高中物理竞赛辅导 3.1.3 光的折射.doc

上传人:小小飞 文档编号:3627217 上传时间:2019-09-18 格式:DOC 页数:39 大小:934KB
返回 下载 相关 举报
高中物理竞赛辅导 3.1.3 光的折射.doc_第1页
第1页 / 共39页
高中物理竞赛辅导 3.1.3 光的折射.doc_第2页
第2页 / 共39页
高中物理竞赛辅导 3.1.3 光的折射.doc_第3页
第3页 / 共39页
高中物理竞赛辅导 3.1.3 光的折射.doc_第4页
第4页 / 共39页
高中物理竞赛辅导 3.1.3 光的折射.doc_第5页
第5页 / 共39页
亲,该文档总共39页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《高中物理竞赛辅导 3.1.3 光的折射.doc》由会员分享,可在线阅读,更多相关《高中物理竞赛辅导 3.1.3 光的折射.doc(39页珍藏版)》请在三一文库上搜索。

1、 1.3 光的折射1.3.1、多层介质折射图1-3-1如图:多层介质折射率分别为则由折射定律得: 1.3.2、平面折射的视深在水中深度为h处有一发光点Q,作OQ垂直于水面,求射出水面折射线的延长线与OQ交点的深度与入射角i的关系。 设水相对于空气的折射率为,由折射定律得 令OM=x,则于是 ddQQOxMi图1-3-2上式表明,由Q发出的不同光线,折射后的延长线不再交于同一点,但对于那些接近法线方向的光线,则,于是 这时与入射角i无关,即折射线的延长线近似地交于同一点,其深度是原光点深度的。如图1-3-3所示,MN反射率较低的一个表面,PQ是背面镀层反射率很高的另一个表面,通常照镜子靠S2 S

2、3 S1 O2 O1 S S1Q NP M图1-3-3镀银层反射成像,在一定条件下能够看到四个反射像,其中一个亮度很底。若人离镜距离,玻璃折射率n,玻璃厚度d,求两个像间的距离。图中S为物点,是经MN反射的像,若依次表示MN面折射,PQ面反射和MN面再折射成像,由视深公式得,故两像间距离为。1.3.3、棱镜的折射与色散ABCEFi1i2 i2 i1 D G 折射率图1-3-4入射光线经棱镜折射后改变了方向,出射光线与入射光线之间的夹角称为偏向角,由图1-3-4的几何关系知 其中 当,很小时,即 hLSS图1-3-5=(n-1)厚度不计顶角很小的三棱镜称之为光楔,对近轴光线而言,与入射角大小无关

3、,各成像光线经光楔后都偏折同样的角度,所以作光楔折射成像光路图时可画成一使光线产生偏折角的薄平板,图1-3-5。设物点S离光楔L则像点在S的正上方。h=l=(n-1)l。 当棱镜中折射光线相对于顶角对称成等腰三角形时,。 阳光红紫图1-3-6图1-3-7紫红阳光或者 这为棱镜的最小偏向角,此式可用来测棱镜的折射率。由于同一种介质对不同色光有不同的折射率,各种色光的偏折角不同,所以白光经过棱镜折射后产生色散现象。虹和霓是太阳被大气中的小水滴折射和反射形成的色散现象。阳光在水滴上经两次折射和一次反射如图1-3-6。形成内紫外红的虹;阳光经小滴两次折射和两次反射如图1-3-7,形成内红外紫的霓。由于

4、霓经过一次反射,因此光线较弱,不容易看到。1.3.4、费马原理费马原理指出,光在指定的两点之间传播,实际的光程总是为最大或保持恒定,这里的光程是指光在某种均匀介质中通过的路程和该种媒质的折射率的乘积。费马原理是几何光学中的一个十分重要的基本原理,从费马原理可以推导出几何光学中的很多重要规律。例如光的直线传播、反射定律,折射定律,都可以从光程极小推出。如果反射面是一个旋转椭球面,而点光源置于其一个焦点上,所有反射光线都经过另一个焦点,所有反射光线都经过另一个焦点,便是光程恒定的一个例子。此外,透镜对光线的折射作用,也是很典型的。一平凸透镜的折射率为n,放置在空气中,透镜面孔的半径为R。在透镜外主

