食品酶学-食品酶学基础(4).ppt

上传人:本田雅阁 文档编号:3383627 上传时间:2019-08-20 格式:PPT 页数:62 大小:688.54KB
返回 下载 相关 举报
食品酶学-食品酶学基础(4).ppt_第1页
第1页 / 共62页
食品酶学-食品酶学基础(4).ppt_第2页
第2页 / 共62页
食品酶学-食品酶学基础(4).ppt_第3页
第3页 / 共62页
食品酶学-食品酶学基础(4).ppt_第4页
第4页 / 共62页
食品酶学-食品酶学基础(4).ppt_第5页
第5页 / 共62页
点击查看更多>>
资源描述

《食品酶学-食品酶学基础(4).ppt》由会员分享,可在线阅读,更多相关《食品酶学-食品酶学基础(4).ppt(62页珍藏版)》请在三一文库上搜索。

1、第二篇 酶学基础,第四章 酶的分子结构与催化功能,第一节 酶分子组成,酶,单纯酶,结合酶,(全酶)= 酶蛋白 + 辅因子,辅因子,辅酶,与酶蛋白结合得比较松的小分子有机物。,辅基,与酶蛋白结合得紧密的小分子有机物。,金属激活剂,金属离子作为辅助因子。,蛋白质具有一级、二级、三级、四级结构以及大分子组织形式。 酶的催化专一性主要决定于酶蛋白部分。 辅因子通常是作为电子、原子或某些化学基团的载体。,第二节 酶的结构与功能,酶蛋白的结构,包括一级结构和高级结构,与酶的催化功能密切相关,结构的改变会引起酶催化作用的改变或者丧失。 研究酶结构与功能的关系是酶学的核心课题。,一、酶的活性中心,(一)活性中

2、心 酶蛋白上只有少数氨基酸残基参与酶对底物的结合和催化,这些相关氨基酸残基在空间上比较靠近,形成一个与酶显示活性直接有关的区域(在酶分子表面上具有三维结构的特定区域),称为酶的活性中心,又称活性部位(active site)。 构成活性中心的化学基团实际上就是酶蛋白氨基酸残基的侧链,有时尚包括肽链末端的氨基酸。 胰凝乳蛋白酶活性中心含有Ile16、His57、Asp102、Asp194、ser195。在酶原形式时它们分散在一条肽链上,但酶原经激活后,形成A、B、C三条肽链。前3个残基在B链,后2个在C链。依靠肽链的折叠,包括肽链间的二硫键,使这些互相远离的基团靠近。,(二)必需基团 酶活性中心

3、的一些化学基团为酶发挥催化作用所必需,故称为必需基团。 在酶活性中心以外的区域,也有不和底物直接作用的必需基团,称为活性中心外的必需基团。这些基团与维持整个酶分子的空间构象有关,间接地对酶的催化活性发挥作用。,Koshland将酶分子中的氨基酸残基或其侧链基团分成四类:,1. 接触残基(contact residues) 如R1、R2、R6、R8、R9、R163、R164和R165。和底物直接接触,参与底物的化学转变,是活性中心的主要组成部分。这些残基中的一个或几个原子与底物分子的一个或多原子接触的距离都是一键距离(即0.150.2nm)之内。 2. 辅助残基(auxiliary residu

4、es) 如R4,虽未直接与底物接触,但在使酶与底物相互结合以及在辅助接触残基发挥作用上起着一定的作用。辅助残基也是活性中心一个不可缺少的组成部分。 接触和辅助残基组成酶的活性中心。 接触残基的侧链中,有的可能担负和底物结合的作用, 称为结合基团;有的可能参与使底物转变成产物的催化作用,称为催化基团。 结合基团也可参与催化作用 辅助残基,因不与底物接触, 只能参与辅助催化基团的作用,如质子的供给或接受等。,3、结构残基(structural residues) 如R10、R162、R169等,这些残基在维持酶蛋白形成一种有规则的空间构象方面起着重要作用。对酶活性的显示也有一定贡献,但离底物分子较

