设计用于带式运输机的传动装置_机械设计基础课题设计论文.doc

上传人:来看看 文档编号:3981050 上传时间:2019-10-11 格式:DOC 页数:22 大小:3.10MB
返回 下载 相关 举报
设计用于带式运输机的传动装置_机械设计基础课题设计论文.doc_第1页
第1页 / 共22页
设计用于带式运输机的传动装置_机械设计基础课题设计论文.doc_第2页
第2页 / 共22页
设计用于带式运输机的传动装置_机械设计基础课题设计论文.doc_第3页
第3页 / 共22页
设计用于带式运输机的传动装置_机械设计基础课题设计论文.doc_第4页
第4页 / 共22页
设计用于带式运输机的传动装置_机械设计基础课题设计论文.doc_第5页
第5页 / 共22页
点击查看更多>>
资源描述

《设计用于带式运输机的传动装置_机械设计基础课题设计论文.doc》由会员分享,可在线阅读,更多相关《设计用于带式运输机的传动装置_机械设计基础课题设计论文.doc(22页珍藏版)》请在三一文库上搜索。

1、机械设计基础机械设计基础课程设计说明书设计题目: 设计用于带式运输机的传动装置 学 院: 港航学院 专 业: 轮机工程 年级: A11轮机1班 指导教师: 龚雅萍 学生姓名: 学 号: 110204115 起迄日期: 2013.8.302013.9.8 港航学院轮机工程目录第一章.设计任务书1第二章.设计内容1第三章.计算传动装置的运动和动力参数2第四章.齿轮的设计4第五章.低速级齿轮设计8第六章.轴的设计12第七章.键的计算15第八章.减速器的润滑与密封15第九章.减速器箱体及附件的选择16第十章.制造、安装及使用说明17第一章. 设计任务书1.1 设计题目带式运输机的传动装置设计1.2 传

2、动装置原理方案设计1.3 原始数据数据编号A15输送机工作轴功率 P(KW)11.5输送机工作轴转速 n(1/min)701.4 工作条件单向传动,载荷平稳,每天平均工作4小时,使用寿命15年试设计闭式齿轮传动机构。运输带速度允许误差为5%。1.5 设计工作量(1)设计说明书一份(2)速器零件工作图1张第二章. 设计内容2.1 选择电动机的类型按工作要求和工作条件选用Y系列三相笼型异步电动机,全封闭自扇冷式结构,电压380V。2.2 选择电动机的容量工作机的有效功率:PW=FvF:运送带工作拉力(N) V:运输带工作速度(m/s)2.3 传动装置的总功率:从电动机输出轴到运输带的总工作效率为:

3、总=123456=0.990.990.980.950.960.97=0.85式中:刚性联轴器的效率1=0.99一对滚动轴承的效率2=0.99单机圆柱齿轮传动的效率3=0.98开式齿轮传动的效率4=0.95卷筒的传动效率5=0.96一对滑动轴承的效率6=0.972.4 电动机所需工作效率已知输送机工作轴功率为:P=11.5KWPd=P/总=11.5/0.85=13.53KW第三章. 计算传动装置的运动和动力参数3.1 传动比的分配已知:输送机工作轴转速n=70r/min。常用同步电机的转速为1500 r/min和1000r/min。选单级圆柱齿轮减速器传动比=45。根据容量和转速,由有关手册查出

4、有三种适用的电动机型号,综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,则选n=1500r/min。开式齿轮为避免齿轮数过多,导致尺寸过大,传动比7。结合电动机的额定功率,可选的电动机数据以及传动装置对应的传动比如下表:3.2 确定电动机型号电动机型号额定功率(KW)满载转速(r/min)额定转矩Y160L-41514602.23.3 传动比的分配(1)总传动比 为 分配传动比 考虑润滑条件等因素,初定 ,3.4 各参数的计算1)各轴的转速 I轴 II轴 III轴 卷筒轴 2)各轴的输入功率 I轴 II轴 III轴 卷筒轴 3)各轴的输入转矩电动机轴的输出转矩为 I轴 II轴

5、 III轴 卷筒轴 将上述计算结果汇总与下表,以备查用.轴名功率P/kw转矩T/(Nmm)转速n/(r/min)传动比效率I轴13.088.7710414404.040.97II轴12.693.44104356.430.97III轴12.3210.0110511810.95卷筒轴11.589.38105118第四章. 齿轮的设计4.1 高速级齿轮设计选定齿轮类型、精度等级、材料及齿数(1)按简图所示的传动方案,选用直齿圆柱齿轮传动,软齿轮面闭式传动。(2)运输机为一般工作机器,速度不高,故选用7级精度(GB10095-88)。(3)材料选择。由机械设计表10-1,选择小齿轮材料为40Cr(调质