5、光轴上取一点,(图1-3-8)。当平行光沿主光轴入射时,为使所有光线均会聚于点。试问:(1)透镜凸面应取什么形状?(2)透镜顶点A与点O相距多少?(3)对透镜的孔径R有何限制?xyBAM(x,y)nRfF图1-3-8解: 根据费马原理,以平行光入射并会聚于的所有光线应有相等的光程,即最边缘的光线与任一条光线的光程应相等。由此可以确定凸面的方程。其余问题亦可迎刃而解。(1)取坐标系如图,由光线和的等光程性,得整理后,得到任一点M(x,y)的坐标x,y应满足的方程为令,则上式成为 这是双曲线的方程,由旋转对称性,透镜的凸面应是旋转双曲面。(2)透镜顶点A的位置 应满足 或者 可见,对于一定的n和,

6、由R决定。(3)因点在透镜外,即,这是对R的限制条件,有 即要求 讨论 在极限情形,即 时,有如下结果:即点A与点重合。又因 xyRfAMNntF图1-3-9 a=0故透镜凸面的双曲线方程变为即 双曲线退化成过点的两条直线,即这时透镜的凸面变成以为顶点的圆锥面,如图1-3-9所示。考虑任意一条入射光线MN,由折射定律有,由几何关系故 , 即所有入射的平行光线折射后均沿圆锥面到达点,此时的角就是全反射的临界角。图1-3-10例1、半径为R的半圆柱形玻璃砖,横截面如图1-3-10所示。O为圆心。已知玻璃的折射率为。当光由玻璃射向空气时,发生全反射的临界角为45,一束与MN平面成450的平行光束射到

7、玻璃砖的半圆柱面上,经玻璃折射后,有部分光能从MN平面上射出。求能从MN平面射出的光束的宽度为多少?分析: 如图1-3-11所示。进入玻璃中的光线垂直半球面,沿半径方向直达球心,且入射角等于临界角,恰好在O点发生全反射,光线左侧的光线经球面折射后,射在MN上的入射角都大于临界角,在MN上发生全反射,不能从MN射出,光线右侧一直到与球面正好相切的光线范围上的光线经光球面折射后,在MN面上的入射角均小于临界角,都能从MN面上射出,它们在MN上的出射宽度即是所要求的。图1-3-11解: 图1-3-11中,BO为沿半径方向入射的光线,在O点正好发生全反射,入射光线在C点与球面相切,此时入射角,折射角为

8、r,则有 即 图1-3-12这表示在C点折射的光线将垂直MN射出,与MN相交于E点。MN面上OE即是出射光的宽度。讨论 如果平行光束是以45角从空气射到半圆柱的平面表面上,如图1-3-12所示,此时从半圆柱面上出射的光束范围是多大?参见图1-3-13所示,由折身定律,得,即所有折射光线与垂直线的夹角均为30。考虑在E点发生折射的折射光线EA,如果此光线刚好在A点发生全反射,则有,图1-3-13而,即有,因EA与OB平行,所以,所以,即射向A点左边MA区域的折射光()因在半圆柱面上的入射角均大于45的临界角而发生全反射不能从半圆柱面上射出,而A点右边的光线()则由小于临界角而能射出,随着角的增大

9、,当时,将在C点再一次达到临界角而发生全反射,此时 故知能够从半圆柱球面上出射的光束范围限制在AC区域上,对应的角度为。点评 正确作出光路图并抓住对边界光线的分析是解答问题的两个重要方向,要予以足够重视。例2、给定一厚度为d的平行平板,其折射率按下式变化d图1-3-14 一束光在O点由空气垂直入射平板,并在A点以角出射(图1-3-14)。求A点的折射率nA,并确定A点的位置及平板厚度。(设)。解: 首先考虑光的路线(图1-3-15)。对于经过一系列不同折射率的平行平板的透射光,可以应用斯涅耳定律 , 更简单的形式是 这个公式对任意薄层都是成立的。在我们的情形里,折射率只沿x轴变化,即图1-3-

