物质的跨膜运输.ppt

上传人:本田雅阁 文档编号:3347839 上传时间:2019-08-15 格式:PPT 页数:58 大小:5.64MB
返回 下载 相关 举报
物质的跨膜运输.ppt_第1页
第1页 / 共58页
物质的跨膜运输.ppt_第2页
第2页 / 共58页
物质的跨膜运输.ppt_第3页
第3页 / 共58页
物质的跨膜运输.ppt_第4页
第4页 / 共58页
物质的跨膜运输.ppt_第5页
第5页 / 共58页
点击查看更多>>
资源描述

《物质的跨膜运输.ppt》由会员分享,可在线阅读,更多相关《物质的跨膜运输.ppt(58页珍藏版)》请在三一文库上搜索。

1、 第五章 物质的跨膜运输 在污水处理时,人们设计了一种膜结 构,将有毒重金属离子阻挡在膜的一侧, 以降低有毒重金属对水的污染,请问这是 为什么? 讨论: 细胞膜是细胞与细胞外环境之间的一 种选择性通透屏障,它既能保障细胞对基 本营养物质的摄取、代谢废物的排除和细 胞内离子浓度的调节,又能使细胞维持相 对稳定的内环境。因此,物质的跨膜运输 对细胞的生存和生长至关重要。 第一节第一节 物质跨膜运输物质跨膜运输 物质通过细胞膜的运转主要有 三种形式: 被动运输(passive transport) 主动运输(active transport) 胞吞(endocytosis)与胞吐作用 (exocyt

2、osis) 一、被动运输(passive transport) 概念: 通过简单扩散或协助扩散实现物质由高 浓度向低浓度方向的跨膜转运。转运的 动力来自物质的浓度梯度,不需要细胞 提供代谢能量。 类型: 膜转运蛋白: 简单扩散(simple diffusion) 协助扩散(facilitated diffusion) 载体蛋白(carrier proteins) 通透酶(permease)性质;介导被动运输与主 动运输。 通道蛋白(channel proteins) 具有离子选择性,转运速率高;离子通道是门控 的;只介导被动运输。 电压门通道(voltage-gated channel) 配体

3、门通道(ligand-gated channel) 压力激活通道(stress-activated channel) 类 型 物质(如疏水的小分子或小的不带 电荷的极性分子)顺浓度梯度跨膜转 运 不需要能量 不需要膜蛋白 1、简单扩散(simple diffusion) 不同的小 分子物质跨膜 转运的速率差 异极大,即不 同分子的通透 系数不同。如 O2 、N2和苯 等极易通过细 胞膜,水分子 也比较容易通 过,尿素的通 透性比水分子 低100倍。 通透性主要取决于分子大小和分子的极性 小分子比大分子容易穿膜, 非极性分子比极性分子容易穿膜, 无蛋白的人工脂双层对带电荷的离子 是高度不透的。

4、具有极性的水分子容易穿膜可能是因 水分子非常小,可以通过自由膜脂运 动而产生的间隙。 物质(各种极性分子和无机离子,如糖 、氨基酸、核苷酸以及细胞代谢等) 顺浓度梯度或电化学梯度跨膜转运 不需要能量 需膜蛋白协助 2、协助扩散(facilitated diffusion) (1)概念 葡萄糖分子当以简单扩散方式 穿越细胞膜时,其通透系数为10-7 cm/s。当以协助扩散方式穿越红细 胞膜时其通透系数为10-2 cm/s,增 加了5倍。 1)转运速率高。 2)存在最大转运速率(Vmax),因此,可用达 到最大转运速率一半时的浓度作为Km值,用以衡量 某种物质的转运速率。 3)比较不同分子的Km值

5、,可以看出转运的特 异性,如红细胞质膜,D构型的葡萄糖Km为 1.5mmol/L,而L构型的葡萄糖Km值3000mmol/L。 4)细胞膜上存在膜转运蛋白,负责无机离子 和水溶性有机小分子的跨膜转运。 (2)协助扩散特征 简单扩散与协助扩散的比较 图示载体蛋白通过构象改变介导溶质(葡萄糖)被动运输的假想模式 膜上的载体蛋白以两种构象状态存在:状态A时,溶质结合位点在膜外侧暴露。状态B 时,同样的溶质结合位点在膜内侧暴露。该模型认为,两种构象状态的转变是随机发生而 不依赖于是否有溶质结合和是否完全可逆,假如溶质浓度在膜外侧高,则状态A状态B的 转换比状态B 状态A的转换更常发生,因此溶质顺浓度梯