5、远,不能列人活性中心的范围,属于活性中心以外的必需基团。 4、非贡献残基 (non-contributing residues) 在酶的活性中心外, 不参与酶的催化功能,对酶活性的显示不起作用。如图中的R3、R5、R7以及图中未列入的一些残基, 这些残基可以被取代, 甚至把它们去掉也不会对酶的构象和功能产生重大改变。,二、酶的一级结构与催化功能的关系,一级结构是酶的基本化学结构,是催化功能的基础。一级结构的改变将使酶的催化功能发生相应的改变。,核糖核酸酶在其C末端用羧酸酶去掉3个氨基酸时,对酶的活性几乎没有影响,而若用胃蛋白酶去掉C末端的4个氨基酸时,则酶活性全部丧失。,核糖核酸酶,有活性,没

6、活性,有活性,酶原是活性酶的前体,需经激活才显示出酶的性。 由酶原转变为活性酶,可通过酶或氢离子的催化而实现。 胰蛋白酶原在胰蛋白酶或肠激酶的作用下,使酶原变为活性的酶。酶原转变成酶时,一级结构仅仅发生微小的变化,在碳链的N-末端失去了一个六肽,从而使隐蔽的活性基团解放出来,形成了活性部位。,许多酶都存在着二硫键。一般二硫键的断裂将使酶变性而丧失其催化功能。但是某些情况下,二硫键断开,而酶的空间构象不受破坏时,酶的活性并不完全丧失;如果使二硫键复原,酶又重新恢复其原有的生物活性。,三、酶的二级和三级结构与催化功能的关系,二级、三级结构是所有酶都必须具有的空间结构,是维持酶的活性部位所必须的构型

7、。当酶蛋白的二级和三级结构彻底改变,就可使酶遭受破坏而丧失其催化功能。 二级和三级结构的改变,也可以使酶形成正确的催化部位而发挥其催化功能。由于底物的诱导而引起酶蛋白空间结构发生某些精细的改变,与适应的底物相互作用,从而形成正确的催化部位,使酶发挥其催化功能诱导契合学说的基础。,1.酶的变性和失活,酶受到变性因素的作用,空间结构破坏,其活性中心的构象也随着改变,酶因此失活。 有时只要维持酶活性中心各基团的相对位置,即使一级结构受到轻微破坏,酶活性也不会改变。 牛胰核糖核酸酶(RNA酶) 有4对二硫键及很多氢键维持其空间构象; 活性中心中有两个组氨酸(His12及His119)。用枯草杆菌蛋白酶

8、处理,被水解成为N端的肽(S肽)和其余的104肽(S蛋白)两个片段,分别含有His12和His119,两者单独存在时均无活力,但在pH7.0的介质中,将两者1:1混合,并使S肽与S蛋白间形成氢键及疏水键连接,则20与21位之间的肽键虽不能恢复,但活力能恢复。这是因为S肽上的His12又与s蛋白上的His119互相靠近,恢复了原来活性中心的空间构象。,酶蛋白的变性有时是可逆的。当某些化学变性剂去除后,酶可以恢复原有的空间构象,并恢复酶活力。 牛胰核糖核酸酶经尿素及-巯基乙醇处理后发生变性,当透析去除变性剂后,酶可自动折叠成具有催化活性的原始形式。,2.活性中心的挠性,近年来的研究证明:酶蛋白活力

9、的变化和变性时空间构象的改变并不是同步的。 用紫外分光差光谱、荧光光谱、圆二色光谱、光散射和内埋巯基暴露等手段研究肌酸激酶、核糖核酸酶、乳酸脱氢酶及3一磷酸甘油醛脱氢酶等在盐酸胍和尿素溶液中变性不同时间的构象变化(即肽链去折叠的过程),同时测定酶活力的下降,发现:酶活力的丧失往往先于上述常规手段所测出的酶分子的整体构象变化。 热变性实验同样证明,酶活性丧失在前,整体构象变化在后。,进一步用探测活性中心构象的方法来研究(如3-磷酸甘油醛脱氢酶活性中心的巯基被羧甲基化后再经激发光照,可在活性中心生成具有荧光的NAD共价结合物,可通过荧光改变来探测活性中心的构象变化),结果发现,活性中心的构象的改变