10、15图1-3-16 在本题中,垂直光束从折射率为n0的点入射,即为常数,于是在平板内任一点有 与x的关系已知,因此沿平板中的光束为 图(1-3-16)表明光束的路径是一个半径为XC=r的圆,从而有 现在我们已知道光的路径,就有可能找到问题的解答。按折射定律,当光在A点射出时,有 因为 ,故有 于是 因此 在本题情形 根据 得出A点的x坐标为x=1cm。光线的轨迹方程为 代入x=1cm,得到平板厚度为y=d=5cm图1-3-17例3、图1-3-17表示一个盛有折射率为n的液体的槽,槽的中部扣着一个对称屋脊形的薄壁透明罩A,D,B,顶角为2,罩内为空气,整个罩子浸没在液体中,槽底AB的中点处有一个

11、亮点C。请求出:位于液面上方图标平面内的眼睛从侧面观察可看到亮点的条件。解: 本题可用图示平面内的光线进行分析,并只讨论从右侧观察的情形。如图1-3-18所示,由亮点发出的任一光线CP将经过两次折射而从液面射出。由折射定律,按图1-3-18图上标记的各相关角度有 (1) (2)其中 (3)如果液内光线入射到液面上时发生全反射,就没有从液面射出的折射光线。全反射临界角。应满足条件 可见光线CP经折射后能从液面射出从而可被观察到的条件为 (4)或 (5)现在计算,利用(3)式可得 由(1)式可得 由此又由(1)式 (6)由图及(1)、(2)式,或由(6)式均可看出,越大则越小。因此,如果与值最大的

12、光线相应的设为,则任何光线都不能射出液面。反之,只要,这部分光线就能射出液面,从液面上方可以观察到亮点。由此极端情况即可求出本题要求的条件。自C点发出的值最大的光线是极靠近CD的光线,它被DB面折射后进入液体,由(6)式可知与之相应的; 能观察到亮点的条件为 即 上式可写成 取平方 化简后得 故 平方并化简可得 这就是在液面上方从侧面适当的方向能看到亮点时n与之间应满足条件。例4、如图1-3-19所示,两个顶角分别为和的棱镜胶合在图1-3-19一起()。折射率由下式给出: ;其中1、确定使得从任何方向入射的光线在经过AC面时不发生折射的波长。确定此情形的折射率和。2、画出入射角相同的、波长为、

13、 和的三种不同光线的路径。3、确定组合棱镜的最小偏向角。4、计算平行于DC入射且在离开组合棱镜时仍平行于DC的光线的波长。图1-3-20解: 1、如果,则从不同方向到达AC面的波长为的光线就不折射,即 因而 在此情形下 。2、对波长比长的红光,和均小于1.5。反之,对波长比短的蓝光,两个折射率均比1.5要大。现在研究折射率在AC面上如何变化。我们已知道,对波长为的光,。如果考虑波长为而不是的光,则由于,所以 。同理,对蓝光有。现在我们就能画出光线穿过组合棱镜的路径了(图1-3-20)。3、对波长为的光,组合棱镜可看作顶角为30、折射率为n=1.5的单一棱镜。图1-3-21我们知道,最小偏向在对

14、称折射时发生,即在图1-3-21中的角相等时发生。根据折射定律, 因而 偏向角为 4、利用图1-3-22中的数据,可以写出图1-3-22 ;消去后得 经变换后得这是的二次方程。求解得出 例5、玻璃圆柱形容器的壁有一定的厚度,内装一种在紫外线照射下会发出绿色荧光的液体,即液体中的每一点都可以成为绿色光源。已知玻璃对绿光的折射率为,液体对绿光的折射率为。当容器壁的内、外半径之比r:R为多少时,在容器侧面能看到容器壁厚为零?图1-3-23分析: 所谓“从容器侧面能看到容器壁厚为零”,是指眼在容器截面位置看到绿光从C点处沿容器外壁的切线方向射出,即本题所描述为折射角为90的临界折射。因为题中未给出、的

15、大小关系,故需要分别讨论。解: (1)当时,因为是要求r:R的最小值,所以当时,应考虑的是图1-3-23中ABCD这样一种临界情况,其中BC光线与容器内壁相切,CD光线和容器外壁相切,即两次都是临界折射,此时应该有 设此时容器内壁半径为,在直角三角形BCO中,。当时,C处不可能发生临界折射,即不可能看到壁厚为零;当时,荧光液体中很多点发出的光都能在C处发生临界折射,所以只要满足 即可看到壁厚为零。图1-3-24(2)当时此时荧光液体发出的光线将直接穿过容器内壁,只要在CD及其延长线上有发光体,即可看到壁厚为零,因此此时应满足条件仍然是。(3)当时因为,所以荧光液体发出的光在容器内壁上不可能发生