6、度进入细胞。 (3)膜转运蛋白 载载体蛋白 通道蛋白形成跨膜亲水通道,介导的被 动运输不需要与溶质分子结合,允许适 宜大小的分子和带电荷的离子通过。 已发现100多种通道蛋白。 绝大多数通道蛋白形成有选择性开关的 多次跨膜通道。 通道蛋白几乎都与离子的转运有关,故 又称离子通道。 通道蛋白 离子通道对被转运的离子的大小与电荷都 有高度的选择性,而且转运速率高。可达106个 离子,其速率是已知任何一种载体蛋白的最快 速率的1000倍以上。驱动带电荷的溶质跨膜转 运的净驱动力来自两种力的合力,一种是溶质 的浓度梯度,另一种是跨膜电位差,这种净驱 动力构成溶质跨膜的电化学梯度,这种梯度决 定溶质跨膜

7、的被动运输方向。 A. 离子选择性: 通道蛋白特征 即离子通道的活性由通道开或关两种构象所调节,并通过通道 开关应答于适当的信号。 多数情况下,离子通道呈关闭状态,只有在膜电位变化、化学 信号或压力刺激后才开启形成跨膜的离子通道。因此离子通道又可 区分为电压门通道、配体门通道、压力门激活通道。 B. 离子通道是门控的 离子通道典型定位功 能 K+ 渗漏通道大多数动动物细细胞的质质膜维维持静息电电位 电压门电压门 Na+通道神经细经细 胞轴轴突的质质膜介导产导产 生动动作电电位 电压门电压门 K+通道神经细经细 胞轴轴突的质质膜起始动动作电电位后使膜恢 复静息电电位 电压门电压门 Ca2+通道神

8、经终经终 末的质质膜刺激神经递质释经递质释 放,将 电电信号转换为转换为 化学信号 乙酰酰胆碱受体 (乙酰酰胆碱门门Na+和Ca2+ 通道) 肌肉细细胞的质质膜(神经经- 肌肉接头处头处 ) 兴奋兴奋 性突轴轴信号传递传递 ( 在靶细细胞将化学信号转转 换为电换为电 信号) GABA受体(GABA门门Cl- 通道) 许许多神经经元的质质膜抑制性突触信号传递传递 压压力激活的阳离子通道内耳听觉觉毛细细胞检测检测 声音震动动 离子通道举例 三种基本类型 ATP直接供能的主 动运输 间接提供能量的主 动运输 光能驱动的主动运 输 二、主动运输(active transport) 1、概念: 2、类型

9、: 由载体蛋白所介导的物质逆浓度梯度或 电化学梯度由浓度低的一侧向高浓度的一侧 进行跨膜转运的方式。转运分子的自由能变 化为正值,因此需要与某种释放能量的过程 相偶联。 钠钾泵 (结构与机制) 钙泵(Ca2+-ATP酶) 质子泵:P-型质子泵、V-型质子泵、H+-ATP酶 Na+-K+ 泵由和二个亚基组成, 亚 基的Mr为120x103,是一个跨膜多次的整合 膜蛋白,具ATP酶活性。 亚基Mr为 50x103,是具组织特异性的糖蛋白。 (1)由ATP直接提供能量的主动运输 1)钠钾泵(又称Na+-K+ ATP酶)(结构与机制) 结构: 在细胞内侧, Na+与亚基相结合促进ATP水解, 亚基上的

10、一个天门冬氨酸残基磷酸化引起亚基构 象发生变化,将Na+泵出细胞,同时细胞外的K+与亚 基的另一位点结合,使其去磷酸化,亚基构象再度 发生变化将K+泵进细胞,完成整个循环。 Na+ 依赖的 磷酸化和K+依赖的去磷酸化引起构象变化有序交替发 生,每秒钟可发生1000次左右构象变化。每个循环消 耗一个ATP分子,泵出3个Na+ 和泵进2个K+ 。 极少量的乌本苷可抑制Na+-K+ 泵活性,而Mg2+和 少量的膜脂有助于Na+-K+ 泵活性的提高。生物氧化抑 制剂如氰化物使ATP供应中断,可使Na+-K+ 泵因失去 能源而停止工作。 工作机制: Na+-K+泵存在于一切动物细胞的细胞膜上 。红细胞表

11、面约有250个Na+-K+泵单位,密度 为1-2个/um2,其他细胞中,Na+-K+泵为103个 /um2左右,动物细胞靠ATP水解供能驱动Na+- K+泵工作,结果造成质膜两侧的Na+、K+不均 匀分布,有助于维持动物细胞的渗透平衡(胞 外水分可向细胞渗透而使细胞膨胀甚至破裂, 动物细胞借助于Na+-K+ 泵维持渗透平衡)。 植物细胞以其坚韧的细胞壁防止膨胀和破 裂。 Na+-K+泵工作意义: A.动物细胞通过泵出离子维持细胞内低浓度溶质。 B.植物细胞依靠细胞壁避免膨胀和破裂。 C. 原生动物通过收缩胞定时排出进入细胞过量的水而避免膨胀。 细胞以三种不同的机制避免渗透膨胀 Ca2+泵是由1

