吸收塔的相关设计计算综述.pdf

上传人:tbuqq 文档编号:4950479 上传时间:2020-01-18 格式:PDF 页数:25 大小:776.31KB
返回 下载 相关 举报
吸收塔的相关设计计算综述.pdf_第1页
第1页 / 共25页
吸收塔的相关设计计算综述.pdf_第2页
第2页 / 共25页
吸收塔的相关设计计算综述.pdf_第3页
第3页 / 共25页
吸收塔的相关设计计算综述.pdf_第4页
第4页 / 共25页
吸收塔的相关设计计算综述.pdf_第5页
第5页 / 共25页
点击查看更多>>
资源描述

《吸收塔的相关设计计算综述.pdf》由会员分享,可在线阅读,更多相关《吸收塔的相关设计计算综述.pdf(25页珍藏版)》请在三一文库上搜索。

1、烟气脱硫工艺主要设备吸收塔设计和选型 (2) 喷淋塔吸收区高度设计(二) 对于喷淋塔,液气比范围在8L/m 3 -25 L/m 3 之间 5 ,根据相关文献资料可知 液气比选择 12.2 L/m 3 是最佳的数值。 逆流式吸收塔的烟气速度一般在2.5-5m/s范围内 56 , 本设计方案选择烟气速 度为 3.5m/s。 湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱 硫效率为 90%以上时(本设计反案尾5%) ,钠硫比 (Na/S)一般略微大于 1,本次 选择的钠硫比 (Na/S)为 1.02。 (3)喷淋塔吸收区高度的计算 含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的

2、二氧化硫吸收量平均到 吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷平均容积吸收率, 以表示。 首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间 单位体积内的二氧化硫吸收量 h C K V Q 0 (3) 其中C 为标准状态下进口烟气的质量浓度,kg/m3 为给定的二氧化硫吸收率,;本设计方案为 95 h 为吸收塔内吸收区高度,m K0为常数,其数值取决于烟气流速u(m/s)和操作温度 () ; K0=3600u273/(273+t) 按照排放标准,要求脱硫效率至少95%。二氧化硫质量浓度应该低于580mg/m3 (标状态) 的单位换算成 kg/( m 2 .s),可以写

3、成 =3600hyu t /* 273 273 * 4 .22 64 1 (7) 在喷淋塔操作温度 10050 75 2 C下、烟气流速为u=3.5m/s、脱硫效率=0.95 前面已经求得原来烟气二氧化硫SO 2 质量浓度为a (mg/ 3 m)且 a=0.650 10 3 mg/m 3 而原来烟气的流量(200C时)为标况2010 3 (m 3 /h) (设为 V a )换算成工况 25360m3/h时 已经求得V a =210 3 m 3 /h=5.6 m 3 /s 故在标准状态下、单位时间内每立方米烟气中含有二氧化硫质量为 2 SO m=5.6650mg/m 3 =3640mg=3.64

4、g V 2 SO = 3.64 22.4 L/mol 64/ g gmol =1.3L/s=0.0013 m 3 /s 则根据理想气体状态方程,在标准状况下,体积分数和摩尔分数比值相等 故y1= 0.0013 100%0.023% 5.6 又烟气流速 u=3.5m/s, y1=0.023%,Ct75,95. 0 总结已经有的经验,容积吸收率范围在5.5-6.5 Kg/(m 3s)之间7 ,取=6 kg/ (m 3s) 代入( 7)式可得 6= 64273 (36003.50.000230.95) / 22.427375 h 故吸收区高度 h=6.17/61.03m (4)喷淋塔除雾区高度( h

5、3)设计(含除雾器的计算和选型) 吸收塔均应装备除雾器,在正常运行状态下除雾器出口烟气中的雾滴浓度应 该不大于 75mg/m 3 9 。 除雾器一般设置在吸收塔顶部(低流速烟气垂直布置)或出口烟道(高流速 烟气水平布置 ),通常为二级除雾器。除雾器设置冲洗水,间歇冲洗冲洗除雾器。 湿法烟气脱硫采用的主要是折流板除雾器,其次是旋流板除雾器。 除雾器的选型 折流板除雾器折流板除雾器是利用液滴与某种固体表面相撞击而将液滴凝 聚并捕集的, 气体通过曲折的挡板, 流线多次偏转, 液滴则由于惯性而撞击在挡 板被捕集下来。通常,折流板除雾器中两板之间的距离为20-30mm,对于垂直 安置,气体平均流速为23

