克服正负电压设计难题 触发双向可控硅妙用多.doc

上传人:白大夫 文档编号:3383803 上传时间:2019-08-20 格式:DOC 页数:4 大小:18KB
返回 下载 相关 举报
克服正负电压设计难题 触发双向可控硅妙用多.doc_第1页
第1页 / 共4页
亲,该文档总共4页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《克服正负电压设计难题 触发双向可控硅妙用多.doc》由会员分享,可在线阅读,更多相关《克服正负电压设计难题 触发双向可控硅妙用多.doc(4页珍藏版)》请在三一文库上搜索。

1、克服正负电压设计难题 触发双向可控硅妙用多在交流电源里,电压有时为正有时为负。对于不经常使用双向可控硅的设计人员来说,负电压可能听起来很奇怪,因为世界上不可能存在采用负电压工作的集成电路。然而,在某些应用,采用负输出驱动双向可控硅更为合适。在交流电源里,电压有时为正有时为负。对于不经常使用双向可控硅的设计人员来说,负电压可能听起来很奇怪,因为世界上不可能存在采用负电压工作的集成电路。然而,正如本文所述,从正输出驱动双向可控硅仅需简单的解决方案即可,但在某些时候,采用负输出驱动双向可控硅更为合适。正负电源供应原理如果功率半导体组件只能通过电源进行控制,其驱动参考点与市电(线路或中性端子)连接时,

2、通常须要使用非绝缘电源。例如,触发双向可控硅、ACST、ACS或可控硅整流器(SCR)等交流开关的情况。这些组件均由栅极电流进行控制。该栅极电流只能施加在栅极针脚上,并在栅极和交流开关参考端子之间循环流动,其中参考端子指可控硅整流器的阴极(K)、双向可控硅的A1或ACST和ACS的COM。由于交流开关控制电路和其电源只能连接到组件参考端子(回联机电压),因此须使用非绝缘电源。有两种方式将该驱动参考点与非绝缘电源连接:方案1:将控制电路接地(VSS)与驱动参考点连接。方案2:将控制电路电源电压(VDD)与驱动参考点连接。由于开关驱动参考点也是零电压点(VSS),因此图1a所示的方案1最常用。由于

3、电源电压(VDD)实际高于市电端子电势(线路或中性),且电源端子电势与驱动参考点(VSS)连接,因此,此种拓扑称为正电压。如果电源为5V,则VDD比市电参考点(图1a示例中的中性端子)高5V。如下文所述,该拓扑结构仅可直接与标准双向可控硅和可控硅整流器一起使用,而不能与非标准双向可控硅、ACS和ACST一起使用。但根据本文结尾所述,使用者可进行某些简单修改来控制所有正电压的组件。图1电源极性定义。图1b所示的方案2称为负电压。电源电压参考点(VSS)实际低于与市电参考点连接的A1或COM。如果电源为5V,则VSS比线路参考点低5V,或与线路相比为5V。根据下文所述,该拓扑结构可与所有双向可控硅

4、、ACS和ACST一起使用,但不能与可控硅整流器一起使用。电源输出极性与交流开关技术的一致性为开启双极器件等交流开关,必须在开关栅极针脚(G)和驱动参考端子之间施加栅极电流。然后会出现几种情况。对于可控硅整流器,该栅极电流必须为正(从G向K流动)。对于双向可控硅和ACST,该栅极电流可为正也可为负(取决于施加给组件的电压)。对于ACS,该栅极电流必须为负(从COM向G流动)。采用正电压很容易驱动可控硅整流器。如果阴极与VSS相连,如图1a所示,当控制电路(通常是一个微控制器)输出针脚处于较高电平时,电流来源于可控硅整流器的栅极。另一方面,直接驱动ACS需要负电源,如图1b所示。因此,当控制电路

5、输出针脚处于较低电平时,电流应来自可控硅整流器的栅极。对于双向可控硅、ACS和ACST,可根据开启前组件的栅极电流极性和电压极性定义四个触发象限。当栅极电流来源于栅极时,其可视为正电流。当电压与驱动参考点有关时,电压可视为正电压。不同的象限分别为象限一:正栅极电流和正电压。象限二:负栅极电流和正电压。象限三:负栅极电流和负电压。象限四:正栅极电流和负电压。根据双向可控硅、ACS和ACST组件技术,这些组件可在每个象限中触发或仅可在某些象限中触发。对于可控硅整流器,由于仅正栅极电流才可开启组件,且仅在其阳极和阴极端子上施加正电压时才可开启,这些组件通常不考虑触发象限。表1显示了不同组件技术适用的

6、不同象限,并且列出了构成直接驱动电路的电源极性一致性,如表1所示。可看出负电源适用于所有交流开关技术,但可控硅整流器除外。由于负输出允许使用任何其他技术更改某一零件号,因此采用负输出成为首选。电源拓扑结构易对输出极性产生影响如果微控制器(MCU)供应正电压并采用微处理器触发第三象限的双向可控硅、ACST或ACS,就会出现问题。如表1所示,在这种情况下确实不能进行直接控制。此外,开关电源(SMPS)经常用于适应不同的待机功耗指令或标准。由于具有正输出的开关电源是低输出电流脱机转换器最常用的拓扑结构,因此主要根据降压转换器的选型来进行开关电源的选型。但在许多应用中仅须控制交流开关,因此应施加负电压

7、。而降压-升压转换器允许负输出。这种拓扑结构与降压转换器同样易于实现。此外,对于降压-升压转换器,由于其要求使用降压拓扑结构,因此不需要增加输出负载电阻或输出稳压管。实际上,对于降压,输出电容器在每次MOSFET接通期间都会充电,从而在无负载或较小负载的情况下导致输出过高。降压-升压转换器的效率及最大输出电流应低于降压转换器,而输出电容器应大于降压转换器。实际上,对于降压转换器,所有电感电流都为输出电容器充电,而对于降压-升压转换器,电感电流则仅在续流期间为输出电容器充电。但230V的交流/12V直流转换器占空比较低,且降压和降压-升压性能之间的差异不大。如果两个拓扑结构配有相同的电抗组件,那

8、么它们的效率类似。虽然带有负输出的开关电源可供使用,但我们仍将正输出作为首选。在待机模式下,正输出的功率消耗更低。实际上,我们发现正线性稳压器的内部功耗在50A范围内,而负稳压器的一般功耗约为2mA。这种静态电流极大影响了开关电源的待机功耗。采用正输出的另一原因在于3.3V微控制器的广泛推广,但却很难找到功耗较低的精确3.3V负稳压器。因此,应采用图2的示意图,将负电源的优势和正稳压器的优势结合起来。在该示意图中,意法半导体旗下ST715M33R正稳压器的最大静态电流为5.5A,用于显示负15V输出提供的3.3V电源实现情况,而该负15V输出可以来自使用VIPer06电路的降压-升压转换器或反驰式电源转换器(Flyback Converter)。这样,微控制器便可减弱来自T1635T-8双向可控硅、T系列第三象限组件的电流。图2用于双向可控硅控制电路负电压的正稳压器。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1