ISO-6596-2-1985.pdf

上传人:小小飞 文档编号:3778503 上传时间:2019-09-23 格式:PDF 页数:14 大小:667.95KB
返回 下载 相关 举报
ISO-6596-2-1985.pdf_第1页
第1页 / 共14页
ISO-6596-2-1985.pdf_第2页
第2页 / 共14页
ISO-6596-2-1985.pdf_第3页
第3页 / 共14页
ISO-6596-2-1985.pdf_第4页
第4页 / 共14页
ISO-6596-2-1985.pdf_第5页
第5页 / 共14页
亲,该文档总共14页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《ISO-6596-2-1985.pdf》由会员分享,可在线阅读,更多相关《ISO-6596-2-1985.pdf(14页珍藏版)》请在三一文库上搜索。

1、International Standard $ 6596/2 0 a 4 4! ,NTERNAT,ONAL ORGANIZATION FOR STANDARDIZATION*ME)AYAPOAHA OPrAHHJAUHR OCTAHAAPT!43AUkl!4.ORGANlSATlON INTERNATIONALE DE NORMALISATION Information processing - Data interchange on 130 mm (5.25 in) flexible disk cartridges using two-frequency recording at 7 95

2、8 ftprad, I,9 tpmm (48 tpi), on one side - Part 2 : Track format Traitement de Iinformation - e Descriptors : data processing, information interchange, data recording devices, magnetic disks, flexible disks, track formats, specifications. E Price based on 11 pages Copyright International Organizatio

3、n for Standardization Provided by IHS under license with ISO Licensee=NASA Technical Standards 1/9972545001 Not for Resale, 04/22/2007 21:33:49 MDTNo reproduction or networking permitted without license from IHS -,-,- Foreword IS0 (the International Organization for Standardization) is a worldwide f

4、ederation of national standards bodies (IS0 member bodies). The work of preparing International Standards is normally carried out through IS0 technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that co

5、mmittee. International organizations, govern- mental and non-governmental, in liaison with ISO, also take part in the work. Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the IS0

6、 Council. They are approved in accordance with IS0 procedures requiring at least 75 % approval by the member bodies voting. International Standard IS0 65!36/2 was prepared by Technical Committee ISO/TC 97, Information processing systems. 0 International Organization for Standardization, 1985 0 Print

7、ed in Switzerland Copyright International Organization for Standardization Provided by IHS under license with ISO Licensee=NASA Technical Standards 1/9972545001 Not for Resale, 04/22/2007 21:33:49 MDTNo reproduction or networking permitted without license from IHS -,-,- Contents Page 0 Introduction

8、. 1 Scope and field of application 2 Conformance 3 References 4 General requirements . 5 Track layout after the first formatting for track 00 . 6 Track layout after the first formatting for tracks 01-34 7 Track layout of a recorded flexible disk for data interchange Annexes A Use of additional track

9、s. B EDCimplementation . C Prncedtrre and enuipment for measuring flux transition spacing. 8 9 10 Copyright International Organization for Standardization Provided by IHS under license with ISO Licensee=NASA Technical Standards 1/9972545001 Not for Resale, 04/22/2007 21:33:49 MDTNo reproduction or n

10、etworking permitted without license from IHS -,-,- INTERNATIONAL STANDARD IS0 6596/2-1985 (E) Information processing - Data interchange on 130 mm (5.25 in) flexible disk cartridges using two-frequency recording at 7 958 ftprad, I,9 tpmm (48 tpi), on one side - Part 2: Track format 0 Introduction IS0

11、 6596 specifies the characteristics of data interchange on 130 mm (5.25 in) flexible disk cartridges using two-frequency recording at 7 958 ftprad, 1,9 tpmm (46 tpi), on one side. IS0 6596/l specifies the dimensional, physical, and magnetic characteristics of the cartridge so as to provide physical

12、interchangeability between data processing systems. Together with the labelling scheme specified in IS0 7665, IS0 6596/l and IS0 6596/2 provide for full data interchange between data processing systems. 1 Scope and field of application This part of IS0 6596 specifies the magnetic characteristics, th

13、e track layout, and a track format to be used on a 130 mm (5.25 in) flexible disk cartridge, recorded at 7 958 ftprad on one side using two-frequency recording at a track density of 1,9 tracks per millimetre ftpmm) 48 tracks per inch itpi), which is intended for data interchange between data process

14、ing systems. NOTE - Numeric values in the SI and/or Imperial measurement system in this International Standard may have been rounded off and therefore are consistent with, but not exactly equal to, each other. Either system may be used, but the two should be neither intermixed nor re-converted. The

15、original design for this part of IS0 6596 was made using SI units. 2 Conformance A flexible disk cartridge shall be in conformance with !SO 6596 when it meets all the requirements of parts 1 and 2 of IS0 6596. 3 References IS0 646, Information processing - IS0 7-bit coded character set for informati

16、on interchange. IS0 2022, Information processing - IS0 Fbit and 8-bit coded character sets - Code extension techniques. IS0 4673, Information processing - IS0 8-bit code for information interchange - Structure and rules for im- plementation. IS0 659611, Information processing - Data interchange on 1