6、m/s;对于水平放置,气体流速一般为610m/s。气 体流速过高会引起二次夹带。 旋流板除雾器气流在穿过除雾器板片间隙时变成旋转气流,其中的液滴在 惯性作用下以一定的仰角射出作螺旋运动而被甩向外侧,汇集流到溢流槽内, 达 到除雾的目的,除雾率可达9099。 喷淋塔除雾区分成两段,每层喷淋塔除雾器上下各设有冲洗喷嘴。最下层冲 洗喷嘴距最上层喷淋层(3-3.5)m,距离最上层冲洗喷嘴( 3.4-32)m。 除雾器的主要设计指标 a.冲洗覆盖率:冲洗覆盖率是指冲洗水对除雾器断面的覆盖程度。冲洗覆盖 率一般可以选在 100 %300 %之间。 冲洗覆盖率 %= %100* 22 A tghn 式中n

7、为喷嘴数量, 20 个;为喷射扩散角, 90 A 为除雾器有效通流面积,15 m 2 h 为冲洗喷嘴距除雾器表面的垂直距离,0.05m 所以冲洗覆盖率 %= %100* 22 A tghn = 22 200.051 100% 15 =203% b.除雾器冲洗周期:冲洗周期是指除雾器每次冲洗的时间间隔。由于除雾器 冲洗期间会导致烟气带水量加大。所以冲洗不宜过于频繁,但也不能间隔太长 ,否 则易产生结垢现象 ,除雾器的冲洗周期主要根据烟气特征及吸收剂确定。 c.除雾效率。指除雾器在单位时间内捕集到的液滴质量与进入除雾器液滴质 量的比值。影响除雾效率的因素很多,主要包括 :烟气流速、通过除雾器断面气

8、流 分布的均匀性、叶片结构、叶片之间的距离及除雾器布置形式等。 d.系统压力降。指烟气通过除雾器通道时所产生的压力损失,系统压力降越 大 ,能耗就越高。除雾系统压降的大小主要与烟气流速、叶片结构、叶片间距及 烟气带水负荷等因素有关。 当除雾器叶片上结垢严重时系统压力降会明显提高, 所以通过监测压力降的变化有助把握系统的状行状态,及时发现问题,并进行处 理。 e.烟气流速。通过除雾器断面的烟气流速过高或过低都不利于除雾器的正常 运行 ,烟气流速过高易造成烟气二次带水,从而降低除雾效率 ,同时流速高系统阻 力大,能耗高。通过除雾器断面的流速过低,不利于气液分离 ,同样不利于提高除雾 效率。设计烟气

9、流速应接近于临界流速。根据不同除雾器叶片结构及布置形式, 设计流速一般选定在3.55.5m/ s之间。本方案的烟气设计流速为6.9m/s。 f.除雾器叶片间距。 除雾器叶片间距的选取对保证除雾效率,维持除雾系统稳 定运行至关重要。叶片间距大,除雾效率低,烟气带水严重,易造成风机故障, 导致整个系统非正常停运。 叶片间距选取过小 ,除加大能耗外,冲洗的效果也有所 下降 ,叶片上易结垢、 堵塞 ,最终也会造成系统停运。 叶片间距一般设计在20 95mm。目前脱硫系统中最常用的除雾器叶片间距大多在3050mm。 g.除雾器冲洗水压。除雾器水压一般根据冲洗喷嘴的特征及喷嘴与除雾器之 间的距离等因素确定

10、,喷嘴与除雾器之间距离一般小于1m ,冲洗水压低时 ,冲洗 效果差 ,冲洗水压过高则易增加烟气带水,同时降低叶片使用寿命。 h.除雾器冲洗水量。选择除雾器冲水量除了需满足除雾器自身的要求外,还 需考虑系统水平衡的要求,有些条件下需采用大水量短时间冲洗,有时则采用小水 量长时间冲洗 ,具体冲水量需由工况条件确定,一般情况下除雾器断面上瞬时冲洗 耗水量约为 1-4m 3/m2.h 除雾器的最终设计参数 本设计中设定最下层冲洗喷嘴距最上层喷淋层3m。 距离最上层冲洗喷嘴3.5m。 1)数量: 1 套 1units=套 2)类型: V 型级数:2 级 3)作用:除去吸收塔出口烟气中的水滴,以便减少烟囱