16、折射角为90的临界折射,因此当时,所看到的壁厚不可能为零了。当时,应考虑的是图1-3-24中ABCD这样一种临界情况,其中AB光线的入射角为90,BC光线的折射角为,此时应该有 在直角三角形OBE中有 因为图1-3-23和图1-3-24中的角是相同的,所以 ,即 将代入,可得当 时,可看到容器壁厚度为零。上面的讨论,图1-3-23和图1-3-24中B点和C点的位置都是任意的,故所得条件对眼的所有位置均能成立(本段说明不可少)。例6、有一放在空气中的玻璃棒,折射率n=1.5,中心轴线长L=45cm,一端是半径为=10cm的凸球面。(1)要使玻璃棒的作用相当于一架理想的天文望远镜(使主光轴上无限远

17、处物成像于主光轴上无限远处的望远系统),取中心轴为主光轴,玻璃棒另一端应磨成什么样的球面?图1-3-25F1(2)对于这个玻璃棒,由无限远物点射来的平行入射光束与玻璃棒的主光轴成小角度时,从棒射出的平行光束与主光轴成小角度,求(此比值等于此玻璃棒的望远系统的视角放大率)。分析: 首先我们知道对于一个望远系统来说,从主光轴上无限远处物点发出的入射光线为平行于主光轴的光线,它经过系统后的出射光线也应与主光轴平行,即像点也在主光轴上无限远处,然后我们再运用正弦定理、折射定律及的小角度近似计算,即可得出最后结果。解: (1)对于一个望远系统来说,从主光轴上无限远处的物点发出的入射光为平行于主光轴的光线

18、,它经过系统后的出射光线也应与主光轴平行,即像点也在主光轴上无限远处,如图1-3-25所示,图中为左端球面的球心。由正弦定理、折射定律和小角度近似得 即 光线射至另一端面时,其折射光线为平行于主光轴的光线,由此可知该端面的球心一定在端面顶点B的左方,B等于球面的半径,如图1-3-25所示。仿照上面对左端球面上折射的关系可得 又有 由式并代入数值可得 即右端应为半径等于5cm的向外凸面球面。(2)设从无限远处物点射入的平行光线用a、b表示,令a过,b过A,如图1-3-26所示,则这两条光线经左端球面折射后的相交点M,即为左端球面对此无限远物点成的像点。现在求M点的位置。在中 又 图1-3-26F

19、1M已知、均为小角度,则有 与式比较可知,即M位于过 垂直于主光轴的平面上。上面已知,玻璃棒为天文望远系统,则凡是过M点的傍轴光线从棒的右端面射出时都将是相互平行的光线。容易看出,从M射向的光线将沿原方向射出,这也就是过M点的任意光线(包括光些a、b)从玻璃棒射出的平行光线的方向。此方向与主光轴的夹角即为。 由式可得 则 例7、在直立的平面镜前放置一个半径为R的球形玻璃鱼缸,缸壁很薄,其中心离镜面为3R,缸中充满水。远处一观察者通过球心与镜面垂直的方向注视鱼缸,一条小鱼在离镜面最近处以速度v沿缸壁游动。求观察者看到鱼的两个像的相对速度。水的折射率n=4/3。见图1-3-27和图1-3-28。图

20、1-3-27解: 鱼在1秒钟内游过的距离为v。我们把这个距离当作物,而必须求出两个不同的像。在计算中,我们只考虑近轴光线和小角度,并将角度的正弦角度本身去近似。在点游动的鱼只经过一个折射面就形成一个像(图1-3-27)。从点以角度发出的光线,在A点的水中入射角为v,在空气中的折射角为,把出射光线向相反方向延长给出虚像位置。显然 图1-3-28从三角形,有 利用通常的近似 ,于是 所以这个虚像与球心的距离为水的折射率n=4/3,从而。若折射率大于2,则像是实像。由像距与物距之商得到放大率为 对水来说,放大率为2。以与速度v相应的线段为物,它位于在E处平面镜前距离为2R处,它在镜后2R远的处形成一