17、30 mm (5.25 in) flexible disk cartridges using two-frequency recording at 7 956 ftprad, 1,9 tpmm (48 tpi), on one side - Part 1 : Dimensional, physical and magnetic characteristics. IS0 7665, Information processing - File structure and labelling of flexible disk cartridges for information interchang

18、e. 4 General requirements 4.1 Mode of recording The mode of recording shall be two-frequency where the start of every bit cell is a clock flux transition. A ONE is represented by a data flux transition between two clock flux transitions. Exceptions to this are defined in 4.10. 4.2 Track location tol

19、erance of the recorded flexible disk cartridge The centrelines of the recorded tracks shall be within + 0,085 mm ( + 0.003 3 in) of the nominal positions over the range of operating environment specified in IS0 6596/l. This tolerance corresponds to twice the standard deviation. 4.3 Recording offset

20、angle At the instant of writing or reading a magnetic transition, the transition may have an angle of O” + 18 with the radius. This tolerance corresponds to twice the standard deviation. 4.4 Density of recording 4.4.1 The nominal density of recording shall be 7 958 ftprad. The resulting nominal spac

21、ing between two clock flux tran- sitions, the nominal bit cell length, is 251 urad. 4.4.2 The long-term average bit cell length shall be the average bit cell length measured over a sector. It shall be within + 3,5 % of the nominal bit cell length. 1 Copyright International Organization for Standardi

22、zation Provided by IHS under license with ISO Licensee=NASA Technical Standards 1/9972545001 Not for Resale, 04/22/2007 21:33:49 MDTNo reproduction or networking permitted without license from IHS -,-,- IS0 6596/2-1985 (El 4.4.3 The short-term average bit cell length, referred to a par- ticular bit

23、cell, shall be the average of the lengths of the preceding eight bit cells. It shall be within f 8 % of the long- term average bit cell length. 4.5 Flux transition spacing (see figure 1) The instantaneous spacing between flux transitions may be in- fluenced by the reading and writing process, the bi

24、t sequence recorded (pulse crowding effects), and other factors. The loca- tions of the transitions are defined as the locations of the peaks in the signal when reading. Tests should be carried out using a peak-sensing amplifier (see annex C). 4.5.1 The spacing between two clock flux transitions sur

25、- rounding a data flux transition or between two data flux transi- tions surrounding a clock flux transition shall be between 90 % and 140 % of the nominal bit cell length. 4.5.2 The spacing between two clock flux transitions not sur- rounding a data flux transition or between two data flux tran- si

26、tions surrounding a missing clock flux transition shall be between 60 % and 110 % of the nominal bit cell length. 4.5.3 The spacing between a data flux transition and the preceding clock flux transition (when not missing) or between a clock flux transition and the preceding data flux transition (whe

27、n not missing) shall be between 45 % and 70 % of the nominal bit cell length. 4.6 Average signal amplitude The average signal amplitude on any non-defective track (see IS0 659611) of the interchanged flexible disk shall be less than 160 % of the stanclard reference amplitude for track 00 and more th

28、an 40 % of the standard reference amplitude for track 34. The bit in each position shall be a ZERO or a ONE. 4.8 Sector Track 00 is divided into 16 sectors. All other tracks are divided into 9 sectors. 4.9 Data capacity of a track The data capacity of track 00 shall be 2 048 bytes. The data capacity

29、 of all other tracks shall be 2 304 bytes. 4.10 Hexadecimal notation Hexadecimal notation shall be used to denote the following bytes : (00) for (88 to Bll = 00000000 (01) for (88 to Bl) = OOOOOOOl (FF) for (88 to Bl) = 11111111 (FE)” for (88 to Bl) = 11111110 where the clock transitions of B6, B5 a

30、nd 84 are missing (FBI” for (B8 to Bl) = 11111011 where the clock transitions of B6, B5 and 84 are missing (F8)* for (88 to Bl) = 11111000 where the clock transitions of B6, 85 and 84 are missing 4.11 Error detection characters (EDC) The two EDC-bytes are hardware-generated by shifting serially the

31、relevant bits, specified later for each part of the track, through a 1Sbit shift register described by the generator polynomial : 4.7 Byte Xa + X2 + X5 + 1 A byte is a group of eight bit-positions, identified Bl to 88, with 88 the most significant and recorded first. (See also annex B.) 1 c 1 c 1 c

32、0 c 45% to70A3 -a-8- 90%to 140Ac 90 % to 140% - 60% to 110% Figure 1 2 Copyright International Organization for Standardization Provided by IHS under license with ISO Licensee=NASA Technical Standards 1/9972545001 Not for Resale, 04/22/2007 21:33:49 MDTNo reproduction or networking permitted without

33、 license from IHS -,-,- IS0 6596/2-1985 (E) 5 Track layout after the first formatting for track 00 5.2.2.3 Sector number (S) The 3rd byte shall specify in binary notation the sector number from 01 for the 1st sector to 16 for the last sector. After the first formatting, there shall be 16 usable sect