11、出烟口灰尘量。 4)选材:外壳:碳钢内衬玻璃鳞片;除雾元件:阻燃聚丙烯材料(PP) ;冲洗 管道: FRP;冲洗喷嘴: PP。 表 4 除雾器进出口烟气条件基于锅炉100%BMCR 工况进行设计 除雾器进口除雾器出口 烟气量- - 温度50 - 烟气压力 mmAq 113(1.11kPaG) 93(0.91kPaG) 雾滴含量 mg/m3N(D) - 75 5)雾滴去除率: 99.75% 为达到除雾器出口烟气雾滴含量小于75mg/Nm 3(干 态) ,除雾器的雾滴去除率需要达到99.75% 以上。 6)除雾器内烟气流速: 6.9m/s a.重散布速度 大直径的雾滴颗粒可以通过除雾器元件惯性作用

12、产生颗粒间碰撞从而去除雾 滴。 (平均颗粒直径大小为100200m) 。 因此,烟气流速越高,雾滴去除率越高。但是,被去除的雾滴会重新散布,而 降低雾滴去除效率。这就是雾滴重散布速度的概念。 b通过除雾器的烟气流速 为了使除雾器的雾滴去除率达到99.75% 以上,根据吸收塔出口端(即除雾器 入口端)雾滴颗粒直径的实际分布状况, 直径大于 17m 的雾滴颗粒必须 100 完全去除。 综上所述,除雾区的最终高度确定为3.5m,即 h3=3.5m (5) 喷淋塔浆液池高度设计(设高度为h2) 浆液池容量 V1按照液气比 L/G 和浆液停留时间来确定,计算式子如下: 11N L VVt G 其中L/G

13、 为 液气比 ,12.2L/m 3 VN为烟气标准状态湿态容积,VN=Vg=39.40m 3/s T1=2-6 min 8 ,取 t1=2.8min=168s 由上式可得喷淋塔浆液池体积 V!=(L/G) VNt!=12.2039.40168=80.02 m 3 选取浆液池内径等于吸收区内径,内径D2= Di=3.8m 而 V1=0.253.14D2D2h2=0.253.143.83.8h2 所以h2=7.06m (6) 喷淋塔烟气进口高度设计(设高度为h4) 根据工艺要求,进出口流速(一般为12m/s-30m/s)确定进出口面积,一般希 望进气在塔内能够分布均匀, 且烟道呈正方形, 故高度尺

14、寸取得较小, 但宽度不 宜过大,否则影响稳定性. 因此取进口烟气流速为20m/s,而烟气流量为 36.30 m 3/s, 可得smsmmh/30.36/25 322 4 所以h4=1.20m 21.20=2.40m(包括进口烟气和净化烟气进出口烟道高度) 综上所述,喷淋塔的总高(设为H,单位 m)等于喷淋塔的浆液池高度h2 (单位 m)、喷淋塔吸收区高度 h (单位 m)和喷淋塔的除雾区高度h3(单位 m)相加起来 的数值。此外,还要将喷淋塔烟气进口高度h4(单位 m)计算在内 因此喷淋塔最终的高度为 H= h+h2+h3+ h4=18.47+7.06+3.50+2.40=31.43m取圆整值

15、 32m 4.1.1.2 喷淋塔的直径设计 根据锅炉排放的烟气,计算运行工况下的塔内烟气体积流量,此时要考虑以 下几种引起烟气体体积流量变化的情况:塔内操作温度低于进口烟气温度,烟气 容积变小;浆液在塔内蒸发水分以及塔下部送入空气的剩余氮气使得烟气体积流 量增大。喷淋塔内径在烟气流速和平均实际总烟气量确定的情况下才能算出来, 而以往的计算都只有考虑烟道气进入脱硫塔的流量,为了更加准确, 本方案将浆 液蒸发水分 V2 (m3/s)和氧化风机鼓入空气氧化后剩余空气流量V3 (m3/s) 均计算 在内,以上均表示换算成标准准状态时候的流量。 (1) 吸收塔进口烟气量Va (m3/s)计算 该数值已经

16、由设计任务书中给出,烟气进口量为:36.30(m3/s) 然而,该计算数值实质上仅仅指烟气在喷淋塔进口处的体积流量,而在喷淋塔 内延期温度会随着停留时间的增大而降低,根据PVT 气体状态方程,要算出瞬 间数值是不可能的,因此只能算出在喷淋塔内平均温度下的烟气平均体积流量。 (2) 蒸发水分流量 V2 (m3/s)的计算 烟气在喷淋塔内被浆液直接淋洗,温度降低, 吸收液蒸发, 烟气流速迅速达到 饱和状态,烟气水分由6%增至 13%,则增加水分的体积流量V2 (m 3/s)为: V2=0.0736.30(m 3/s)=2.541(m3/s)(标准状态下) (3) 氧化空气剩余氮气量V3 (m 3/