21、个与物同样大小的虚像离球心的距离为5R。在一般情形中,我们设。的虚像是我们通过球作为一个透镜观察时的(虚)物。因此,我们只要确定的实像而无需再去考虑平面镜。我们需要求出以角度从发出的光线在C点的入射角,其中在三角形中 ,玻璃中的折射角为 需要算出角。因为 而且与C点和D点的两角之和相加,或与和之和相加,两种情况下都等于180,因此 即 从三角形,有 此外 因此像距为 若k=5,n=4/3,得 放大率为 若把k=5,n=4/3代入,则放大率为2/3。综合以上结果,如鱼以速度v向上运动,则鱼的虚像以速度2v向上运动,而鱼的实像以速度向下运动。两个像的相对速度为 是原有速度的8/3倍。我们还必须解决

22、的最重要的问题是:从理论上已经知道了像是如何运动的,但是观察者在作此实验时,他将看到什么现象呢?两个像的速度与鱼的真实速度值,从水中的标尺上的读数来看,是一致的。实际上观察到两个反方向的速度,其中一个速度是另一个速度的三倍,一个像是另一个像的三倍。我们应当在远处看,因为我们要同时看清楚鱼缸后远处的一个像和鱼缸前的另一个像。两个像的距离为8.33R。用肉眼看实像是可能的,只要我们比明视距离远得多的地方注视它即可。题目中讲到“在远处的观察者”,是指他观察从两个不同距离的像射来的光线的角度变化。只要观察者足够远,尽管有距离差,但所看到的速度将逐渐增加而接近于8/3。他当然必须具有关于鱼的实际速度(v

23、)的一些信息。两个像的相对速度与物的原始速度之比的普遍公式为 用一个充满水的圆柱形玻璃缸,一面镜子和一支杆,这个实验很容易做到。沿玻璃缸壁运动的杆代表一条鱼。1.4、光在球面上的反射与折射1.4.1、球面镜成像(1)球面镜的焦距球面镜的反射仍遵从反射定律,法线是球面图1-4-1图1-4-2的半径。一束近主轴的平行光线,经凹镜反射后将会聚于主轴上一点F(图1-4-1),这F点称为凹镜的焦点。一束近主轴的平行光线经凸面镜反射后将发散,反向延长可会聚于主轴上一点F(图1-4-2),这F点称为凸镜的虚焦点。焦点F到镜面顶点O之间的距离叫做球面镜的焦距f。可以证明,球面镜焦距f等于球面半径R的一半,即(

24、2)球面镜成像公式 根据反射定律可以推导出球面镜的成像公式。下面以凹镜为例来推导:(如图1-4-3所示)设在凹镜的主轴上有一个物体S,由S发出的射向凹镜的光线镜面A点反射后与主轴交于点,半径CA为反射的法线,即S的像。根据反射定律,则CA为角A的平分线,根据角平分线的性质有 由为SA为近轴光线,所以,式可改写为 式中OS叫物距u,叫像距v,设凹镜焦距为f,则 代入式 化简 这个公式同样适用于凸镜。使用球面镜的成像公式时要注意:凹镜焦距f取正,凸镜焦距f取负;实物u取正,虚物u取负;实像v为正,虚像v为负。上式是球面镜成像公式。它适用于凹面镜成像和凸面镜成像,各量符号遵循“实取正,虚取负”的原则

25、。凸面镜的焦点是虚的,因此焦距为负值。在成像中,像长 和物长h之比为成像放大率,用m表示,由成像公式和放大率关系式可以讨论球面镜成像情况,对于凹镜,如表所列;对于凸镜,如表所列。表 凹镜成像情况物的性质物的位置像的位置像的大小像的正倒像的虚实实物同侧f缩小倒实2f同侧f2f缩小倒实2f同侧2f等大倒实2ff同侧f2f放大倒实f放大f0异侧0放大正虚虚物异侧0f缩小正实表 凸镜成像情况物的性质物的位置像的位置像的大小像的正倒像的性质实物f同侧0f缩小正虚虚物2f同侧f2f缩小倒虚2f同侧2f等大倒虚f2f同侧2f放大倒虚ff0异侧0放大正实(3)球面镜多次成像 球面镜多次成像原则:只要多次运用球