10、先于酶分子整体的构象改变,而且与活力丧失几乎同步。 即:酶的活性中心的空间结构相对酶分子整体而言,处于分子中一个挠性的局部区域,是由较弱的化学键维持其空间结构,对各种变性因素较为敏感。 低浓度的变性剂在一定条件有时反而使酶激活,也可证明活性中心的可塑性。,3.酶分子的结构域,结构域(domain)是指蛋白质肽链中一段较独立的具有完整、致密立体结构的区域,一般由40400个氨基酸残基组成。 大多数酶都有一个以上的结构域,如弹性蛋白酶两个十分类似的结构域,而木瓜蛋白酶则有两个很不一样的结构域。结构域在蛋白质肽链的折叠和变构调节等现象中具有重要作用。 不同的结构域常有不同的功能。 在大多数蛋白激酶中

11、,两个不同功能的区结构域一般都存在于一条肽链中,形成催化结构域和调节结构域,如cGMP依赖的蛋白激酶G(PKG),钙-甘油二酶(佛波酯)一磷脂依赖的蛋白激酶C(PKC)以及具有酪氨酸蛋白激酶活性的表皮生长因子受体,其调节结构域都位于N侧,催化结构域位于C侧。,有一些多功能酶,其不同酶活力来自不同的结构域,如大肠杆菌亮氨酰-tRNA合成酶的C端切去6000分子量的片段后丧失了tRNA氨酰化的活性,而但保留氨基酸活化和ATP-焦磷酸交换的活性。 已发现与凝血及纤维蛋白溶解有关的蛋白酶由6种不同的结构域以不同的组合方式装配而成,包括:一羧基谷氨酸域、表皮生长因子域、三环(kringle)结构域、指(

12、finger)结构域和接触因子(CF)域以及类胰蛋白酶的催化域。 不同蛋白酶中的相同结构域则往往有相同或类似的功能。可以把结构域看成是酶蛋白中的一个功能单位。 对结构域的研究正方兴未艾,将来有可能利用不同的结构域用DNA重组技术组装成新的人工酶蛋白。,四、酶的四级结构与催化功能的关系,具有四级结构的酶,按其功能可分为两类:一类与催化作用有关,另一类与代谢调节关系密切。 只与催化作用有关的具有四级结构的酶:由数个相同的亚基组成,每个亚基都有一个活性中心。四级结构完整时,酶的催化功能才会充分发挥出来。当四级结构被破坏时,亚基被分离,若采用的分离方法适当,被分离的亚基仍保留着各自的催化功能。 天冬氨

13、酸转氨酶用温和的琥珀酸的方法使四级结构解离时,分离得到的亚基仍各自保持催化功能;当用强烈的条件如酸、碱、表面活性剂等破坏其四级结构时,得到的亚基没有催化活性。 与代谢调节有关的具有四级结构的酶:其组成亚基中,有的亚基具有调节中心(激活中心和/或抑制中心),使酶的活性受到激活或者抑制,调节酶反应的速度和代谢过程。,第三节 酶催化作用的基本理论,有过各种酶催化学说。早期学说的中心思想是底物的活化,到世纪60年代,随着新技术的发展,从而亦考虑到在催化反应中,酶本身功能基团的作用。 酶在进行催化反应时,首先和底物形成ES络合物,这样分子间的催化反应就变为分子内的催化反应。,一、酶底物复合物,酶与底物结

14、合形成中间复合物(或称中间络合物)。 复合物的形成是专一性决定的过程,也是变分子间反应为分子内反应的过程,同时又是诱导契合过程。由于中问复合物的形成,酶和底物的结构都将发生有利于催化反应进行的变化。,(一)酶一底物复合物存在的证据,光谱技术是证明ES复合物存在的有效手段。 醇脱氢酶(ADH)的底物NADH在游离状态下,于340nm处有一吸收峰,但加入ADH后,吸收峰移向328nm,再加入巯基试剂对氯汞苯甲酸又使吸收峰回到340nm,证明NADH和ADH的结合是通过ADH的巯基介导的。 催化丝氨酸和吲哚合成色氨酸的色氨酸合成酶含有磷酸吡哆醛辅基,后者能在激发下发出荧光。当单加入丝氨酸而尚无吲哚时