17、s) 在喷淋塔内部浆液池中鼓入空气,使得亚硫酸钙氧化成硫酸钙, 这部分空气对 于喷淋塔内气体流速的影响是不能够忽略的,因此应该将这部分空气计算在内。 假设空气通过氧化风机进入喷淋塔后,当中的氧气完全用于氧化亚硫酸钙,即 最终这部分空气仅仅剩下氮气、 惰性气体组分和水汽。 理论上氧化 1 摩尔亚硫酸 钙需要 0.5 摩尔的氧气。 (假设空气中每千克含有0.23 千克的氧气) 又VSO2=0.15 m3/s 质量流率 G SO2=sg /64 4 .22 10000.15 =0.42857kg/s 0.43 kg/s 根据物料守蘅 ,总共需要的氧气质量流量GO2=0.430.5kg/s=0.214

18、Kg/s 该质量流量的氧气总共需要的空气流量为 空气 G= GO2/0.23=0.932 Kg/s 标准状态下的空气密度为1.293kg/ m 3 2 故 V空气=0.932/1.293(m 3/s)=0.72 (m3/s) V3=(1-0.23) V空气=0.770.72 m 3/s=0.56 m3/s 综上所述,喷淋塔内实际运行条件下塔内气体流量 Vg=Va+V2+V3=36.30+2.54+0.56(m 3/s)=39.40(m3/s) (4) 喷淋塔直径的计算 假设喷淋塔截面为圆形,将上述的因素考虑进去以后,可以得到实际运行状 态下烟气体积流量Vg,从而选取烟速u,则塔径计算公式为:

19、D i= 2 u Vg 其中:Vg为实际运行状态下烟气体积流量,39.40 m 3/s u 为烟气速度, 3.5m/s 因此喷淋塔的内径为D i= 2 u Vg =2 5 .314. 3 40.39 =3.786m3.8m 4.1.2吸收塔喷淋系统的设计(喷嘴的选择配置) 在满足吸收二氧化硫所需表面积的同时,应该尽量把喷淋造成的压力损失降 低到最小,喷嘴是净化装置的最关键部分,必须满足以下条件: (1) 能产生实心锥体形状,喷射区为圆形,喷射角度为60-120; (2) 喷嘴内液体流道大而畅通,具有防止堵塞的功能; (3) 采用特殊的合金材料制作,具有良好的防腐性能和耐磨性能; (4) 喷嘴体

20、积小,安装清洗方便; (5) 喷雾液滴大小均匀,比表面积大而又不容易引起带水; 雾化喷嘴的功能是将大量的石灰石浆液转化为能够提供足够接触面积的雾 化小液滴以有效脱除烟气中二氧化硫。湿法脱硫采用的喷嘴一般为离心压力雾化 喷嘴,可粗略分为旋转型和离心型。常用的有空心锥切线型、实心锥切线型、双 空心锥切线型、实心锥型、螺旋型等5 种。 喷嘴布置分成 2-6 层,一般情况下为 4 层;层数的安排可以根据脱硫效率的 具体要求来增减。底负荷时可以停止使用某一层,层间距0.8-2 米,离心式喷嘴 1.7 米。实际上从浆液池液面到除雾器,整个高度都在进行吸收反应。因而实际 吸收区高度要比 h 高 6-8 米。

21、 本方案采用 4 层喷嘴,层间距为 1.5米。每台吸收塔再循环泵均对应一个喷 淋层,喷淋层上安装空心锥喷嘴,其作用是将石灰石/石膏浆液雾化。浆液由吸 收塔再循环泵输送到喷嘴, 喷入烟气中。喷淋系统能使浆液在吸收塔内均匀分布, 流经每个喷淋层的流量相等。 一个喷淋层由带连接支管的母管制浆液分布管道和 喷嘴组成,喷淋组件及喷嘴的布置成均匀覆盖吸收塔的横截面,并达到要求的喷 淋浆液覆盖率,使吸收浆液与烟气充分接触,从而保证在适当的液/气比( L/G) 下可靠地实现至少95%的脱硫效率,且在吸收塔的内表面不产生结垢。 喷嘴系统 管道采用 FRP 玻璃钢,喷嘴采用SIC,是一种脆性材料,但是特别耐磨,而

