基于视频的车辆检测技术和阴影消除方法.doc

上传人:白大夫 文档编号:3418198 上传时间:2019-08-23 格式:DOC 页数:4 大小:17.50KB
返回 下载 相关 举报
基于视频的车辆检测技术和阴影消除方法.doc_第1页
第1页 / 共4页
亲,该文档总共4页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《基于视频的车辆检测技术和阴影消除方法.doc》由会员分享,可在线阅读,更多相关《基于视频的车辆检测技术和阴影消除方法.doc(4页珍藏版)》请在三一文库上搜索。

1、基于视频的车辆检测技术和阴影消除方法0 引 言 基于视频的车辆检测技术是在传统电视监视系统基础上发展起来的,以车辆检测技术、摄像机和计算机图像处理技术为基础,来大范围地对车辆施行检测和识别的新兴技术。与传统检测技术相比,它具有处理速度快、安装维护便捷且费用低、监视范围广、可获得各种交通参数等诸多优点。随着图像处理技术和微电子技术的发展,视频检测技术在交通运输系统中的发展潜力巨大。 在典型的交通自动监控系统中,用一个静态的摄像机实时监控固定区域,通过对车辆目标的提取、分类和跟踪等操作,进一步提取交通参数。所以,从视频流中实时分割车辆目标是交通自动监控系统的一个基本环节。提取车辆目标的流程主要包含

2、运用算法将前景车辆从拍摄的图像中提取出来,并对其进行阴影检测,去除阴影。该文依照此流程选取合适的前景提取算法背景差分法,实时进行背景更新,对前景中产生的阴影进行分析,并提出合理有效的阴影去除方法。l 基于视频的车辆检测 背景差分法是车辆运动检测系统中的一种常用算法。该算法通过实时维护一个背景模型,将当前帧消除背景影响即可获得前景图像。而路面、树木、建筑物等一直处于静止状态,因此被当作背景通过差分被去除。经过处理后的图像理论上只包括运动目标,直接进行二值化,提取目标即可,但实际上这时由于摄像机的抖动以及路面光线变化、风吹草动、车辆目标本身的阴影和其他因素对检测结果的影响是很大的,往往造成很大的误

3、差,甚至错误。在提取前景后针对不同的阴影,去除之以获得真实的车辆目标。11 背景建模 将开始的n帧图像用于背景建模(采用n=200)。对相邻一定间隔的两帧图像作差值,获得差值图像A。即有:式中:N为A相应位置的差值,得到二值化的帧差掩模图像N;“1”为对应变化的像素;“O”为对应没有变化的像素。 在帧差掩模序列中,对于长时间没有变化的像素点,即帧差掩模图像序列在一段时间内该像素点都保持为“O”,则认为此像素点对应于背景像素,将原始图像中该点像素值拷贝到理想背景图像中,同时设置此理想背景像素点的状态为“背景像素”。此过程完成后,可能有的理想背景像素点的状态还未转换成“背景像素”,即未被重建,则在

4、后续过程中继续执行上述步骤,对已重建的背景像素点,转而进行背景更新。12 背景更新 在获得背景图像后,随着时间的推移,场景内会有很多变化,其中比较明显的是光照亮度的变化和背景物体的移动,这就需要对背景图像不断地进行更新。文中采用一种当前图像和背景图像加权的方式进行更新。更新方法为:记当前图像中像素值为I(x,y),背景图像中像素值为I*(x,y),对应的帧差掩模图像N(x,y)=0,则I(x,y)为背景像素,I(x,y)与I*(x,y)按照式(2)进行加权:式中:为更新系数,关系着更新速度,而更新速度要求背景能够捕捉亮度的变化,同时又不能让瞬间的变化长时间存在。假设取=O1,当图像亮度大面积变

5、化时,整个背景像素的均值将发生较大幅度的改变,所以当均值改变大于一定范围时,为了能够更快地更新背景,取=02。 若|I(x,y)一I*(x,y)|大于阈值或N(x,y)=1,则I(x,y)为前景像素;如果I(x,y)连续长时间作为前景像素,则需要重建此像素点的背景,重新按照背景重建步骤恢复背景。13 运动目标提取在获得重建的背景之后,可以根据当前图像和背景图像的差值求得运动目标。为了减少计算量和干扰,可以预先设定感兴趣区域,以后的处理只是在感兴趣区域进行。设视频序列图像为I(x,y),当前的背景图像为I*(x,y),背景差图像D(x,y)=|I(x,y)一I*(x,y)|。利用阈值来计算车辆图

