地,以液态氢的形式存在。这些木星上最普通的形式基础可能只在40亿帕压强下才存在,木星内部就是这种环境

7、(土星也是)。液态金属氢由离子化的质子与电子组成(类似于太阳的内部,不过温度低多了)。在木星内部的温度压强下,氢气是液态的,而非气态,这使它成为了木星磁场的电子指挥者与根源。同样在这一层也可能含有一些氦和微量的冰。最外层主要由普通的氢气与氦气分子组成,它们在内部是液体,而在较外部则气体化了,我们所能看到的就是这深邃的一层的较高处。水、二氧化碳、甲烷及其他一些简单气体分子在此处也有一点儿。云层的三个明显分层中被认为存在着氨冰,铵水硫化物和冰水混合物。然而,来自伽利略号的证明的初步结果表明云层中这些物质极其稀少(一个仪器看来已检测了最外层,另一个同时可能已检测了第二外层)。但这次证明的地表位置十分

8、不同寻常基于地球的望远镜观察及更多的来自伽利略号轨道飞船的最近观察提示这次证明所选的区域很可能是那时候木星表面最温暖又是云层最少的地区。来自伽利略号的大气层数据同样证明那里的水比预计的少得多,原先预计木星大气所包含的氧是目前太阳的两倍(算上充足的氢来生成水),但目前实际集中的比太阳要少。另外一个惊人的消息是大气外层的高温和它的密度。众所周知,太阳之所以不断放射出大量的光和热,是因为太阳内部时刻进行着核聚变反应,在核聚变过程中释放出大量的能量。木星是一个巨大的液态氢星球,本身已具备了无法比拟的天然核燃料,加之木星的中心温度已达到了28万K,具备了进行热核反应所需的高温条件。至于热核反应所需的高压

9、条件,就木星的收缩速度和对太阳放出的能量及携能粒子的吸积特性来看,木星在经过几十亿年的演化之后,中心压可达到最初核反应时所需的压力水平。一旦木星上爆发了大规模的热核反应,以千奇百怪的旋涡形式运动的木星大气层将充当释放核热能的“发射器”。,木星,火星的火红色,自古就吸引着人们,而希腊更是称之为战神。此时人们观测火星就和其他天体般,大部分是为了占星,而为了科学目的主要在十七世纪之后,如开普勒探索行星运动定律时就是依据了第谷积累的大量而精密的火星运行的观测资料。乔瓦尼斯加帕雷里所绘之火星地图。望远镜发明后,人们对火星可以进行更进一步的观测。第一个使用望远镜观测星空的伽利略所见的火星只是一个橘红小点,

10、然而随着望远镜的发展,观测者开始辨别到一些明暗特征。惠更斯依此测出火星自转周期约为24.6小时,他亦为首次纪录火星南极冠的人。一开始由于各人各自观测,意见亦不一致,地名也未统一(例如用绘制者名字命名)。后来意大利的乔瓦尼斯加帕雷里(Giovanni Schiaparelli)统合了各家说法而绘制了一个较可信的地图,地名取自地中海、中东等的地名和圣经等作为来源,而其余则依照旧有的观念:暗区被认为是湖(lacus)海(mare)等水体,如太阳湖(Solis LacusLake of the Sun)、塞壬海(Mare Sirenumthe Sea of Sirens)、最明显的暗大三角大塞地斯(S

11、yrtis Major);而亮区则是陆地,如亚马逊(Amazonis)。这个命名系统一直延续下来。当时,斯加帕雷里和同期观测者一样,观察到了火星表面似乎有一些从暗区延伸出的细线,因为对于暗区是水体的传统,这些细线命名为水道(canali)。而后来观察到暗区会在冬季时缩小、夏季时扩张,有人提出暗区是植物覆盖、而暗区的扩大缩小则是消长所引起的,改变以往认为暗区是水的说法。帕西瓦尔罗威尔(Percival Lowell)亦观察到,并宣称那些“水道”其实是人工挖掘的“运河”,用来灌溉植物,因为水道应太细不可见,而看到的细线应是灌溉出的大片植物。风靡大众的火星科幻和火星人即源于此。不过这些细线大多已证明

12、是不存在的,部分则是峡谷或陨石坑后延伸出的深色沙子。而火星表面颜色的改变则是因为沙被风吹移,或发生火星尘暴。,火星,金星周围有浓密的大气和云层。这些云层为金星表面罩上了一层神秘的面纱。只有借助于射电望远镜才能穿过这层大气,看到金星表面的本来面目。金星大气中,二氧化碳最多,占97以上。同时还有一层厚达20到30公里的由浓硫酸组成的浓云。金星表面温度高达摄氏465至摄氏485度,大气压约为地球的90倍(相当于地球900米深海中的压力)。金星的自转很特别,是太阳系内唯一逆向自转的大行星,自转方向与其它行星相反,是自东向西。因此,在金星上看,太阳是西升东落。金星绕太阳公转的轨道是一个很接近正圆的椭圆形

13、,且与黄道面接近重合,其公转速度约为每秒35公里,公转周期约为224.70天。但其自转周期却为243日,也就是说,金星的自转恒星日一天比一年还长。不过按照地球标准,以一次日出到下一次日出算一天的话,则金星上的一天要远远小于243天。这是因为金星是逆向自转的缘故;在金星上看日出是在西方,日落在东方;一个日出到下一个日出的昼夜交替只是地球上的116.75天。金星逆向自转现象有可能是很久以前金星与其它小行星相撞而造成的,但是现在还无法证明。除了这种不寻常的逆行自转以外,金星还有一点不寻常。金星的自转周期和轨道是同步的,这么一来,当两颗行星距离最近时,金星总是以同一个面来面对地球(每5.001个金星日