22、且抗 化学腐蚀,可以长期运行而无腐蚀、无磨损、无石膏结垢以及堵塞等问题。 4.1.2.1喷嘴布置设计原理 (1) 喷管管数的确定 根据单层浆体总流量Q l和单个喷嘴流量Qs,可得单层喷嘴个数n Ql = 480.68/4=120.17(L/s) 而单个喷嘴流量为Qs=0.75L/s N=Ql /Qs 所以N=120.17/0.75=160.22取整数值 161 个 单喷管最大流量 VDQsmaxmax, 4 单喷淋层主喷管数 1int max,s l Q Q N 式中 m a x D为单喷淋管可选最大管径,0.04m; V 为喷淋管内最大流速, 6m/s。 所以 VDQ sm a xm a x

23、 , 4 =0.253.140.040.046=7.536L/S 1i n t m a x ,s l Q Q N=int(120.17/7.536)+1=16 (2) 各喷管间距的确定 根据脱硫塔直径、喷嘴个数等参数,各喷管之间间距: sp im sp N D L 式中Dim为脱硫塔内径 Nsp为喷嘴间距 (3) 各支喷管直径的确定 根据布置在主管、各支管的喷嘴个数以及单喷嘴流量,可以确定主管各段、 各支管喷管直径 V Q D i i 4 式中 Qi为节点 i 处浆体流量, m 3/s;D i为节点 i 处喷管直径, m。 (4) 喷淋层在塔内覆盖率的确定 喷淋层在脱硫塔内覆盖率为: 100

24、A AEFF 则100 A AEFF = 2 20 0.253.8 =176% 式中AEFF为单层喷嘴在脱硫塔内的有效覆盖面积,20m 2 A 为脱硫塔面积, 11.3m 2 计算主要包括喷淋层内主喷管数、各支喷管的管径及流速、喷嘴在塔内位置 等的计算及设计。 根据上述设计方法、 结合实际经验,确定喷淋层内各喷管直径、 各个喷嘴位置等几何参数。 在确定喷嘴布置设计中, 需要确定喷嘴在塔内的位置坐标在确定各支喷管直 径时,要根据厂家提供的标准管径来选取。在确定各个支喷管直径后, 还要根据 厂家提供的喷嘴与各主、 支喷管之间间距要求, 对初步喷嘴位置进行调整, 以避 免喷出的液滴与喷管发生喷射碰撞

25、。 在喷嘴布置完成后,需要确定喷淋层在塔内的履盖率以及多层覆盖状况,验 证喷嘴布置的合理性。 4.1.2.2进行喷嘴在塔内布置设计中应该注意以下问题: (1)选择合理的喷嘴覆盖高度,通常根据喷嘴特性及两层喷淋之间距离来确 定。 (2)选择合理的单层喷嘴个数。一般来说,喷嘴个数根据工艺计算来确定。 (3)当喷嘴覆盖高度确定以后,就可以计算单个喷嘴的覆盖面积, 2 22 0 tgHA(为喷雾角 ) 则 2 22 0 tgHA=3.1411=3.14 2 m (4)当在脱硫塔内布置喷嘴时,选择合适的喷嘴之间的距离。通常根据喷嘴 个数和脱硫塔直径来选择喷嘴间距,并要与连接喷嘴的喷管布置方案整体考虑。

26、(5)选择合理的经济流速,并根据喷管产品的标准来确定石灰石浆液母管和 支管直径。 (6)当检验喷淋层在脱硫塔覆盖率时,不仅要考虑喷嘴液流与母管、支管和 支撑的碰撞对覆盖率的影响,还要考虑所有喷嘴在脱硫塔内覆盖均匀度。 4.1.3 吸收塔底部搅拌器及相关配置 在吸收塔底部,石灰石浆液经过脱硫过程之后, 变成了 CaSO3和 CaSO31/2 H2O,此时为了使氧化风机鼓入的空气能够充分地和CaSO3和 CaSO31/2 H2O 接触,以便充分氧化,需要CaSO3和 CaSO31/2 H2O 的混合溶液内部颗粒分布 均匀,在这种情况下, 需要使用搅拌器来使溶液悬浮颗粒均匀混合,同时增大和 空气接触