15、, 其荧光强度显著增加,再加入吲哚,就使荧光淬灭,低于单独酶的荧光,这就证明酶-丝氨酸复合物和酶-丝氨酸-吲哚复合物的存在。,大分子底物和酶的复合物可用电子显微镜直接观察 DNA聚合酶与DNA的复合物。即使小分子底物也可用X射线衍射法获得酶-底物复合物的信息,如羧肽酶A是通过哪些残基和底物甘氨酰-L-酪氨酸结合的以及溶菌酶的最小六糖底物是怎样“躺”在酶分子表面的狭长凹穴中,目前都已研究清楚。 有些双底物的酶可在只有一种底物的情况下加以提纯或结晶,如3一磷酸甘油醛脱氢酶需要加入一定量的NAD+才能结晶,这也是酶一底物复合物的直接证据。 现已充分证明:底物是通过酶的活性中心和酶结合的。,(二)酶与

16、底物形成复合物的作用力,酶与底物的结合与稳定酶分子的三维结构的力是相同的。 1.离子键 底物分子上的电荷和酶分子上相反电荷之间的作用, 离子键受溶剂、盐浓度、酶活性部位的微环境以及酶活性部位的侧链基团等因素的影响。 2.氢键 底物和酶结合的一种重要的相互作用力。 酶分子可以在主链与侧链之间以及某些侧链之间形成氢键。氢键在水中仍然可以保持,但强度减弱。在酸、碱液中氢键不存在。在高温或各种变性剂的作用下,氢键会被破坏。 3.范德华力 一种非专一性的相互作用力,比离子键和氢键都弱。 酶与底物之间的有效范德华引力作用,,只有在它们相互之间处于立体互补的情况下才能发生作用。在酶和底物的结合过程中,许多原

17、子基团间的范德华引力的总和将会产生相当大的作用。,二、酶的催化作用本质,酶和一般催化剂的共性 用量少而催化效率高; 它能够改变化学反应的速度,但是不能改变化学反应平衡。酶本身在反应前后也不发生变化。 酶能够稳定底物形成的过渡状态,降低反应的活化能,从而加速反应的进行。,一般催化剂 反应活化能,反应总能量变化,酶促反应活化能,非催化反应活化能,初 态,终 态,能 量 改 变,活 化 过 程,酶促反应活化能的改变,过渡态,三、酶作用的专一性机制,(一)酶作用的专一性(底物特异性)(Substrate-specificity),(1)低特异性(Low specificity):不能辨别底物,仅能对裂

18、开的键表现特异性,如非特异性脂酶。 (2)基团特异性(Group specificity): 对于相邻于特定基团的一个特殊的化学键表现出特异性。 胰蛋白酶对羧基一侧为精氨酸和赖氨酸的肽键表现特异性。 O X-NH-CH-C-NH-CH-COOH (精氨酸或赖氨酸) | | R1 R2,。,(3)绝对特异性(Absolute specificity) 酶仅作用于一种底物并催化一个反应。例如,脲酶只能催化脲素水解,不能催化甲基脲水解。,(4)立体化学特异性(Stereochemical specificity) 通常显示出正确无误和完全的立体定向性,能区别光学或立体异构体。几乎总是选择一对对映体中

19、的一种形式做底物,除非酶的特异功能是催化对映体的异构化。,(二)酶作用的专一性机制,有多种学说,得到广泛支持的有: 锁钥学说 诱导契合学说 过渡态学说 共同点: 酶的作用专一性必须通过它的活性中心和底物结合后才表现出来。,1.锁钥学说,1894年,德国有机化学家E.Fisher提出。 酶与底物结合时,酶活性中心的结构与底物的结构必须吻合, 就如同锁和钥匙一般,非常配合地结合形成中间复合物)。当中间复合物形成时,会促进底物结构发生某些化学变化(如底物分子的键被扭曲),变形而断裂,转变为产物。 可解释酶的立体化学专一性和底物饱和曲线动力学。,在酶的表面存在着一个特殊形状的活性部位,这个活性部位在结