6、),硬度为280HBS,大齿轮为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。(4)选小齿轮齿数,则大齿轮齿数按齿面接触疲劳强度设计,即 确定公式内的各计算数值1)试选载荷系数。2)计算小齿轮传递的转矩 3)由机械设计表10-7选取齿宽系数。4)由机械设计表10-6查得材料的弹性影响系数。5)由机械设计图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限;大齿轮的接触疲劳强度极限。6)由式10-13计算应力循环次数7)由机械设计图10-19取接触疲劳寿命系数;。8)计算接触疲劳许用应力取安全系数S=1 4.2 设计计算1)试算小齿轮分度圆直径,代入中较小的值。 2)计算圆周速

7、度v3)计算齿轮宽度b 4)计算齿宽高之比模数:齿高:5)计算载荷系数查表10-2得使用系数;根据、7级精度,由图10-8得动载系数;直齿轮,由表10-4用插值法查得7级精度、小齿轮相对支承非对称布置时,;由,查图10-13得,故载荷系数6)校正分度圆直径由机械设计式(10-10a)得7)计算模数4.3 按齿根弯曲强度设计由式(10-5)得弯曲强度的设计公式为4.4 确定公式内的各计算数值1)由图10-20c查得小齿轮的弯曲疲劳强度极限;大齿轮的弯曲疲劳强度极限;2)由图10-18取弯曲疲劳寿命系数,;3)计算弯曲疲劳许用应力。取弯曲疲劳安全系数,由式(10-12)得4)计算载荷系数K。5)查

8、取齿形系数。由表10-5查得 ;6)查取应力校正系数由表10-5查得 ;7)计算大、小齿轮的并加以比较。 大齿轮的数值大。8)设计计算对比计算结果,由齿面接触疲劳强度计算的模数m大于由齿根弯曲疲劳强度计算的强度,由于齿轮模数m的大小取决于弯曲强度所决定的承载能力,而齿面接触疲劳强度所决定的承载能力,仅与齿轮直径(即模数与齿数的乘积)有关,可取由弯曲强度算得的模数1.794并就近圆整为标准值,按接触强度算得的分度圆直径,算出小齿轮齿数 则 这样设计出的齿轮传动,既满足了齿面接触疲劳强度,又满足了齿根弯曲疲劳强度,并做到结构紧凑,避免浪费。4.5 几何尺寸计算1)计算分度圆直径2)计算中心距3)计

9、算齿轮宽度取,第五章. 低速级齿轮设计5.1 选定齿轮类型、精度等级、材料及齿数(1)按简图所示的传动方案,选用直齿圆柱齿轮传动,软齿轮面闭式传动。(2)运输机为一般工作机器,速度不高,故选用7级精度(GB10095-88)。(3)材料选择。由机械设计表10-1,选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。(4)选小齿轮齿数,则大齿轮齿数5.2 初步设计齿轮主要尺寸(1)设计准则:先由齿面接触疲劳强度计算,再按齿根弯曲疲劳强度校核。(2)按齿面接触疲劳强度设计,即 确定公式内的各计算数值1)试选载荷系数。2)计算

10、小齿轮传递的转矩 3)由机械设计表10-7选取齿宽系数。4)由机械设计表10-6查得材料的弹性影响系数。5)由机械设计图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限;大齿轮的接触疲劳强度极限。6)由式10-13计算应力循环次数7)由机械设计图10-19取接触疲劳寿命系数;。8)计算接触疲劳许用应力取安全系数S=1 5.3 设计计算1)试算小齿轮分度圆直径,代入中较小的值。 2)计算圆周速度3)计算齿轮宽度b4)计算齿宽高之比模数:齿高:5)计算载荷系数 查表10-2得使用系数; 根据、7级精度,由图10-8得动载系数;直齿轮, 由表10-4用插值法查得7级精度、小齿轮相对支承非对称布置时

