应用电子技术毕业设计(论文)-D类音频功率放大器的设计.doc

上传人:小小飞 文档编号:3928589 上传时间:2019-10-10 格式:DOC 页数:53 大小:1.08MB
返回 下载 相关 举报
应用电子技术毕业设计(论文)-D类音频功率放大器的设计.doc_第1页
第1页 / 共53页
应用电子技术毕业设计(论文)-D类音频功率放大器的设计.doc_第2页
第2页 / 共53页
应用电子技术毕业设计(论文)-D类音频功率放大器的设计.doc_第3页
第3页 / 共53页
应用电子技术毕业设计(论文)-D类音频功率放大器的设计.doc_第4页
第4页 / 共53页
应用电子技术毕业设计(论文)-D类音频功率放大器的设计.doc_第5页
第5页 / 共53页
点击查看更多>>
资源描述

《应用电子技术毕业设计(论文)-D类音频功率放大器的设计.doc》由会员分享,可在线阅读,更多相关《应用电子技术毕业设计(论文)-D类音频功率放大器的设计.doc(53页珍藏版)》请在三一文库上搜索。

1、 XXXXXXXXXXXXXX 毕业设计(论文)说明书作 者: 学 号: 学 号: 学 号: 系 部: 电气工程系 专 业: 应用电子技术 题 目: D类音频功率放大器的设计 指导者:评阅者: 2008年 5 月 摘要数字功率放大器具有模拟功率放大器不可比拟的优势,代表着音响技术数字化的新台阶。本系统以高效率D类功率放大器为核心,输出开关管采用高速VMOSFET管,连接成互补对称H桥式结构,最大不失真输出功率大于1W,平均效率可达到70左右。D类放大器包括脉宽调制器和输出级。本文首先介绍了声音的基本特性、音响放大器的技术指标、放大器分类和D类放大器的工作原理,接着进行了D类功放的仿真分析,包括

2、PWM波的形成、频谱分析等等;然后根据D类功放的设计要素,设计了基于MAXIM公司的10W立体声/15W单声道集成芯片MAX9703/MAX9704的D类放大器,并对D类功放的发展与技术展望进行了描述。在本文里,对放大器的各个模块包括放大电路、比较器电路、三角波产生电路、驱动电路等进行了设计和仿真,且达到了预先设定的指标。关键词: D类放大器 脉宽调制 高速开关电路 低通滤波目录1 引 言52 音响的基础知识72.1 声音的基本特性72.2 音响的结构及参数72.3 放大器的技术指标73 放大器的简介94 D类功放的原理及仿真134.1 D类功放的工作原理134.2 D类功放的EDA仿真154

3、.2.1 EDA仿真概述154.2.2 D放大器原理仿真概述164.2.3 输入信号抽样PWM波的形成仿真174.2.4 输出信号PWM波的频谱仿真分析174.3 D类功放的优点185 D类功放的硬件设计195.1 D类功放的设计原理195.2 D类功放的设计要素225.2.1 输出晶体管尺寸选择225.2.2 输出级保护225.2.3 音质处理235.2.4 EMI处理255.2.5 LC滤波器设计265.2.6系统成本275.2.7 散热注意事项275.3 D类功放电路分析与计算315.3.1脉宽调制器(PWM)315.3.2 前置放大器335.3.3 驱动电路345.3.4 高速开关电路

4、355.3.5 低通滤波406 MAX9703/MAX9704单声道/立体声D类音频功率放大器446.1 概述446.2 MAX9703/MAX9704详细说明446.2.1 工作效率446.2.2 应用信息457 D类功放的发展与技术展望477.1 D类功放的不足477.2 D类功放的最新发展T类功率放大器47结论48致谢49参考文献501 引 言音响技术发展到今天,音响设备中大部分已实现了数字化,如作为音源的CD、DAT、MD、DVD等,数字调音台以及数字效果器、压限器、激励器等周边设备也被一些专业场所使用。而作为音响系统最后环节的功率放大器和扬声器却长期在数字化的大门外徘徊。人们对音响重