20、构上能与底物精确地互补。底物与酶之间存在某种立体专一结合。底物类似钥匙,酶类似锁。,获得相当多的事实支持。 乙酰胆碱酯酶催化乙酰胆碱水解。要求底物中的胆碱氮带正电,为此可推测:酶分子中至少有一个阴离子部位与酯解部位。事实是,这两部位间有严格的距离,胆碱和酰基间多或少一个-CH2-都不适于作底物或竞争抑制剂,而符合这种键长、键角要求的化合物都能与该酶发生作用(被酶催化水解或者抑制酶)。 缺点: 认为酶的结构是刚性的, 难以解释一个酶可以催化正、逆两个反应,因产物(或逆反应的底物)的形状、构象和底物完全不同。,2.诱导契合学说,1958年,Koshand提出 酶分子(包括辅酶在内)的构象与底物原来

21、并非恰当吻合,只有底物分子与酶分子相碰时,才可诱导后者的构象变得能与底物配合, 然后才结合形成中间复合物,进而引起底物分子发生相应的化学变化。,诱导楔合模型要点: (a)当底物与酶的活性部位结合时,酶蛋白的几何形状有相当大的改变; (b)催化基团的精确定向对于底物转变成产物是必需的; (c)底物诱导酶蛋白几何形状的改变使得催化基团能精确地走向和底物结合到酶的活性部位上去。,A、B催化基团,C结合基团,在用X光衍射法研究溶菌酶、弹性蛋白酶等与底物结合后结构的改变中得到了证实。 能解释锁钥学说不能解释的实验事实,但也有局限性: 不是酶的底物或酶的抑制物,不能诱导酶分子的构象发生变化,或即使有少许变

22、化,也不能使酶分子与有关催化基团处于互补契合位置。 实际上,大于底物或小于底物的类似物亦能诱导酶分子的构象发生变化。,3.过渡态学说(transition state theory),Linus Pauling (20世纪40年代)提出的过渡态理论认为:酶与底物的过渡态互补,亲和力最强,释放出结合能使ES的过渡态能级降低,有利于底物分子跨越能垒,使酶促反应大大加速。 “过渡态”是反应物分子处于被激活的状态,是反应途径中分子具有最高能量的形式。不同于反应中间物。它只不过是一个短暂的分子瞬间。在这一瞬间分子的某些化学键正在断裂和形成并达到能崩解生成产物或再返回生成反应物的程度。 过渡态学说认为,酶

23、的作用专一性既寓于酶与底物的结合,也寓于酶对底物的催化,酶与底物的结合不仅促成了结合基团和催化基团的正确取位,同时也为下一步酶对底物的催化做了准备。,.表示正在形成和断裂的化学键,乙酸乙酯的水解反应:,过渡态看来:,过渡态是一种变动的分子。,20世纪70年代以来,对很多酶促反应的过渡态类似物(人工设计出的类似过渡态的稳定分子)的研究发现,这些过渡态类似物与酶的结合比底物与酶的结合紧密102106倍,证明了酶与反应过渡态互补的概念是正确的。 过渡态学说涵盖了对专一性机制和对高效性机制的解说。,第四节 酶在生物体内存在的几种形式 一、单体酶、寡聚酶和多酶复合物,酶和其他蛋白质一样,由种L-氨基酸组

24、成,也有特定的氨基酸排列和特定的空间结构。根据酶蛋白分子结构可将酶分为三类。 单体酶 寡聚酶 多酶复合物,(一)单体酶(monomeric enzyme),仅有一条具有活性部位的多肽链,全部参与水解反应。,(二)寡聚酶(oligomeric enzyme),寡聚酶具有四级结构,至少有2个亚基,多的可达60个以上,相对分子质量在3.5万至百万以上。组成寡聚酶的亚基可以相同,也可以不同。亚基之间以非共价键结合。 有的亚基上有结合基团,叫结合亚基,有的亚基上有催化基团,叫催化亚基。 亚基分离时没有活性。,(三)多酶复合体(multienzyme complex),多酶复合体是指几个酶嵌合而成的络合物