11、,;由,查图10-13得,故载荷系数 6)校正分度圆直径由机械设计式(10-10a)得7)计算模数。5.4 按齿根弯曲强度设计弯曲强度的设计公式为确定公式内的各计算数值由图10-20c查得小齿轮的弯曲疲劳强度极限;大齿轮的弯曲疲劳强度极限;由图10-18取弯曲疲劳寿命系数,;计算弯曲疲劳许用应力。取弯曲疲劳安全系数,由式(10-12)得5)计算载荷系数K。 6)查取齿形系数。由表10-5查得 ;7)查取应力校正系数由表10-5查得 ;8)计算大、小齿轮的并加以比较。 大齿轮的数值大。5.5 设计计算对比计算结果,由齿面接触疲劳强度计算的模数m大于由齿根弯曲疲劳强度计算的强度,由于齿轮模数m的大

12、小取决于弯曲强度所决定的承载能力,而齿面接触疲劳强度所决定的承载能力,仅与齿轮直径(即模数与齿数的乘积)有关,可取由弯曲强度算得的模数2.813并就近圆整为标准值,按接触强度算得的分度圆直径,算出小齿轮齿数。 则 这样设计出的齿轮传动,既满足了齿面接触疲劳强度,又满足了齿根弯曲疲劳强度,并做到结构紧凑,避免浪费。5.6 几何尺寸计算1)计算分度圆直径2)计算中心距3)计算齿轮宽度取, 结构设计及绘制齿轮零件图简图齿数齿宽分度圆直径中心距第一级z127B165d154a1136z2109B260d2218第二级z327B385d381a2162z481B480d4243第六章. 轴的设计6.1

13、齿轮轴的设计1)输入轴上的功率、转速和转矩 由上可知,2)求作用在齿轮上的力 因已知小齿轮的分度圆直径 而 3)初步确定轴的最小直径材料为45钢,正火处理。根据机械设计表15-3,取,于是,由于键槽的影响,且,故,输出轴的最小直径显然是安装联轴器处轴的直径。为了使所选的轴直径与联轴器的孔径相适应,故需同时选取联轴器型号。联轴器的计算转矩,查机械设计表14-1,取,则: 按照计算转矩应小于联轴器公称转矩的条件,查机械设计手册,选用GY4型凸缘联轴器,其公称转矩为。半联轴器的孔径,故取,半联轴器长度,半联轴器与轴配合的毂孔长度。6.2 齿轮轴的结构设计1)根据轴向定位的要求确定轴的各段直径和长度:

14、为了满足办联轴器的轴向定位要求,-段左端需制出一轴肩,故取-段的直径;右端用轴端挡圈定位。半联轴器与轴配合的毂孔长度,为了保证轴端挡圈只压在半联轴器上而不压在轴的端面上,故-段的长度应比略短一些,现取。2)初步选择滚动轴承。因轴承只受径向力的作用,故选用深沟球轴承。按照工作要求并根据,查机械设计手册表6-1选取深沟球轴承6008,其尺寸为,故,。3)轴肩高度,故取,则轴环处的直径。轴环宽度取,。4)轴承端盖的总宽度为(由减速器及轴承端盖的结构设计而定)。根据轴承端盖的装拆及便于对轴承添加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离,故。5)由小齿轮尺寸可知,齿轮处的轴端-的直径,。至此

15、,已初步确定了轴的各段和长度。6)轴上零件的周向定位半联轴器与轴的周向定位均采用A型平键连接。按由机械设计设计手册表4-1查得平键截面,键槽用键槽铣刀加工,长为。同时为了保证半联轴器与轴配合有良好的对中性,故选择半联轴器与轴的配额为;滚动轴承与轴的周向定位是由过渡配合来保证的,此处选轴的直径尺寸公差为。7)确定轴上圆角和倒角尺寸参考机械设计表15-2,取轴端圆角,各轴肩处的圆角半径R2。6.3 求轴上的载荷首先根据轴的结构图做出轴的计算简图。作为简支梁的轴的支撑跨距。根据轴的计算简图做出轴的弯矩图和扭矩图。从轴的结构图以及弯矩和扭矩图中可以看出截面C是轴的危险截面。现将计算处的截面C处的、及的

16、值列于下表。载荷 水平面H 垂直面V支反力弯矩总弯矩扭矩第七章. 键的计算与小齿轮 A b=8 h=7 L1=b1-5=65-5=60mm L2=L1-b=60-8=52mm 与大齿轮 A b=14 h=9 L21=b1-5=62.5-5=57.5mm L2=L1-b=57.5-14=43.5mm 根据表10-9得小齿轮上的键的型号为 键860 GB/T1096-2003大齿轮上的键的型号为 键1457.5 GB/T1096-2003 键的校核:T1=9550P1/n1=95505.445/1440=36.11 Nm减速器低速轴T2=9550P2/sn2=95505.12/429.85=113

