细观和纳观力学的若干进展讲稿杨卫.ppt

上传人:本田雅阁 文档编号:3365566 上传时间:2019-08-18 格式:PPT 页数:32 大小:668.08KB
返回 下载 相关 举报
细观和纳观力学的若干进展讲稿杨卫.ppt_第1页
第1页 / 共32页
细观和纳观力学的若干进展讲稿杨卫.ppt_第2页
第2页 / 共32页
细观和纳观力学的若干进展讲稿杨卫.ppt_第3页
第3页 / 共32页
细观和纳观力学的若干进展讲稿杨卫.ppt_第4页
第4页 / 共32页
细观和纳观力学的若干进展讲稿杨卫.ppt_第5页
第5页 / 共32页
点击查看更多>>
资源描述

《细观和纳观力学的若干进展讲稿杨卫.ppt》由会员分享,可在线阅读,更多相关《细观和纳观力学的若干进展讲稿杨卫.ppt(32页珍藏版)》请在三一文库上搜索。

1、杨卫 清华大学工程力学系,细观和纳观力学的若干进展,2001. 9. 1-5,毫米尺度疲劳断裂量测,Biaxial Fatigue Testing,细观显微加载,纳米尺度 疲劳断裂量测,2001. 9. 1-5,CM/MD 联合模拟,Green function method for lattice statics, Zhou et al. (1992) Combined CM/MD simulation by an overlapping layer, Tan & Yang (1994),2001. 9. 1-5,CM/MD 联合模拟,Adaptive quasi-continuum met

2、hod, Phillips & Ortiz (96-99) Material Point Method Lattice-Material Point Method, Tan (2000),Hierarchical Adaptive Dynamic Seamless Multi-scales Triple identities,裂尖位错发射,Xing, Dai & Yang Science in China(2000),initial crack tip,current crack tip,Dislocation Emission from a Crack Tip,多向喷丸引起表面纳米化,吕坚与

3、卢柯的喷丸引起表面纳米化实验,初始晶粒为50m的铁材料经过喷丸撞击450秒后,表层形成尺寸为10nm的纳米晶粒。,2001. 9. 1-5,喷丸引起位错增殖,喷丸撞击的二维简化模型,实验参数 试件表面尺寸:3035 mm2 喷丸直径: 2 mm 喷丸数目: 300 个 喷丸速度: 520 m/s 喷丸流量: 990 次/(smm2),斜入射比垂直入射可引入更高的表层位错密度,Data input, time step selection,Pressure & friction force of shot-peens,FEM computes velocity and stress fields

4、,Density evolution by dislocation migration,Density evolution by dislocation interaction,Total change in dislocation density,Density evolution by dislocation generation,Plastic strain rate by dislocation motion,Change in sample surface profile,Acceleration, velocity, spin & location of shots,Output

5、dislocation density,Flow Chart,2001. 9. 1-5,Numerical Simulation,Parameters: Iron sample: E = 2.001011 Pa,=0.3,=7.8 103 Kg/m3 Shots: = 7.8 103 Kg/m3 Dislocations: b = 2.48 10-10 m Hardening 0 = 200 MPa,0 = 0.1 Mobility VS = 2.98 103 m/s, B=4.00 1010 Pa Source CR = Y, mS = 1.00 106 mm-2 Initial densi

6、ty ALL = 1.00 108 mm-2, = 1.00 106 mm-2,Normal Impact,Dislocation density across the depth V/R=20000 s-1,0, x = 0,Oblique Impact,Dislocation density across the depth V/R=20000 s-1, 20, x = 0,2001. 9. 1-5,Forming Nano-grains,Low angle grain boundary,Grain boundary of larger angle is energetically fav

7、ored, = 10, = 2.17 1011 mm-2,D = 6.5 nm, = 20,D = 13 nm,Low angle GB forms if qD 2b,Forming Nano-grains,初始构型,6000弛豫步后,Superplastic Extensibility of Nano-grained Metals,Critical dislocation spacing is 1520nm in metals Dislocations are depleted in nano-grained metals Room temperature superplasticiy wa

8、s predicted (Karch et al., Nature, 1987) for nanograined metals, but seldom realized.,Superplastic Extensibility of Nano-grained Copper,Experiment by Lu et al. (Science, 2000) for nanograined bulk electro-deposition copper,Superplastic Extensibility of Nano-grained Copper,No texture was formed under

9、 rolling, and 5100% extensibility in RT was reported.,Deformation of Nanocrystalline Metals,Dislocations are seldom found within the grains. Gao and Gleiter (1987), Thomas and Siegel (1990), Milligan et al. (1993),Mass diffusion and grain boundary sliding dominate. Lu et al. (2000), Science,MD Simul

10、ation,2-Dimensional, periodic BC 18-grain cluster + repetition Random (111) plane orientations, relaxed for 1000 MD steps (5fs) NVT ensemble, T=313K 0.1% Strain increment is imposed on atom centers + fluctuation of 0.005a, then relax for 800 MD steps; 700 loading increments Effective medium theory o

11、n copper (Jacobsen et al, 1996),2001. 9. 1-5,Energetics,Energy Minimization,Principle of Minimum Plastic Dissipation,2001. 9. 1-5,Energetics,Principle of Virtual Work,Simulation,Low Fluctuation (1/40),Simulation,High Fluctuation (1/5),Stress-Strain Curve,Ashby-Verrall Model,4-grain clusters Predict

12、a creep rate 10 times as the Coble creep The process is incomplete,2001. 9. 1-5,9-Grain Cluster,Complete and repeatable,2001. 9. 1-5,Fully-Relaxed Creep,Constitutive Law,Creep Rate,Threshold,Creep Data for NC Copper,Cai et al., Scripta Materialia (1999),2001. 9. 1-5,Data of Copper,Elasticity: E = 11

13、5GPa,=0.31 Atomic volume: W =8.78 10-30 m3 Diffusion: D0B=3 10-9 m2/s; DQB=0.72eV; d = 0.5nm Cai et al (1999) D0V=4.4 10-6 m2/s; DQV=1.98eV Wang & Han (1990) Specific GB energy: 0.53Jm-2 Handros (1969) Grain Size: 30nm Cai et al (1999), Lu et al (2000) Order/Disorder Transition: r0=0.75nm, Dg = 7.95 108 Jm-3,2001. 9. 1-5,Creep Predictions,空天安全的核心科学问题,基金委重大科学研究计划 高速飞行中可压缩湍流、转戾、及控制 新流型研究 高温、高速条件下,气流的燃烧及热化学非平衡流动 结构和轻质材料的优化设计 高速粒子和束流的破坏及其防护 智能结构和微系统的主动控制与可靠性 微型飞行器飞行机制研究 飞行器隐形材料和外形的设计 多尺度计算,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1