25、,又称多酶络合物。一般由26个功能相关的酶组成,有利于生化反应的连续进行,以提高酶的催化效率,同时也便于机体对酶的调控。,二、同工酶(isozyme),同工酶是指能催化相同的化学反应,但蛋白质分子结构不同的一组酶。 由于蛋白质分子结构不同,各同工酶的理化性质、免疫学性质都存在很多差异。 同工酶不仅存在于同一机体的不同组织中,也存在于同一组织细胞的不同亚细胞结构中。 已陆续发现的同工酶达数百种,其中研究得最多的是乳酸脱氢酶(LDH)。哺乳动物中有5种乳酸脱氢酶同工酶. NAD+ NADH + H+ CH3-CHOH-COOH CH3-CO- COOH 乳酸 丙酮酸,用电泳法分离LDH可得到5种同

26、工酶区带。都是由H和M二种不同类型的亚基组成的四聚体。,乳酸脱氢酶同工酶电泳图谱,同工酶的测定可作为某些疾病的诊断指标。 正常人血清LDH主要来自红细胞渗出,活力很低。当某一组织病变时,血清LDH同工酶电泳图谱会发生变化。如肝细胞受损早期,LDH总活性在正常范围内,但LDH5升高;急性心肌病变时,LDHl可升高。,同工酶的测定在食品检测和鉴别中得到日益广泛的应用 食用菌菌种纯度的同工酶电泳鉴定 利用同工酶对食用菌进行分类研究旨在探求不同菌种的酶谱差异,从而界定其亲缘关系,以改善目前市场上食用菌菌种管理混乱、分类不清、甚至同种异名的现状。 选取目前销售、应用较为广泛、代表性强的平菇和香菇菌种,测

27、定其液培菌丝的酯酶和过氧化物酶谱带。,蜂蜜品质同工酶电泳检测 比较两种天然蜂蜜与掺假所用的工业淀粉酶的同工酶电泳,发现天然蜂蜜的淀粉酶同工酶酶谱和工业淀粉酶的同工酶酶谱存在差异。,三、别构酶与修饰酶,别构酶(变构酶)与修饰酶统称为调节酶。调节酶通常在一连串的反应中催化单向反应,或催化反应速度最慢的反应步骤。其活性的改变可以决定全部反应的总速度,甚至可以改变代谢的方向,故又称为限速酶(或关键酶)。,(一)别构酶(allosteric enzyme),一类较复杂的寡聚酶,除具有活性中心外,还具有别构中心。 活性中心负责对底物结合和催化,别构中心则与调节催化速度有关。当某些代谢物以非共价方法结合于别

28、构中心部位后,可使酶蛋白的构象发生改变,从而改变酶活性,这种效应称为别构效应。 可发生别构效应的酶称为别构酶,可引发别构效应的代谢物称为别构效应剂。 别构酶通常由多个亚基组成,活性中心和别构中心可分布在不同的亚基,也可分布在同一亚基的不同部位,能结合别构效应剂的亚基为别构亚基。 别构效应剂一般为小分子代谢物,可以是别构酶的底物,也可以是代谢通路上的产物。根据别构效应剂与酶结合后的效果,可将其分为两类,使酶活性升高者称为别构激活剂,使酶活性降低者称为别构抑制剂。 异柠檬酸脱氢酶是别构酶,NAD+、ADP和柠檬酸是该酶的别构激活剂,而NADH和ATP是别构抑制剂。,(二)修饰酶(modificat