17、.75 Nmp=4T1/dhL1=436110/26752=15.2660MPap=4T2/dhL2=4113750/62.5943.5=18.660MPa第八章. 减速器的润滑与密封8.1 齿轮传动的润滑各级齿轮的圆周速度均小于12m/s,所以采用浸油润滑。另外,传动件浸入油中的深度要求适当,既要避免搅油损失太大,又要充分的润滑。油池应保持一定的深度和储油量。8.2 油号选择由表16-2注2传动润滑油运动粘度为220mm2/s。由表16-1注2用N200工业齿轮油。8.3 油量计算以每传递1KW功率所需油量为350700,各级减速器需油量按级数成比例。该设计为双级减速器,每传递1KW功率所需

18、油量为7001400。由高速级大齿轮浸油深度约0.7个齿高,但不小于10mm,低速大齿轮浸油深度在1/61/3齿轮半径;大齿轮齿顶距箱底距离大于3050mm(设计值取40mm)的要求得:最低油深:最高油深:箱体内壁总长:L=638mm箱体内壁总宽:b=197mm可见箱体有足够的储油量.8.4 润滑与密封由于低速级齿轮的圆周速度小于2m/s,所以轴承采用脂润滑。又因为加速器工作场所的要求,选用抗水性较好,耐热性较差的钙基润滑脂(GB491-87)。轴承内密封:由于轴承用油润滑,为了防止齿轮捏合时挤出的热油大量冲向轴承内部,增加轴承的阻力,需在轴承内侧设置挡油盘。轴承外密封:在减速器的输入轴和输出

19、轴的外伸段,为防止灰尘水份从外伸段与端盖间隙进入箱体,选用毡圈密封。减速器的密封箱盖和箱座的结合面处理干净,脱尘脱油后,涂上水玻璃或密封胶,以增强密封效果。第九章. 减速器箱体及附件的选择9.1 箱体结构形式及材料本减速器采用剖分式箱体,分别由箱座和箱盖两部分组成。用螺栓联接起来,组成一个完整箱体。剖分面与减速器内传动件轴心线平面重合。此方案有利于轴系部件的安装和拆卸。剖分接合面必须有一定的宽度,并且要求仔细加工。为了保证箱体有足够刚度,在轴承座处设有加强肋。箱体底座要有一定宽度和厚度,以保证安装稳定性和刚度。减速器箱体用HT200制造。铸铁具有良好的铸造性能和切削加工性能,成本低。铸造箱体多

20、用于批量生产。9.2 主要附件作用及形式1)通气器齿轮箱高速运转时内部气体受热膨胀,为保证箱体内外所受压力平衡,减小箱体所受负荷,设通气器及时将箱内高压气体排出。由表7.19注1选用通气器。2)窥视孔和视孔盖 为便于观察齿轮啮合情况及注入润滑油,在箱体顶部设有窥视孔。为了防止润滑油飞出及密封作用,在窥视孔上加设视孔盖。由表14.7 注2 A=140m3)油标尺 用油标尺尺寸M124)油塞为了排出油污,在减速器箱座最低部设置放油孔,并用油塞和封油垫密封。 选用油塞尺寸 M165)启盖螺钉在箱体剖分面上涂有水玻璃,用于密封,为便于拆卸箱盖,在箱盖凸缘上设有启盖螺钉一个,拧动起盖螺钉,就能顶开箱盖。

21、结构参见减速器总装图,尺寸取M16。第十章. 制造、安装及使用说明10.1 制造要求尽量选用接近理想减速比:减速比=伺服马达转速/减速机出力轴转速。扭力计算:对减速机的寿命而言,扭力计算非常重要,并且要注意加速度的最大转矩值(TP),是否超过减速机之最大负载扭力。适用功率通常为市面上的伺服机种的适用功率,减速机的适用性很高,工作系数都能维持在1.2以上,但在选用上也可以以自己的需要来决定。A.选用伺服电机的出力轴径不能大于表格上最大使用轴径。B.若经扭力计算工作,转速可以满足平常运转,但在伺服全额输出时,有不足现象时,我们可以在电机侧之驱动器,做限流控制,或在机械轴上做扭力保护,这是很必要的。