12、000个氨基酸残基组成的多 肽构成的跨膜蛋白。Mr100x103,与Na+- K+泵的亚基同源,每一泵单位中有约 10个跨膜螺旋。 细胞内钙调蛋白与Ca2+泵结合调节Ca2+ 泵活性。 Ca2+泵工作与ATP水解相偶联,每消耗 一个ATP分子转运出2个Ca2+。 2)钙泵(Ca2+-ATP酶) Ca2+泵主要存在于细胞膜和内质网膜 上,它将Ca2+输出细胞或泵进内质网 腔中储存起来,以维持细胞内低浓度 的游离Ca2+(一般细胞内约10- 7mmol/L,细胞外为10-3mol/L )。 Ca2+泵在肌质网内储存Ca2+,对调节 肌细胞的收缩与舒张至关重要。 分类: P-型质子泵、V-型质子泵、

13、H+-ATP酶。 3)质子泵 P-型质子泵 结构与Na+-K+泵和Ca2+泵类似,在转运H+的过 程中涉及磷酸化和去磷酸化,存在于真核细胞 的细胞膜上。 存在于线粒体内膜、植物类囊体膜和多数细菌质膜上 ,以相反方式发挥其生理作用,即H+顺浓度梯度运动 ,将所释放的能量与ATP合成偶联起来,如线粒体氧 化磷酸化和叶绿体的光和磷酸化作用,称H+ -ATP酶 更为合适。 V-型质子泵 H+泵 存在于动物细胞溶酶体膜和植物细胞液泡膜上, 转运H+过程中不形成磷酸化的中间体,其功能是 从细胞质基质中泵出H+进入细胞器,有助于保持 细胞质基质中性pH和细胞器内的酸性pH 。 植物细胞、真菌(包括酵母)和细

14、菌的 细胞膜上没有Na+-K+泵,而为H+泵,将H+ 泵出细胞,建立跨膜的H+电化学梯度(取 代动物细胞Na+的电化学梯度),驱动转运 溶质进入细胞。例如,细菌细胞对糖和氨 基酸的摄入主要是由H+驱动的同向运输完 成的。在这一过程中,H+泵产生细胞周围 基质中的酸性pH。在一些光合细菌中,H+ 电化学梯度由光驱动的H+泵(如细菌视紫 红质)活性建立。 它是一个跨膜7次的膜蛋白,其中两个极性的氨基 酸侧链(球状体)可能与质子的转移有关 细菌紫膜质分子的三维结构 由Na+-K+泵(或H+-泵)与载体蛋白 协同作用,靠间接消耗ATP所完成的 主动运输方式。 (2)间接提供能量的主动运输 协同运输 1

15、)协同运输(cotransport)概念: 2)类型: 共运输 对向运输 小肠上皮细胞和肾小管上皮细胞吸收葡 萄糖或转运氨基酸等有机物伴随Na+从 细胞外流入细胞内,完成共运输的载体 蛋白有两个结合位点,必须同时与Na+ 和特异的氨基酸或葡萄糖分子结合才能 进行共运输。 共运输 : 物质运输方向与离子转运方向相同。 例如: 对向运输: 动物细胞常通过Na+驱动的Na+-H+对向运 输的方式来转运H+以调节细胞内的pH 。 物质跨膜运输的方向与离子转运方向相反。 例如: 不分裂的细胞: pH =7.1-7.2 分裂细胞: pH =7.2-7.4 细胞中H+的减少主要由细胞膜上的Na+- H+交换

16、载体完成,即H+输出伴随Na+进入 细胞。 线粒体中, Na+-H+对向运输是由H+电 化学梯度驱动的,将Na+由线粒体内膜的基 质一侧转运到出来。 完成大分子与颗粒性物质的跨膜 运输,又称膜泡运输或批量运输 (bulk transport),涉及膜的 断裂与融合,需要消耗能量,属 于主动运输。 三、胞吞与胞吐作用 1、特点 通过细胞膜内陷形成胞吞泡,将外界 物质裹进并输入细胞的过程。分为胞 饮作用和吞噬作用两类。 2、胞吞作用(endocytosis) 特征 胞吞泡大小 不同 转转运物质质的方 式不同 胞吞泡形成机制 不同 胞饮饮 作用 小于150nm 连续摄连续摄 入溶液 和分子,摄摄入