26、面镜成像公式即可,但有时前一个球面镜反射的光线尚未成像便又遇上了后一个球面镜,此时就要引进虚像的概念。图1-4-4如图1-4-4所示,半径为R的凸镜和凹镜主轴相互重合放置,两镜顶点O1 、 O2 相距2.6R,现于主轴上距凹镜顶点O1为0.6R处放一点光源S。设点光源的像只能直接射到凹镜上,问S经凹镜和凸镜各反射一次后所成的像在何处?S在凹镜中成像, 可解得 ,根据题意:所以凹镜反射的光线尚未成像便已又被凸镜反射,此时可将凹镜原来要成像作为凸镜的虚物来处理, , 可解得 说明凸镜所成的像和S在同一位置上。1.4.2、球面折射成像(1)球面折射成像公式 (a)单介质球面折射成像图1-4-5如图1

27、-4-5所示,如果球面左、右方的折射率分别为1和n,为S的像。因为i、r均很小,行以 因为 ,代入式可有 对近轴光线来说,、同样很小,所以有 ,代入式可得 当时的v是焦距f,所以 (b)双介质球面折射成像如图1-4-6所示,球形折射面两侧的介质折射率分别n1和n2,C是球心,O是顶点,球面曲率半径为R,S是物点,是像点,对于近轴光线 , ,联立上式解得 图1-4-6这是球面折射的成像公式,式中u、的符号同样遵循“实正虚负”的法则,对于R;则当球心C在出射光的一个侧,(凸面朝向入射光)时为正,当球心C在入射光的一侧(凹面朝向入射光)时为负。若引入焦点和焦距概念,则当入射光为平行于主轴的平行光(u

28、=)时,出射光(或其反向延长线)的交点即为第二焦点,(也称像方焦点),此时像距即是第二焦距,有。当出射光为平行光时,入射光(或其延长线)的交点即第一焦点(即物方焦点),这时物距即为第一焦距,有,将、代入成像公式改写成 反射定律可以看成折射定律在时的物倒,因此,球面镜的反射成像公式可以从球面镜折射成像公式中得到,由于反射光的行进方向逆转,像距和球面半径R的正负规定应与折射时相反,在上述公式中令,即可得到球面镜反射成像公式,对于凹面镜,对于凸面镜,厚透镜成像。(C)厚透镜折射成像图1-4-7t设构成厚透镜材料的折射率为n,物方介质的折射率为,像方介质的折射率为,前后两边球面的曲率半径依次为和,透镜

29、的厚度为,当物点在主轴上的P点时,物距,现在来计算像点的像距。,首先考虑第一个球面AOB对入射光的折射,这时假定第二个球面AOB不存在,并认为球AOB右边,都为折射率等于n的介质充满,在这种情况下,P点的像将成在处,其像距,然后再考虑光线在第二个球面的折射,对于这个球面来说,便是虚物。因此对于球面AOB,物像公式为 对于球面AOB,物像公式为这样就可以用二个球面的成像法来求得透镜成像的像距u。(2)光焦度 60cm30cm图1-4-8折射成像右端仅与介质的折射率及球面的曲率半径有关,因而对于一定的介质及一定形状的表面来说是一个不变量,我们定义此量为光焦度,用表示: 它表征单折射球面对入射平行光

30、束的屈折本领。的数值越大,平行光束折得越厉害;0时,屈折是会聚性的;0时,屈折是发散性的。=0时,对应于,即为平面折射。这时,沿轴平行光束经折射后仍是沿轴平行光束,不出现屈折现象。光焦度的单位是米-1,或称屈光度,将其数值乘以100,就是通常所说的眼镜片的“度数”。(3)镀银透镜与面镜的等效 图1-4-9有一薄平凸透镜,凸面曲率半径R=30cm,已知在近轴光线时:若将此透镜的平面镀银,其作用等于一个焦距是30cm的凹面镜;若将此透镜的凸面镀银,其作用也等同于一个凹面镜,其其等效焦距。当透镜的平面镀银时,其作用等同于焦距是30cm的凹面镜,即这时透镜等效面曲率半径为60cm的球面反射镜。由凹面镜