14、发生一次)。这可能是潮汐锁定(tidal locking)作用的结果当两颗行星靠得足够近时,潮汐力就会影响金星自转。当然,也有可能仅仅是一种巧合。金星半径6073公里,比地球小,体积是地球的0.88倍质量为地球的五分之四。大约90%的金星表面是由不久之前才固化的玄武岩熔岩形成,当然也有极少量的陨石坑。这表明金星近来正在经历表面的重新构筑。金星的内部可能与地球是相似的:半径约3000千米的地核和由熔岩构成的地幔组成了金星的绝大部分。来自麦哲伦(Magellan)号的最近的数据表明金星的地壳比起原来所认为的更厚也更坚固。可以据此推测金星没有像地球那样的可移动的板块构造,但是却有大量的有规律的火山喷

15、发遍布金星表面。金星上最古老的特征仅有8亿年历史,大多数地区都很年轻(但也有数亿年的时间)。,金星,天王星在被发现是行星之前,已经被观测了很多次,但都把它当作恒星看待。最早的纪录可以追溯至1690年,约翰佛兰斯蒂德在星表中将他编为金牛座34,并且至少观测了6次。法国天文学家Pierre Lemonnier在1750至1769年也至少观测了12次,包括一次连续四夜的观测。有些论点认为气体巨星和冰巨星在形成的时候就有差异存在,太阳系的诞生应该开始于一个气体和尘土构成的巨大转动的球体,也就是前太阳星云。当它凝聚时,它逐渐形成盘状,在中心的崩塌形成了太阳。多数的星云气体,主要是氢和氦,形成了太阳;同时

16、,颗粒的尘土集合形成了第一颗原行星。在行星成长的过程中,有些累积到足够的质量,能够凝聚星云中残余的气体。聚集越多的气体,使它们变得越大,它们变得越大,就越能聚集气体,直到达到一个关键的点,使它们开始以指数的增长。冰巨星,气体只有几个地球的质量,未能达到这个临界点。目前的太阳系形成理论遭遇了困难,在计算天王星和海王星如此远离木星和土星后,它们是太大了,以至于不能在那个距离上取得足够的材料来形成。相反的,有些科学家认为是在离太阳较近的位置形成之后,才被木星驱赶到外面的。然而,最近的摹拟,将行星漂移计算在内,似乎已能在它们现存的位置上形成天王星和海王星。天王星每84个地球年环绕太阳公转一周,与太阳的

17、平均距离大约30亿公里,阳光的强度只有地球的1/400。他的轨道元素在1783年首度被拉普拉斯计算出来,但随着时间,预测和观测的位置开始出现误差。在1845年,勒维耶开始独立的进行天王星轨道的研究,在1846年9月23日迦雷在勒维耶预测位置的附近发现了一颗新行星,稍后被命名为海王星。天王星内部的自转周期是17 小时又14 分,但是,和所有巨大的行星一样,他上部的大气层朝自转的方向可以体验到非常强的风。实际上,在有些纬度,像是从赤道到南极的2/3路径上,可以看见移动得非常迅速的大气,只要14个小时就能完整的自转一周。,天王星,海王星(Neptune)是环绕太阳运行的第八颗行星,是围绕太阳公转的第

18、四大天体(直径上)。海王星在直径上小于天王星,但质量比它大。海王星的质量大约是地球的17倍,而类似双胞胎的天王星因密度较低,质量大约是地球的14倍。海王星以罗马神话中的尼普顿(Neptunus),因为尼普顿是海神,所以中文译为海王星。天文学的符号,是希腊神话的海神波塞冬使用的三叉戟。作为典型的气体行星,海王星上呼啸着按带状分布的大风暴或旋风,海王星上的风暴是太阳系中最快的,时速达到2000千米。海王星的蓝色是大气中甲烷吸收了日光中的红光造成的。尽管海王星是一个寒冷而荒凉的星球。不过科学家们推测它的内部有热源。和土星、木星一样,海王星内部有热源它辐射出的能量是它吸收的太阳能的两倍多。由于海王星是

19、一颗淡蓝色的行星,人们根据传统的行星命名法,称其为捏普顿。涅普顿是罗马神话中统治大海的海神,掌握着1/3的宇宙,颇有神通。伽利略在1612年12月28日首度观测并描绘出海王星,1613年1月27日又再次观测,但因为观测的位置在夜空中都靠近木星(在合的位置),这两次机会伽利略都误认海王星是一颗恒星。相信是恒星,而不相信自己的发现,是因为1612年12月第一次观测的,海王星在留转向退行的位置,因为刚开始退行时的运动还十分微小,以至于伽利略的小望远镜查觉不出位置的改变。勒维耶,用数学发现海王星的人 。,海王星,黑洞的产生过程类似于中子星的产生过程;恒心的核心在自身重量的作用下迅速地收缩,发生强力爆炸

20、。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星球。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。由于高密度而产生的力量,使得任何靠近它的物体都会被它吸进去。与别的天体相比,黑洞十分太特殊。人们无法直接观察到它,物理学家也只能对它内部结构提出各种猜想。而使得黑洞把自己隐藏起来的的原因即是弯曲的空间。根据广义相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但相对而言它已弯曲。在经过大密度的天体时,空间会弯曲。光也就偏离了原来的方向。在地球上,由于引力场作用很小,空间的弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。,黑洞,Thank you!,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1