17、是一个连续发连续发 生的过过程 胞饮饮泡的形成需 网格蛋白,形成 有被小泡及与接 合素连连接 吞噬作 用 大于250nm 需受体介导导的 信号触发过发过 程 需要微丝丝及其结结 合蛋白参与 主要有三点区别: (1)胞饮与吞噬的主要区别 网格蛋白是由一重链和一轻链组成的二聚体,三个二聚体形成组 成包被的结构单位三脚蛋白复合物。当配体与膜上的受体结合后, 网格蛋白聚集在膜下的一侧,逐渐形成直径为50-100nm的质膜内陷, 称为网格蛋白有被小窝。一种小分子GTP结合蛋白( dynamin )在 深陷有被小窝的颈部装配成环,dynamin蛋白水解与其结合的GTP引 起颈部缢缩,最终脱离质膜形成网格蛋

18、白有被小泡。几秒钟后,网格 蛋白便脱离包被小泡返回质膜附近重复使用,去被的囊泡与早期胞内 体(early endosome)融合,将转运分子与部分胞外液体摄入细胞。 在大分子跨膜转运中,网格蛋白本身 并不起捕获特异转运分子作用,有特异性 选择作用的是接合素蛋白(adaptin),它 既能结合网格蛋白,又能识别跨膜受体胞 质面的尾部肽信号(peptide signal),通 过网格蛋白包被小泡介导跨膜受体及其结 合配体的选择性运输。 接合素蛋白也至少有两类:一类与网格 蛋白结合,负责受体介导的内吞作用;另一 类也与网格蛋白结合,但负责高尔基体向溶 酶体的膜泡运输。 在膜泡运输中,包被蛋白除网格蛋

19、白 外,还有一类包被蛋白称为COP蛋白,形 成的包被小泡称为COP蛋白包被小泡( COP-coated vesicle),后者介导内质网和 高尔基体之间非选择性的膜泡运输。 如果用降解微丝的药物(细胞松弛素 B)处理细胞,则可阻断吞噬泡的形 成,但胞饮作用仍继续进行。 吞噬泡的形成则需要微丝+结合蛋白 (2)受体介导的内吞作用及包被的组装 根据内吞的物质是否有专一性,可 将内吞作用分为受体介导的内吞作用和 非特异性的内吞作用。 受体介导的内吞作用是大多数动物 细胞通过网格蛋白包被小泡从细胞外液 摄取特定大分子的有效途径。 受体介导的内吞作用是一种选择浓 缩机制,既可保证细胞大量地摄入特定 的大

20、分子,同时又避免了吸入细胞外大 量的液体,与非特异性的内吞作用相比 ,可使特殊大分子的内化效率增加1000 多倍。 LDL的受体介导的内吞作用 LDL通过与细胞表面的低密度脂蛋白受 体特异地结合形成受体-LDL复合物,几 分钟内便通过网格蛋白包被小泡的内化 作用进入细胞,经脱被作用并与胞内体 (endosome)融合。 胆固醇主要在肝细胞中合成,随后与 磷脂和蛋白质形成复合物,即低密度 脂蛋白(low-density lipoproteins, LDL ,相对分子量为3106,直径为 22nm)进入血液, 胞内体膜上有ATP驱动的质子泵,将 H+泵进胞内体腔中,使腔内的pH值降 低(pH56)

21、,从而引起LDL与受体 分离。 动物细胞内由膜包围的一种 细胞器,其作用是传输由内 吞作用新摄入的物质到溶酶 体被降解。 胞内体 : 胞内体以出芽的方式形成运载受体的小 囊泡,返回细胞质膜,受体重复使用。 含有LDL的胞内体与溶酶体融合,低 密度脂蛋白被水解,释放出胆固醇和脂 肪酸供细胞利用。 3、胞吐作用(exocytosis) 与胞吞作用相反,是将细胞内的分泌泡或其他 某些膜泡中的物质通过细胞质膜运出细胞的过 程。 用于质膜更新(如膜脂、膜蛋白)、胞外基质 组分、营养或信号分子等的更新。 (1)组成型的外排途径 除某些有特殊标志的驻留蛋白和调节型分泌泡 外,其余蛋白的转运途径为: (constitutive exocytosis pathway) 粗面内质网高尔基体分泌泡细胞表面 存在于所有细胞 储存刺激释放 产生的分泌物(如激素、粘液或消化酶 )具有共同的分选机制,分选信号存在 于蛋白本身,分选主要由高尔基体TGN 上的受体类蛋白来决定。 (2)调节型外排途径 (regulated exocytosis pathway) 仅存在于特化的分泌细胞中。 细胞组成型与调节型胞吐途径 这两条途径起始于高尔基体反面管网区,组成型胞吐途径存在于所有细 胞,调节型胞吐途径仅存在于转化的分泌细胞。 膜流对质膜更新和维持细胞的 生存与生长是必要的。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1