6、像像素模板图像: 式中:为一个较小的阈值,模板图像M(x,y)中的为1的点表示车辆图像区域,为0的点表示背景图像区域。单纯地利用灰度值差异来求取的车辆信息并不完整:若阈值选取过大,会使得车辆某些部分被认为是背景,使得车辆图像残缺,获得车辆的信息不准确,甚至是阴影部分的信息还没有消除,而车辆部分的信息却已经大部分消除(见图3);若阈值选取过小,由于光照的原因形成的阴影会和车辆连接在一起,变成车辆的一部分(见图4),但是这种方法可以很好地保留车辆的完整信息,只要可以把阴影部分的干扰消除,就可以达到很好的效果。因此,精确地去掉阴影在车辆信息的提取过程中起着关键的作用。2 阴影检测及消除 运动车辆和路

7、面物体在光照作用下不可避免地产生阴影。静止物的阴影可通过背景差分去除,但由于镜头的抖动、静止物体的再活动等,阴影部分不可能完全去除而产生噪声(以下简称为外阴影);目标车辆自身阴影及目标之间的投影(以下简称为内阴影)。本文采用基于粗糙集阴影边缘点分类的方法,较好地实现了阴影边缘的检测。21 阴影边缘点的分类 假设阴影区域和非阴影区域存在着一个过渡带,即认为边缘是有宽度的。 (1)外阴影与内阴影的灰度相差较大通过大量图像发现:外阴影的平均灰度要比内阴影的平均灰度低,在同一浅色背景下表现为对比度大些。此时对求得的集合A1,A2(A1表示剔除噪声后,所有像素中梯度大的像素组成的集合;A2表示剔除噪声后

8、,所有像素的最大邻域差值大的像素组成的集合。A1,A2即为需要的像素集合)。分别求K(x,y),H(x,y),K(x,y)为像素点的梯度,H(x,y)为邻域函数。在A1中,AK(x,y)B的值对应的像素点集为集合N。K(x,y)B的值对应的像素点集为M集合;在A2中,合理选取参数得CH(x,y)D对应的点集合为R,H(x,y)D对应的点集合为S,使得M与R,N与S尽可能相等。由此,可以初步得出N(=S)为外阴影边缘点,M(=R)为内阴影边缘点。 (2)外阴影与内阴影的灰度相差不大这样求得的K(x,y)或H(x,y)不能分为两个较明显的区间,此时仅求H(x,y)即可。22 部分假边缘点的处理 如

9、果外阴影和内阴影分布不均匀,即外阴影内部某些点的K(x,y),H(x,y)恰好属于内阴影边缘点的,会产生误判。此时应在内阴影的M(R)中去掉这些点,方法如下:对内阴影边缘点集M(R)逐一进行统计,使该点向四周移动,若都能碰到属于外阴影边缘高梯度点(梯度大于或等于B的点)或高最大邻域灰度差的点(最大邻域灰度差大于或等于D的点),则该点是外阴影的内部点,将其从内阴影边缘点集M(R)中去掉。这样,剩下的点均为真正的边缘点了。23 边缘细化和连续 因假设边缘是有宽度的,为更精确地检测边缘,需对边缘进行细化。具体方法是如果两个边缘点的梯度方向相同,且相互位于法线上,保留最大邻域差。这样可得到较高定位精度

10、的细化边缘离散点。 为将离散点连成线,需建立三叉树,依次检查M和N中每个像素点,根据不同方向,判断前趋点和后继点。对每一个边缘点确定了前趋点和后继点之后,即可从边线的起点出发,依次得到直线上的每个像素点,从而获得连续的阴影边缘,进而消除阴影。3 结 语 近年来,随着计算机、图像处理、人工智能、模式识别、视频传输等技术的不断发展,基于视频的车辆检测技术得到了越来越广泛的应用。 本文在最常见的背景差分法的基础上,通过选取小阈值,获得含阴影部分的前景目标,利用基于粗糙集分类方法求得阴影边缘点,从而消除阴影。在此过程中,使用了一种云除假边缘点的方法,利用最大邻域灰度差及边缘梯度,既得到了真正的边缘点又去除了噪声,然后对边缘点进行了细化和连续,得到了单宽度的阴影边缘。该算法简单,易操作,精确度高,可用于实际应用中。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1