5、放高保真度的追求是永无止境的,而模拟功率放大器经过了几十年发展,在技术上已经相当成熟,可以说已难于有新的突破。随着生活水平的提高,环保与能量的利用率也渐渐成为人们所关注的问题,正因为这样,人们再一次把目光投向数字功放。其实早在20世纪60年代末期就有人着手数字放大器的研究,为什么在这数十年以来的音响发展历程,一直不见其产品面市?究其原因,是在数字音频放大器的设计与制作过程中,最大的难题就是高速转换控制系统。因为其需要极高的精确度,但在如何解决脉冲调制放大在工作时提供持续稳定的线性响应,以及如何避免产生辐射脉冲干扰等方面难以取得突破,故一直使脉冲调制型放大器在音响应用领域停滞不前,举步维艰。如今

6、,随着脉冲调制放大电路的技术瓶颈被逐渐解决,数字放大器的优点日渐突显,新品不断推出,也越来越受到人们的关注了。低失真,大功率,高效率是对功率放大器提出的普遍要求。模拟功率放大器通过采用优质元件,复杂的补偿电路,深负反馈,使失真变得很小,但大功率和高效率一直没有很好的解决。工作在开关状态下的D类功率放大器却很容易实现,大功率,高效率,低失真。传统的音频功放工作时,直接对模拟信号进行放大,工作期间必须工作于线性放大区,功率耗散较大,虽然采用推挽输出,减小了功率器件的承受功率,但在较大功率情况下,仍然对功率器件构成极大威胁。功率输出受到限制。此外,模拟功率放大器还存在以下的缺点:1.电路复杂,成本高

7、。常常需要设计复杂的补偿电路和过流,过压,过热等保护电路,体积较大,电路复杂。2.效率低,输出功率不可能做的很大。D类开关音频功率放大器的工作基于PWM模式:将音频信号与采样频率比较,经自然采样,得到脉冲宽度与音频信号幅度成正比例变化的PWM波,然后经过驱动电路,加到功率MOS的栅极,控制功率器件的开关,实现放大,将放大的PWM送入滤波器,则还原为音频信号。D类功率放大器工作于开关状态,理论效率可达100%,实际的运用也可达80%以上。功率器件的耗散功率小,产生热量少,可以大大减小散热器的尺寸,连续输出功率很容易达到数百瓦。功率MOS有自保护电路,可以大大简化保护电路,而且不会引入非线性失真。

8、对于高电感的扬声器,在设计电路时,是可以省去低通滤波器LPF),这样可以大大的节省体积和花费。而且有更高的保真度,这一点,在国外的SVD类功率放大器中已经开始运用,如:TEXAS公司的TPA2002D2。近年来,国外的公司对D类功率放大器进行了研究和开发,提出了一些方案,但是尚存在了较大的难度,由于采用PWM方式,为了提高音质,降低失真,必须提高调制频率,但是在较高频率下,会产生一定的问题,同时,D类功率放大器对器件的要求较高,不利于降低成本。2 音响的基础知识2.1 声音的基本特性音量:它与声波的物理量“振幅”有关,声波的振幅大,人耳就感觉声音响,音量大,反之,则声音轻,音量小,音量的大小是

9、人耳听音的主观感觉。音调:是人耳对声音调子高低的主观感觉,声调的高低与声音的物理量“频率”对应人耳的听觉范围:20hz20KHz称之为可听声,低于20Hz称为次声,高于20KHz称为超声,人耳对3K4K的声音最敏感。音色:又叫音品或音质,它是由声音的波形决定的,电子管功放的偶次谐波多,奇次谐波少,声音柔美,甜润,晶体管功放奇次谐波多,声音冷艳,清丽。2.2 音响的结构及参数前置放大器和功率放大器,前置放大器承担控制任务为主,对各种节目源信号进行选择和处理,对微弱信号放大到0.5-1V,进行各种音质控制,以美化音色。功率放大器,承担放大任务,是将前置放大器输出的音频信号进行功率放大,以推动扬声器

10、发声。有电压放大,电流放大,要求是宏亮而不失真。2.3 放大器的技术指标1.额定功率:音响放大器输出失真度小于某一数值(r1%)的最大功率称为额定功率,表达式;P= U/R, U为负载两端的最大不失真电压,R为额定负载阻抗。测量条件如下:信号发生器输出频率为1KH,电压U=20mV正弦信号。功率放大器的输出端接额定负载电阻凡(代替扬声器),输入端接U,逐渐增大输入电压U,直到U的波形刚好不出现谐波失真(r 60 dB和THD 0.01%的高保真音质。但反馈使得放大器的设计变得复杂,因为必须满足环路的稳定性(对于高阶设计是一种很复杂的考虑)。连续时间模拟反馈对于捕获有关脉冲时序误差的重要信息也是