34、ors on the track. The track layout shall be as shown in figure 2. The 16 sectors shall be recorded in the natural order 1, 2, 3, . . . . 15, 16 5.1 Index gap At nominal density, this field shall comprise 16 (FFI-bytes. Writing the index gap is started when the index window is detected. Any of the fi

35、rst 8 bytes may be ill-defined due to over- writing. 5.2.2.4 4th byte of the address identifier The 4th byte shall always be a UM)-byte. 5.2.2.5 EDC 5.2 Sector identifier These two bytes shall be generated as defined in 4.11 using the bytes of the sector identifier starting with the (FE)*-byte (see

36、5.2.1) of the identifier mark and ending with the 4th byte (see 5.2.2.4) of the address identifier. This field shall be as given in table 1. Table 1 5.3 Identifier gap This field shall comprise 11 initially recorded fFF)-bytes. Identifier mark I Address identifier 6 bytes 1 byte T 1 byte S 1 byte ED

37、C (00) (FE)” 1 byte (00) (00) 1 byte IOO) 2 bytes 5.4 Data block This field shall be as given in table 2. Table 2 5.2.1 identifier mark This field shall comprise 7 bytes Data mark 6 bytes 1 byte vJo1 (FBI” Data field EDC 128 bytes 2 bytes 6 UIOLbytes 1 (FE)*-byte 5.2.2 Address identifier 5.4.1 Data

38、mark This field shall comprise 6 bytes. This field shall comprise 5.2.2.1 Track address (T) 6 (OOI-bytes 1 (FBI*-byte The track address is the first byte of the address identifier. It shall always be a KM)-byte. 5.4.2 Data field 5.2.2.2 2nd byte of the address identifier This field shall comprise 12

39、8 bytes. No requirements are implied bevond the correct EDC for the content of this field (see also 7.3.2.4.2). The 2nd byte shall be always a fOOLbyte. INDEX GAP SECTOR IDENTIFIER IDENTIFIER I_- 1st Sector - -9th Sector-4 Figure 2 3 Copyright International Organization for Standardization Provided

40、by IHS under license with ISO Licensee=NASA Technical Standards 1/9972545001 Not for Resale, 04/22/2007 21:33:49 MDTNo reproduction or networking permitted without license from IHS -,-,- IS0 6596/2-1985 (E) 5.4.3 EDC 6.2.1 Identifier mark These two bytes shall be generated as defined in 4.11 using t

41、he bytes of the data block starting with the 7th byte of the data mark (see 5.4.1) and ending with the last byte of the data field (see 5.4.2). 5.5 Data block gap This field shall comprise 27 initially recorded (FFLbytes. It is recorded after each data block and it precedes the following sector iden

42、tifier. After the last data block, it precedes the track gap. 5.6 Track gap This field shall follow the data block gap on the 16th sector. (FFLbytes are written until the index window is detected, unless it has been detected during writing of the last data block gap, in which case there shall be no

43、track gap. At nominal den- sity it shall comprise 101 (FFLbytes, which may have become ill-defined due to the overwriting process. 6 Track layout after the first formatting for tracks 01-34 After the first formatting, there shall be 9 usable sectors on each track. The track layout shall be as shown

44、in figure 3. 6.1 Index gap At nominal density, this field shall comprise 16 (FFI-bytes. Writing of the index gap is started when the index window is detected. Any of the first 8 bytes may be ill-defined due to over- writing. 6.2 Sector identifier This field shall be as given in table 3. Table 3 Iden

45、tifier mark Address identifier 6 bytes 1 byte T 1 byte S 1 byte EDC (00) (FE)” 1 byte (00) 1 byte 101) 2 bytes This field shall comprise 7 bytes 6 KMNbytes 1 (FE)*-byte 6.2.2 Address identifier This field shall comprise 6 bytes. 6.2.2.1 Track address (T) The track address is the first byte of the ad

46、dress identifier. It shall represent in binary notation the track address from 01 for the outermost track to 32 for the innermost track. 6.2.2.2 2nd byte of the address identifier The 2nd byte shall always be a (OO)-byte. 6.2.2.3 Sector number (S) The 3rd byte shall specify in binary notation the se

47、ctor number from 01 for the 1st sector to 09 for the last sector. The nine sectors shall be recorded in the natural order 1, 2, 3, . . . , 8, 9 6.2.2.4 4th byte of the address identifier The 4th byte shall always be a (OlI-byte. 6.2.2.5 EDC These two bytes shall be generated as defined in 4.11 using

48、 the bytes of the sector identifier starting with the (FE)*-byte (see 6.2.1) of the identifier mark and ending with the 4th byte (see 6.2.2.4) of the address identifier. 6.3 Identifier gap This field shall comprise 11 initially recorded (FF)-bytes. INDEX GAP SECTOR IDENTIFIER IDENTIFIER - 1st Sector - -16th Sector-4 Figure 3 Copyright International Organization for Standardization Provided by IHS under license with ISO Licensee=NASA Technical Standards 1/9972545001 Not for Resale, 04/22/2007 21:33:49 MDTNo reproduction or networking permitted without license from IHS -,-,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1