高中物理竞赛辅导 1.4.10 天体的运动与能量.doc

上传人:小小飞 文档编号:3628803 上传时间:2019-09-18 格式:DOC 页数:17 大小:576KB
返回 下载 相关 举报
高中物理竞赛辅导 1.4.10 天体的运动与能量.doc_第1页
第1页 / 共17页
高中物理竞赛辅导 1.4.10 天体的运动与能量.doc_第2页
第2页 / 共17页
高中物理竞赛辅导 1.4.10 天体的运动与能量.doc_第3页
第3页 / 共17页
高中物理竞赛辅导 1.4.10 天体的运动与能量.doc_第4页
第4页 / 共17页
高中物理竞赛辅导 1.4.10 天体的运动与能量.doc_第5页
第5页 / 共17页
亲,该文档总共17页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《高中物理竞赛辅导 1.4.10 天体的运动与能量.doc》由会员分享,可在线阅读,更多相关《高中物理竞赛辅导 1.4.10 天体的运动与能量.doc(17页珍藏版)》请在三一文库上搜索。

1、 410天体的运动与能量4101、天体运动的机械能守恒二体系统的机械能E为系统的万有引力势能与各天体的动能之和。仅有一个天体在运动时,则E为系统的万有引力势能与其动能之和。由于没有其他外力作用,系统内万有引力属于保守力,故有机械能守恒,E为一恒量,如图4-10-1所示,设M天体不动,m天体绕M天体转动,则由机械动能守恒,有当运动天体背离不动天体运动时,不断增大,而将不断减小,可达无穷远处,此时而0,则应满足E0,即图4-10-1例如从地球发射人造卫星要挣脱地球束缚必有我们称=11.2km/s为第二宇宙速度,它恰为第一宇宙速度为倍。另外在上面的二体系统中,由于万有引力属于有心力,所以对m而言,遵

2、循角动量守恒 或 方向的夹角。它实质可变换得到开普勒第二定律,即行星与恒星连线在相等时间内扫过面积等。4102、天体运动的轨道与能量若M天体固定,m天体在万有引力作用下运动,其圆锥曲线可能是椭圆(包括圆)、抛物线或双曲线。图4-10-2i)椭圆轨道如图4-7-1所示,设椭圆轨道方程为 (ab)则椭圆长,短半轴为a、b,焦距,近地点速度,远地点速度,则有或由开普勒第二定律: 可解得代入E得ii)抛物线设抛物线方程为太阳在其焦点()处,则m在抛物线顶点处能量为可以证明抛物线顶点处曲率半径,则有得到抛物线轨道能量图4-10-3 iii)双曲线设双曲线方程为焦距,太阳位于焦点(C,0),星体m在双曲线

3、正半支上运动。如图4-10-3所示,其渐近线OE方程为y=bx/a,考虑m在D处与无穷远处关系,有考虑到当,运动方向逼近渐近线,焦点与渐近线距为故有 或 联解得双曲线轨道能量小结 椭圆轨道 抛物线轨道 双曲线轨道以下举一个例子质量为m的宇宙飞船绕地球中心0作圆周运动,已知地球半径为R,飞船轨道半径为2R。现要将飞船转移到另一个半径为4R的新轨道上,如图4-10-4所示,求(1)转移所需的最少能量;(2)如果转移是沿半椭圆双切轨道进行的,如图中的ACB所示,则飞船在两条轨道的交接处A和B的速度变化各为多少?解: (1)宇宙飞船在2R轨道上绕地球运动时,万有引力提供向心力,令其速度为,乃有图4-1

4、0-4 故得 此时飞船的动能和引力势能分别为所以飞船在2R轨道上的机械能为同理可得飞船在4R轨道上的机械能为 以两轨道上飞船所具有的机械能比较,知其机械能的增量即为实现轨道转移所需的最少能量,即 (2)由(1)已得飞船在2R轨道上运行的速度为 同样可得飞船4R轨道上运行的速度为 设飞船沿图示半椭圆轨道ACB运行时,在A、B两点的速度分别为。则由开普勒第二定律可得 又由于飞船沿此椭圆轨道的一半运行中机械能守恒,故应有联立以上两式解之可得故得飞船在A、B两轨道交接处的速度变化量分别为 例如:三个钢球A、B、C由轻质的长为的硬杆连接,竖立在水平面上,如图4-10-5所示。已知三球质量,距离杆处有一面

5、竖直墙。因受a图4-10-5微小扰动,两杆分别向两边滑动,使B球竖直位置下降。致使C球与墙面发生碰撞。设C球与墙面碰撞前后其速度大小不变,且所有摩擦不计,各球的直径都比小很多,求B球落地瞬间三球的速度大小。 解: (1)球碰墙前三球的位置 视A、B、C三者为一系统,A、C在水平面上滑动时,只要C不与墙面相碰,则此系统不受水平外力作用,此系统质心的水平坐标不发生变化。以图4-10-6表示C球刚好要碰墙前三球的位置,以表示此时BC杆与水平面间的夹角,则AB杆与水平面间的夹角也为,并令BA杆上的M点与系统质心的水平坐标相同,则应有故得 图4-10-7由上述知M点的水平坐标应与原来三秋所在的位置的水平