11、必需的,因此控制环路必须包括模拟电路以处理反馈信号。在集成电路放大器实现中,这会增加管芯成本。为了将IC成本减至最低,一些制造商喜欢不使用或使用最少的模拟电路部分。有些产品用一个数字开环调制器和一个模数转换器来检测电源变化,并且用调整调制器进行补偿。这样可以改善PSR,但不会解决任何失真问题。其它的数字调制器试图对预期的输出级时序误差进行预补偿,或对非理想的调制器进行校正。这样至少会处理一部分失真源,但不是全部。对于音质要求宽松的应用,可通过这些开环D类放大器进行处理,但对于最佳音质,有些形式的反馈似乎是必需的。5.2.4 EMI处理D类放大器输出的高频分量值得认真考虑。如果不正确理解和处理,

12、这些分量会产生大量EMI并且干扰其它设备的工作。两种EMI需要考虑:辐射到空间的信号和通过扬声器及电源线传导的信号。D类放大器调制方案决定传导EMI和辐射EMI分量的基线谱。但是,可以使用一些板级的设计方法减少D类放大器发射的EMI,而不管其基线谱如何。一条有用的原则是将承载高频电流的环路面积减至最小,因为与EMI相关的强度与环路面积及环路与其它电路的接近程度有关。例如,整个LC滤波器(包括扬声器接线)的布局应尽可能地紧密,并且保持靠近放大器。电流驱动和回路印制线应当集中在一起以将环路面积减至最小(扬声器使用双绞线对接线很有帮助)。另一个要注意的地方是当输出级晶体管栅极电容开关时会产生大的瞬态

13、电荷。通常这个电荷来自储能电容,从而形成一个包含两个电容的电流环路。通过将环路面积减至最小可降低环路中瞬态的EMI影响,意味着储能电容应尽可能靠近晶体管对它充电。有时,插入与放大器电源串联的RF厄流线圈很有帮助。正确布置它们可将高频瞬态电流限制在靠近放大器的本地环路内,而不会沿电源线长距离传导。如果栅极驱动非重叠时间非常长,扬声器或LC滤波器的感应电流会正向偏置输出级晶体管端的寄生二极管。当非重叠时间结束时,二极管偏置从正向变为反向。在二极管完全断开之前,会出现大的反向恢复电流尖峰,从而产生麻烦的EMI源。通过保持非重叠时间非常短(还建议将音频失真减至最小)使EMI减至最小。如果反向恢复方案仍

14、不可接受,可使用肖特基(Schottky)二极管与该晶体管的寄生二极管并联,以转移电流并且防止寄生二极管一直导通。这很有帮助,因为Schottky二极管的金属半导体结本质上不受反向恢复效应的影响。具有环形电感器磁芯的LC滤波器可将放大器电流导致的杂散现场输电线影响减至最小。在成本和EMI性能之间的一种好的折衷方法是通过屏蔽减小来自低成本鼓形磁芯的辐射。5.2.5 LC滤波器设计为了节省成本和PCB面积,大多数D类放大器的LC滤波器采用二阶低通设计。下图示出一个差分式二阶LC滤波器。扬声器用于减弱电路的固有谐振。尽管扬声器阻抗有时近似于简单的电阻,但实际阻抗比较复杂并且可能包括显著的无功分量。要

15、获得最佳滤波器设计效果,设计工程师应当总是争取使用精确的扬声器模型。图5-5 差分开关输出级和LC低通滤波器常见的滤波器设计选择目的是为了在所需要的最高音频频率条件下将滤波器响应下降减至最小以获得最低带宽。如果对于高达20 kHz频率,要求下降小于1 dB,则要求典型的滤波器具有40 kHz巴特沃斯(Butterworth)响应(以达到最大平坦通带)。对于常见的扬声器阻抗以及标准的L值和C值,表5-1给出了标称元器件值及其相应的近似Butterworth响应。表5-1 标称元器件值如果设计不包括扬声器反馈,扬声器THD会对LC滤波器元器件的线性度敏感。电感器设计考虑因素:设计或选择电感器的重要因素包括磁芯的额定电流和形状,以及绕线电阻。额定电流:选用磁芯的额定电流应当大于期望的放大器的最高电流。原因是如果电流超过额定电流阈值并且电流密度太高,许多电感器磁芯会发生磁性饱和,导致电感急剧减小,这是我们所不期望的。通过

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1