22、10.2 安装要求正确的安装,使用和维护减速器,是保证机械设备正常运行的重要环节。 因此,在您安装减速器时,请务必严格按照下面的安装使用相关事项,认真地装配和使用。 第一步是安装前确认电机和减速器是否完好无损,并且严格检查电机与减速器相连接的各部位尺寸是否匹配,这里是电机的定位凸台、输入轴与减速器凹槽等尺寸及配合公差。 第二步是旋下减速器法兰外侧防尘孔上的螺钉,调整夹紧环使其侧孔与防尘孔对齐,插入内六角旋紧。之后,取走电机轴键。第三步是将电机与减速器自然连接。连接时必须保证减速器输出轴与电机输入轴同心度一致,且二者外侧法兰平行。如同心度不一致,会导致电机轴折断或减速机齿轮磨损。10.3 使用说

23、明检查维护不同的润滑油禁止相互混合使用。油位螺塞、放油螺塞和通气器的位置由安装位置决定。它们的相关位置可参考减速机的安装位置图来确定。 (1)油位的检查 切断电源,防止触电!等待减速机冷却!移去油位螺塞检查油是否充满。安装油位螺塞。 (2)油的检查 切断电源,防止触电!等待减速机冷却!打开放油螺塞,取油样。检查油的粘度指数:如果油明显浑浊,建议尽快更换。对于带油位螺塞的减速机,检查油位,是否合格。安装油位螺塞 (3)油的更换 冷却后油的粘度增大放油困难,减速机应在运行温度下换油。切断电源,防止触电!等待减速机冷却下来无燃烧危险为止!注意:换油时减速机仍应保持温热。 在放油螺塞下面放一个接油盘。

24、打开油位螺塞、通气器和放油螺塞。将油全部排除。装上放油螺塞。注入同牌号的新油。油量应与安装位置一致。油位螺塞处检查油位。拧紧油位螺塞及通气器。总结通过了将近两周的强化学习,动手,我终于完成了关于带式运输机的传动装置的设计,并反复地修改,非常辛苦!但是,本次设计关于带式运输机的传动装置,使我学会了很多东西,受益匪浅。首先,它让我把上课枯燥的内容运用到了实际生活中,并提高了我对机械设计这门课的兴趣。它也使我学习的内容更为丰富,不过必须掌握教材上的知识,这样,即便在设计的过程中遇到很多麻烦自己也能及时的查阅教材及其他资料。同时我在设计中学会了CAD制图,并熟练地运用,能够比较熟悉地运用有关参考资料、

25、计算图表、手册,熟悉有关的国家标准和行业标准,获得了一个工程技术人员在机械设计方面所必须具备的基本技能训练。作为整个学习体系的有机组成部分,课程设计虽然安排在两周进行,但并不具有绝对独立的意义。它的一个重要功能,在于运用学习成果,检验学习成果。运用学习成果,把课堂上学到的系统化的理论知识,尝试性地应用于实际设计工作,并从理论的高度对设计工作的现代化提出一些有针对性的建议和设想。检验学习成果,看一看课堂学习与实际工作到底有多大距离,并通过综合分析,找出学习中存在的不足,以便为完善学习计划,改变学习内容与方法提供实践依据。对我们非机械专业的本科生来说,实际能力的培养至关重要,而这种实际能力的培养单

26、靠课堂教学是远远不够的,必须从课堂走向实践。这也是一次预演和准备毕业设计工作。通过课程设计,让我们找出自身状况与实际需要的差距,并在以后的学习期间及时补充相关知识,为求职与正式工作做好充分的知识、能力准备,从而缩短从校园走向社会的心理转型期。课程设计促进了我系人才培养计划的完善和课程设置的调整。课程设计达到了专业学习的预期目的。在两个星期的课程设计之后,我们普遍感到不仅实际动手能力有所提高,更重要的是通过对机械设计流程的了解,进一步激发了我们对专业知识的兴趣,并能够结合实际存在的问题在专业领域内进行更深入的学习。致谢本次设计中,让我懂得了团结才是力量的道理,在期间,我遇到了很多困难,特别是在绘图的时候,但是总能得到老师和同学及时地指导与帮助,让我能够顺利度过这些难关,在此,一并地感谢他们!参考文献1杨可桢,程光蕴,李仲生.1979.机械设计基础.高等教育出版社2孙德志,张志华,邓子龙.2006.机械设计基础课程设计.科学出版社3周元康等,机械设计课程设计. 3版. 重庆:2011.14濮良贵,纪明刚. 机械设计. 8版. 北京:高等教育出版社, 2006.55孙桓等, 机械原理. 7版. 北京:高等教育出版社,2006.5 6廖念钊等,互换性与技术测量. 5版.北京:中国计量出版社,200720

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1