6、坐标相同,故知此刻M点与右侧墙面的距离即为,即M点与C球的水平距离为,由此有,即。由上式解得,故有 (2)求三球碰墙前的速度 由于碰墙前M点的水平坐标不变,则在A、C沿水平面滑动过程中的任何时刻,由于图中的几何约束,C点与M点的水平距离总等于A点与M点的水平距离的倍,可见任何时刻C点的水平速度大小总为A点水平速度大小的倍。以、分别表示图5-2-2中三球的速度,则有 又设沿BC方向的分量为,则由于和分别为杆BC两端的小球速度,则此两小球速度沿着杆方向的投影应该相等,即。再设沿BA方向的分量为,同上道理可得 注意到BA与BC两个方向刚好互相垂直,故得的大小为以两式带入上式,乃得 由于系统与图5-2

7、-1状态到图5-2-2状态的机械能守恒,乃有。以式代入上式。解方程知可得 (3)求C球在刚碰墙后三球的速度图4-10-8 如图4-10-8所示,由于C球与墙碰撞,导致C球的速度反向而大小不变,由于杆BC对碰撞作用力的传递,使B球的速度也随之变化,这一变化的结果是:B球速度沿CB方向的分量与C球速度沿CB方向的分量相等,即 由于BC杆只能传递沿其杆身方向的力,故B球在垂直于杆身方向(即BA方向)的速度不因碰撞而发生变化,A球的速度也不因碰撞而发生变化,即其仍为。故得此时B球速度沿BA方向的分量满足 , 乃得刚碰撞后B球速度大小为 (4)求B球落地时三球的速度大小 碰撞后,三球速度都有水平向左的分

8、量,可见此后系统质心速度在水平方向的分量应该方向向左,且由于此后系统不受水平外力,则应维持不变。由上解得的三球速度,可得应该满足。以、诸式代入上式可解得 当B球落地时,A、B、C三小球均在同一水平线上,它们沿水平方向的速度相等,显然,这一速度也就是系统质心速度的水平分量。而B小球刚要落地时,A、C两球的速度均沿水平方向(即只有水平分量),B球的速度则还有竖直分量,以落表示此刻B球速度的大小。则由图4-10-8所示的状态到B小球刚要落地时,系统的机械能守恒,由此有落。以、各式代入上式可解得落= 综合上述得本题答案为:当B小球刚落地时,A、B、C三球的速度大小分别为、和。47 功能原理和机械能守恒

9、定律471 功能原理根据质点系动能定理当质点系内有保守力作用和非保守力作用时,内力所做功又可分为而由保守力做功特点知,保守力做功等于势能增量的负值,即 于是得到用E表示势能与动能之和,称为系统机械能,结果得到 外力的功和非保守力内力所做功之和等于系统机械能的增量,这就是质点系的功能原理。可以得到(外力做正功使物体系机械能增加,而内部的非保守力作负功会使物体系的机械能减少)。 功能原理适用于分析既有外力做功,又有内部非保守力做功的物体系,请看下题:图4-7-1 劲度系数为k的轻质弹簧水平放置,左端固定,右端连接一个质量为m的木块(图4-7-1)开始时木块静止平衡于某一位置,木块与水平面之间的动摩

10、擦因数为。然后加一个水平向右的恒力作用于木块上。(1)要保证在任何情况下都能拉动木块,此恒力F不得小于多少?(2)用这个力F拉木块,当木块的速度再次为零时,弹簧可能的伸长量是多少? 题目告知“开始时木块静止平衡于某一位置”,并未指明确切的位置,也就是说木块在该位置时所受的静摩擦力和弹簧的形变量都不清楚,因此要考虑各种情况。如果弹簧自然伸展时,木块在O点,那么当木块在O点右方时,所受的弹簧的作用力向右。因为木块初始状态是静止的,所以弹簧的拉力不能大于木块所受的最大静摩擦力。要将木块向右拉动,还需要克服一个向左的静摩擦力,所以只要F2,即可保证在任何情况下都能拉动木块。 设物体的初始位置为,在向右

11、的恒力F作用下,物体到x处的速度再次为零,在此过程中,外部有力F做功,内部有非保守力f做功,木块的动能增量为零,所以根据物体系的功能原理有可得因为木块一开始静止,所以要求 可见,当木块再次静止时,弹簧可能的伸长是 472 机械能守恒定律 若外力的与非保守内力的功之和为零时,则系统机械能守恒,这就是机械能守恒定律。 注意:该定律只适用于惯性系,它同时必须是选择同一惯性参照系。在机械能守恒系统中,由于保守内力做功,动能和势能相互转化,而总的机械能则保持不变。下面介绍一例由机械能守恒推出的重要定理:伯努利方程理想流体 不可压缩的、没有粘滞性的流体,称为理想流体。定常流动 观察一段河床比较平缓的河水的

