The first question is about the God’s Number.docx

上传人:奥沙丽水 文档编号:476615 上传时间:2025-07-29 格式:DOCX 页数:2 大小:13.87KB
下载 相关 举报
The first question is about the God’s Number.docx_第1页
第1页 / 共2页
The first question is about the God’s Number.docx_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

1、ThefirstquestionisabouttheGodSNumber.SotwewannaknowwhatistheGod,sNumber?IbelievethatmanyofsmayhaveplayedRubiksCube,andtheGod,SNumberisaboutthatcube.So,lookatthispictureontheleft.EvenifyouhaventplayedtheRubiksCube,youcaneasilyfindthatithasonlybeenrotatedtwice,soyouonlyneedtorotateittwiceinreverseorde

2、randthenyoucanrecoverit.Lookattherightone.Itwasrandomlyrotatedbysixsteps.Itseemsabitdifficulttoseehowtorecoveritataglance.However,ifweknowexactlyhowitwasrotated,wecanstillrotateitinreverseorder.Justneedsixstepswecanrecoverthiscomplicatedcube.ButisthereverseorderalwaysbeingthebestwaytorecovertheRbik,

3、scube?1.etuslookatthenextquestion.WhatifthestateofaRubiksCubeisobtainedbyrotatingitonethousandsteps?Howtorecoverit?Dowealsoneedtorotateinreverseorderonethousandsteps?Ofcausenot.PeoplewhohaveplayedRubiksCubemayknowthattherearesomespecificwaystosolverandomlyrotatingRubiksCube,withonlyalimitednumberofs

4、teps,(excepttheonewithtwistedcorners)Therefore,wewanttoknowwhetherexistanexactupperlimitnumberofsteps,nomatterwhatstatetheRubikscubeisrotatedinto,wecanrecoveritwithinthisnumberofsteps.AndthisnumberistheGodsNumber.Manymathematicianshaveresearchedintothisproblem.Theyusedthemathematicalprinciplesofsymm

5、etry,grouptheory,topology,andsoon.Mathematiciansadvancethisnumberverydifficult.Untiltwothousandandsix,theGod,sNumberwasprovedtobebetween20and27.Duringthisprocess,amathematiciandiscoveredaRbik,sCubestate,whichrequiresatleast20stepstorecover,justlikethispicture.Withthedevelopmentofcomputerscience,scie

6、ntistscontinuetoupdatethealgorithmtosolvetheRubiksCube,finallyintwothousandandten.ScientistshavecompletedthecalculationofthestateofallRubiksCubeswithcomputers.Andtallstatescanberesolvedwithin20steps.Atthattime,wecansaythattheGodsnumberis20.Isthisover?No,infact,weonlysolvedtheproblemofthethird-orderR

7、ubiksCubebybruteforce,notbytheoreticalproof.Weonlyknowthatitisindeed20.butwedontknowwhy.So,whataboutthefourth-orderRubiksCube?Wedontknow.AlthoughwehavesomegeneralwaystosolveanyRubiksCubeproblem,wedontknowwhetheritisthebest.Maybeoneday,whenwebuildaquantumcomputer,wecanalsogettheGodsNumberofthefourth-orderRubiksCubethroughbruteforcetbutwhataboutthefifth-orderRubiksCube?Westillneedtoresearch.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 资格/认证考试 > 会计职称考试

宁ICP备18001539号-1