29、ion enzyme),1、修饰酶的类型 某些酶能在其他酶的催化下,通过共价键可逆结合某种化学基团,从而改变其活性,这种作用称为共价修饰调节,这类酶称为共价修饰酶或化学修饰酶。 修饰酶活性的改变是通过共价键结合,别构酶活性的改变是通过非共价键结合。 修饰酶的共价修饰有磷酸化/脱磷酸化、乙酰化/去乙酰化、腺苷化/去腺苷化、甲基化/去甲基化、-SH/- S-S-等,其中磷酸化/脱磷酸化最为常见。,2、修饰酶的特点,(1)绝大多数修饰酶具有无活性/有活性(或低活性/高活性)两种形式,催化其正逆两方向反应的酶不同,且受激素或第二信使的调节。 (2)耗能少 磷酸化/脱磷酸化是最常见的共价修饰。每个亚基磷

30、酸化仅仅需1分子ATP,比生物合成多肽链消耗的ATP少得多,速度也快得多。 (3)效率高 由于化学修饰反应一般是酶促反应,且受体内调节因子控制,故对调节信号有快速、放大的效应。体内酶促化学修饰反应往往是连锁反应,即一种酶经化学修饰后,被修饰的酶又可催化另一种酶分子进行化学修饰,每修饰一次就产生一次放大效应。因此,极少量的调节因子经化学修饰酶的逐级放大,可产生显著的生理效应。,环磷腺苷,四、结构酶(组成酶)与诱导酶,根据合成与代谢的关系,将酶相对地分为结构酶和诱导酶。 结构酶(structural enzym)是细胞以恒定速率和恒定数量生成的那些酶类,亦称组成酶。细胞中天然存在, 含量较稳定,

31、一般不受外界条件的影响。 诱导酶(induced enzyme)是指细胞中进入特定的诱导物后, 被诱导生成的。其有无及含量的多少受外界条件的影响。 在某些种类的细菌细胞中,正常时只存在痕迹量的诱导酶,但当培养基中有特定的诱导物(往往是该酶的底物或底物类似物)时,酶的数量能迅速增加1000多倍,尤其当这种底物是细胞唯一的碳源时。,五、胞内酶与胞外酶,按酶合成后分布和存在的位置, 可将酶分为胞内酶与胞外酶。 胞内酶(intracellular enzyme)是指那些在合成后仍留在细胞内的酶; 胞外酶(extracellular enzyme)是指那些在合成后分泌到细胞外而游离在发酵液中的酶。 在中

32、文文献中常将“ectoenzyme” 译为胞外酶, 但它和通常所说的胞外酶(extracellular enzyme)不同, 它是一种和细胞膜结合的酶, 其活性中心位于细胞的外表面, 指向细胞外空间, 作用还未完全清楚。,第五节 酶活力测定,1. 酶活的定义 酶活定义:在一定条件下,催化单位底物转变成产物所需的酶量。 酶活单位 U:国际生物化学协会酶委员会定义:每分钟催化1mol底物发生转变的酶量,即:1mol/min。 kat:酶活力的SI单位,即Katal。Katal的定义是每秒钟催化1 mol底物发生转变的酶量,即:1mol/s 。 1 kat=6107 U 1 U=1.6710-8 k

33、at 商业上,根据需要,2酶活力测定方法(Assay of enzyme activity) : (1)通过定量测定酶反应的产物或底物的变化。 (2)通过定量测定酶反应底物中某一性质的变化,如粘度等。 通常在酶的最适pH和离子强度以及指定的温度下测定酶活。 直接测定酶活(direct assay) 测定酶作用于底物或产物的形成速度 产物量 时间 当E。远远小于S。时 v=Vmax=k3E。, v与E。成正比。 初速度 酶浓度,不同酶浓度下产物量随时间的变化,初速度随酶浓度的变化,酶活测定必须满足的条件: (1)产物的量与时间呈线性关系 即要测初速度。 (2)反应速度与酶量呈线性关系 即要满足S。远远大于Km(至少大于20倍)。 报道酶活应该写明: 酶活测定的条件,定义。 比酶活,一般是酶活 U/mg蛋白质。 单点测定(Single-point assay) 必须保证产物的浓度与反应时间在0-t1段呈线性关系。 淀粉酶、果胶酶、纤维素酶、半纤维素酶几乎无一例外。,思考,1、全酶、辅酶、辅基、活性中心、必需基团、酶原、同工酶等的概念 2、酶作用的专一性机制,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1