12、流动,你可以看到河水平静地流着,过一会儿再看,河水还是那样平静地流着,各处的流速没有什么变化。河水不断地流走,可是这段河水的流动状态没有改变。河水的这种流动就是定常流动。流体质点经过空间各点的流速虽然可以不同,但如果空间每一点的流速不随时间而改变,这样的流动就叫做定常流动。自来水管中的水流,石油管道中石油的流动,都可以看做定常流动。图4-7-2 流体的流动可以用流线形象地表示。在定常流动中,流线表示流体质点的运动轨迹。图4-7-2是液体流过圆柱体时流线的分布。A、B处液体流过的横截面积大,CD处液体流过的横截面积小。液体在CD处流得急,流速大。AB处的流线疏,CD处的流线密,这样,从流线的分布

13、可以知道流速的大小。流线疏的地方,流速小;流线密的地方,流速大。伯努利方程 现在研究理想流体做定常流动时流体中压强和流速的关系。图4-7-3图4-7-3表示一个细管,其中流体由左向右流动。在管的处和处用横截面截出一段流体,即处和处之间的流体,作为研究对象。 处的横截面积为,流速为,高度为,处左边的流体对研究对象的压强为,方向垂直于向右。 处的横截面积为,流速为,高度为,处左边的流体对研究对象的压强为,方向垂直于向左。 经过很短的时间间隔,这段流体的左端由移到。右端由移到。两端移动的距离分别为和。左端流入的流体体积为,右端流出的流体体积为,理想流体是不可压缩的,流入和流出的体积相等,记为。 现在

14、考虑左右两端的力对这段流体所做的功。作用在液体左端的力,所做的功。作用在右端的力,所做的功。外力所做的总功 (1) 外力做功使这段流体的机械能发生改变。初状态的机械能是到这段流体的机械能,末状态的机械能是到这段流体的机械能。由到这一段,经过时间,虽然流体有所更换,但由于我们研究的是理想流体的定常流动,流体的密度和各点的流速没有改变,动能和重力势能都没有改变,所以这一段的机械能没有改变,这样机械能的改变就等于流出的那部分流体的机械能减去流入的那部分流体的机械能。 由于,所以流入的那部分流体的动能为 重力势能为流出流体的动能为 重力势能为机械能的改变为 (2)图4-7-4 理想流体没有粘滞性,流体

15、在流动中机械能不会转化为内能,所以这段流体两端受的力所做的总功W等于机械能的改变,即 W= (3)将(1)式和(2)式代入(3)式,得 整理后得 (4)和是在流体中任意取的,所以上式可表示为对管中流体的任意处: 常量 (5) (4)式和(5)式称为伯努利方程。 流体水平流动时,或者高度差的影响不显著时(如气体的流动),伯努利方程可表达为 常量 (6) 从(6)式可知,在流动的流体中,压强跟流速有关,流速v大的地方要强p小,流速v小的地方压强p大。图4-7-5知道压强和流速的关系,就可以解释本节开始所做的实验了。经过漏斗吹乒乓球时,乒乓球上方空气的流速大,压强小,下方空气的压强大,乒乓球受到向上

16、的力,所以会贴在漏斗上不会掉下来。向两张纸中间吹气,两张纸中间空气的流速大,压强小,外边空气的压强大,所以两张纸将互相贴近。同样的道理,两艘并排的船同向行驶时(图4-7-4)如果速度较大,两船会互相靠近,有相撞的危险。历史上就曾经发生过这类事故。在航海中。对并排同向行驶的船舶,要限制航速和两船的距离。伯努利方程的应用: 球类比赛中的旋转球和不转球的飞行轨迹不同,是因为球周围空气流动情况不同造成的。图4-7-5甲表示不转球水平向左运动时周围空气的流线。球的上方和下方流线对称,流速相同,上下不产生压强差。现在考虑球的旋转,致使球的下方空气的流速增大,上方流速减小,周围空气流线如图乙所示。球的下方流

17、速大,压强小,上方流速小,压强大。跟不转球相比,图4-1-6乙所示旋转球因为旋转而受到向下的力,飞行轨迹要向下弯曲。 例:如图4-7-6所示,用一弹簧把两物块A和B连接起来后,置于水平地面上。已知A和B的质量分别为和。问应给物块A上加多大的压力F,才可能在撤去力F后,A向上跳起后会出现B对地无压力的情况?弹簧的质量略去不计。图4-7-6设弹簧原长为,建立如图4-7-7所示的坐标,以k表示弹簧的劲度系数,则有 取图中O点处为重力势能零点,当A受力F由O点再被压缩了x时,系统的机械能为 撤去F当A上升到最高处即弹簧较其自然长度再伸长时,系统的机械能图4-7-7为 A在x处时,其受力满足 ,以式的代入上式,乃有 当F撤去A上升到处时,弹簧的弹力大小为,设此时B受到地面的支持力为N,则对于B应有 要B对地无压力,即N=0,则上式变为 因为A由x处上升至处的过程中,对此系统无外力和耗散力作功,则其机械能守恒,即 = 联立解式,可得 。 显然,要出现B对地无压力的情况,应为(。当F=(时,刚好能出现B对地无压力的情况,但B不会离开地面;当F(时,B将出现离开地面向上跳起的情况。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1