31、的成像性质,当物点置于等效曲率中心 时任一近轴光线经凸面折射,再经平面反射后将沿原路返回,再经凸面折射后,光线过 点,物像重合。如图1-4-8所示。,。依题意,故。凸面镀银,光路如图1-4-9所示。关键寻找等效曲率中心,通过凸面上任一点A作一垂直于球面指向曲率中心C的光线。此光线经平面折射后交至光轴于,令则,得。图1-4-10由光的可逆性原理知,是等效凹面镜的曲率中心,f=10cm。例1、如图1-4-10所示,一个双凸薄透镜的两个球面的曲率半径均为r,透镜的折射率为n,考察由透镜后表面反射所形成的实像。试问物放于何处,可使反射像与物位于同一竖直平面内(不考虑多重反射)。解: 从物点发出的光经透

32、镜前表面(即左表面)反射后形成虚像,不合题意,无须考虑。从物点发出的光经透镜前表面折射后,再经透镜后表面反射折回,又经前表面折射共三次成像,最后是实像,符合题意。利用球面折射成像公式和球面反射成像公式,结合物与像共面的要求。就可求解。球面反射的成像公式为:,其中反射面的焦距为(R为球面半径),对凹面镜,f取正值,对凸面镜,f取负值。图1-4-11甲球面折射的成像公式为:。当入射光从顶点射向球心时,R取正值,当入射光从球心射向顶点时,R取负值。如图1-4-11甲所示,当物点Q发出的光经透镜前表面折射后成像于,设物距为u,像距为v,根据球面折射成像公式: 这里空气的折射率,透镜介质的折射率,入射光

33、从顶点射向球心,R=r取正值,所以有 (1)图1-4-11乙图1-4-11丙这是第一次成像。对凸透镜的后表面来说,物点Q经透镜前表面折射所成的风点是它的物点,其物距(是虚物),经透镜后表面反射后成像于,像距为(如图1-4-11乙所示),由球面反射成像公式 将前面数据代入得 (2)这是第二次成像。由透镜后表面反射成的像点又作为透镜前表面折射成像的物点,其物距(是虚物),再经过透镜前表面折射成像于,像距为,(见图1-4-11丙所示),再由球面折射成像公式 这时人射光一侧折射率,折射光一侧折射率(是空气),入射光由球心射向顶点,故R值取负值。所以可写出 代入前面得到的关系可得 (3)这是第三次成像,

34、由(1)、(2)两式可解得 (4)再把(4)式和(3)式相加,可得 (5)为使物点Q与像点在同一竖直平面内,这就要求 代入(5)是可解得物距为 图1-4-12说明 由本题可见,观察反射像,调整物距,使反射像与物同在同一竖直平面内,测出物距P,根据上式就可利用已知的透镜折射率n求出透镜球面的半径r,或反过来由已咋的球面半径r求出透镜的折射率n。例2、显微镜物镜组中常配有如图1-4-12所示的透镜,它的表面是球面,左表面的球心为,半径为,右表面的球心为,半径为,透镜玻璃对于空气的折射率为n,两球心间的距离为 。在使用时,被观察的物位于处,试证明1、从物射向此透镜的光线,经透镜折射后,所有出射光线均

35、相交于一点Q。2、 。解: 首先考虑面上的折射,由于物在球心处,全部入射光线无折射地通过面,所以对来说,物点就在处。再考虑到面上的折射。设入射光线与主轴的夹角为,入射点为P,入射角为i,折射角为r,折射线的延长线与主轴的交点为Q如图1-4-13,则由折射定律知图1-4-13 在中应用正弦定理得已知 由此得 所以 设CP与主轴的夹角为,则有 显然,0时,r,因此出射线与主轴相交之点Q必在透镜左方。为的外角 在中应用正弦定理,得 的数值与无关,由此可见,所有出射线的延长线都交于同一点,且此点与的距离为。图1-4-14例3、有一薄透镜如图1-4-14,面是旋转椭球面(椭圆绕长轴旋转而成的曲面),其焦

36、点为和;面是球面,其球心C与 重合。已知此透镜放在空气中时能使从无穷远处于椭球长轴的物点射来的全部入射光线(不限于傍轴光线)会聚于一个像点上,椭圆的偏心率为e。(1)求此透镜材料的折射率n(要论证);(2)如果将此透镜置于折射率为的介质中,并能达到上述的同样的要求,椭圆应满足什么条件?图1-4-15分析: 解此题的关键在于是正确地运用椭圆的几何性质及折射定律。解: (1)根据题设,所有平行于旋转椭球长轴的入射光线经旋转椭球面和球面两次折射后全部都能会聚于同一像点,可作出如下论证:如果经椭球面折射后射向球面的光线都射向球心C,即射向旋转椭球面的第二焦点,则可满足题设要求。光路图如图1-4-15所

37、示:PA为入射线,AC为经椭球面折射后的折射线,BN为A点处椭球面的法线,i为入射角,r为折射角。根据椭圆的性质,法线BN平分 ,故与法线的夹角也是r,由正弦定律可得 ,从而可求得 2a为长轴的长度,2c为焦点间的距离;即只要n满足以上条件,任意入射角为i的平行于旋转椭球长轴的入射光线都能会聚于C(即)点。(2)如果透镜置于折射率为的介质中,则要求 即椭圆的偏心率e应满足 图1-4-16图1-4-17由于椭圆的e1,如果就无解。只要 ,总可以找到一个椭球面能满足要求。例4、(1)图1-4-16所示为一凹球面镜,球心为C,内盛透明液体。已知C至液面高度CE为40.0cm,主轴CO上有一物A,物离

38、液面高度AE恰好为30.0cm时,物A的实像和物处于同一高度。实验时光圈直径很小,可以保证近轴光线成像。试求该透明液体的折射率n。(2)体温计横截面如图1-4-17所示,已知细水银柱A离圆柱面顶点O的距离为2R,R为该圆柱面半径,C为圆柱面中心轴位置。玻璃的折射率n=3/2,E代表人眼,求图示横截面上人眼所见水银柱像的位置、虚像、正倒和放大倍数。图1-4-18解: (1)主轴上物A发出的光线AB,经液体界面折射后沿BD方向入射球面镜时,只要BD延长线经过球心C,光线经球面反射后必能沿原路折回。按光的可逆性原理,折回的光线相交于A(图1-4-18)。对空气、液体界面用折射定律有 当光圈足够小时,

39、BE,因此有 图1-4-19(2)先考虑主轴上点物A发出的两条光线,其一沿主轴方向ACOE入射界面,无偏折地出射,进入人眼E。其二沿AP方向以入射角i斜入射界面P点,折射角为r。折射光线PQ要能进入人眼E,P点应非常靠近O点,或说入射角i 折射角r应很小。若角度以弧度量度,在小角(近轴)近似下,折射定律可写为。这两条光线反向延长,在主轴上相交于,即为物A之虚像点(图1-4-19)对用正弦定律,得 在小角(近轴)近似下:,上式可写为 解上式得 为了分析成像倒立和放大情况,将水银柱看成有一定高度的垂轴小物体AB,即然是一对共轭点,只要选从B发出的任一条光线经界面折射后,反向延长线与过垂轴线相交于,

40、是点物B虚像点,即是物AB之正立虚像。图1-4-20选从B点发出过圆柱面轴心C之光线BC。该光线对界面来说是正入射(入射角为零),故无偏折地出射,反向延长BC线交过垂轴线于,从得放大率=例5、有一半径为R=0.128m的玻璃半球,过球心O并与其平面部分相垂直的直线为其主轴,在主轴上沿轴放置一细条形发光体(离球心较近),其长度为L=0.020m。若人眼在主轴附近对着平面部分向半球望去(如图1-4-20),可以看到条形发光体的两个不很亮的像(此处可能还有亮度更弱图1-4-21图1-4-22的像,不必考虑),当条形发光体在主轴上前后移动时,这两个像也在主轴上随之移动。现在调整条形发光体的位置,使得它

41、的两个像恰好头尾相接,连在一起,此时条形发光体的近端距球心O的距离为。试利用以上数据求出构成此半球的玻璃折射率n(计算时只考虑近轴光线)。解: 1、条形发光体的两个像,一个是光线在平面部分反射而形成的,一个是光线经平面折射进入玻璃,在凹面镜上反射后,又经平面折射穿出玻璃而形成的。2、求半球外任一个在轴上的光点A的上述两个像。平面反射像在处,(见图1-4-21)凹面镜反射像D求法如下:(1)A点发出的光经平面折射后进入玻璃,射向凹面镜,对凹面镜来说,相当于光线从B点射来(1-4-22)。令OB=b,则 (1) (2)用凹面镜公式图1-4-23 (f为焦距)求凹面镜成的像C的位置。令OC=C,则 ,代入上式 解出C得

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1