27、的面积。 由于底部溶液是固体悬浮溶液,根据 不同搅拌过程的搅拌器型式推荐表2-5 1 搅拌器型式适用条件表2-6 1 搅拌器型式使用范围表2-7 1 在吸收塔浆液池的下部,沿塔径向布置四台侧进式搅拌器,其作用是使浆液 的固体维持在悬浮状态,同时分散氧化空气。搅拌器安装有轴承罩、主轴、搅拌 叶片、机械密封。搅拌器叶片安装在吸收塔降池内,与水平线约为10 度倾角、 与中心线约为 -7 度倾角。搅拌桨型式为三叶螺旋桨,轴的密封形式为机械密封。 在吸收塔旁有人工冲洗设施,提供安装和检修所需要的吊耳、吊环及其他专 用滑轮。采用低速搅拌器, 有效防止浆液沉降。 吸收塔搅拌器的搅拌叶片和主轴 的材质为合金钢

28、。 在运行时严禁触摸传动部件及拆下保护罩。向吸收塔加注浆液 时,搅拌器必须不停地运行。 叶片和叶轮的材料等级是ANSI/ASTMA176 80a,搅拌器轴为固定结构,转 速适当控制, 不超过搅拌机的临界转速。 所有接触被搅拌流体的搅拌器部件,必 须选用适应被搅拌流体的特性的材料,包括具有耐磨损和腐蚀的性能。 4.1.4 吸收塔材料的选择 因为脱硫塔承受压力不大,而且16MnR 钢材综合力学性能、焊接性能以及低 温韧性、冷冲压以及切削性能比较好,低温冲击韧性也比较优越,价格低廉,应 用比较广泛。故塔壁面由16MnR 钢材制造,为了节约材料和防止腐蚀,内衬橡 胶板防腐层,其烟气入口部分内衬玻璃鳞片

29、加耐酸瓷砖。 4.1.5吸收塔壁厚的计算 (包括计算壁厚和最小壁厚) 4.1.5.1吸收塔计算壁厚的计算 由于操作压力不大, 假设计算壁厚小于16毫米,根据附表九 3 16MnR 钢板在 操作温度下的许用应力为 t =170Mpa。 对于浆液池部分由于浆液会对塔壁产生压力,因此计算时还要这部分压力考虑 在内,同时假设塔内的计算压力取0.202 MPa (2 个标准大气压) PC=0.202+gh(为浆液密度 1257kg/m 3,g=9.81m/s2,h 浆液池高度 7.06m) 所以 PC =0.202+gh=0.202 6 10+12579.817.06=0.29210 6 Pa=0.29

30、2MPa 又根据式 4-5 3 可知:吸收塔(喷淋塔)的计算壁厚公式为: S= c t ic P DP 2 (mm) 其中: Pc计算压力,对于浆液池以上部分取二倍大气压,0.202 MPa PC=0.292MPa Di圆筒或者球壳内径 ,为 3800mm 焊接接头系数,取=1; C 壁厚附加量 ,取 C=1.00mm C2腐蚀裕量 ,mm ; C1钢板厚度负偏差 ,mm 对于喷淋塔顶部以下浆液池以上的部分(简称上部分) S= c t ic P DP 2 =mm259.2 8.339 6.767 202.011702 3800202.0 根据取腐蚀裕量 C2=1.00mm 3 ,根据表 4-7

31、 3 可得 C1=0.25mm 则C1 + C2=0.25+1=1.25mm 2.259+C=2.259+1.25=3.509mm圆整后取 Sn=4.00mm 因此脱硫塔上部分应该选用的壁厚为4.00mm 的 16MnR 钢材,与上面的假 设相符 4.0mm16.00mm 对于喷淋塔浆液池部分(简称下部分) S =mm P DP c t ic 31. 3 7.339 8.1124 292.011702 3800292.0 2 根据取腐蚀裕量 C2=1.00mm 3 ,根据表 4-7 3 可得 C1=0.5mm 则C1+ C2=0.5+1=1.5mm 3.31+C=3.31+1.5=4.81mm

32、圆整后取 Sn =5mm 4.1.5.2吸收塔(喷淋塔)计算壁厚的液压试验校核 上部分: e eiTT S SDP 2 )( (设计试验温度为200度,则 =170Mpa) PT=1.25P Mpa Mpa Mpa t 170 170 202.025.1 =0.253Mpa Se=Sn-C=4-1.25=2.75mm Di=3800mm 故 e eiTT S SDP 2 )( =0.253(3800+2.75)/22.75=174.93Mpa 175Mpa 而0.9)( 2 .0s =0.91274=246.6Mp 因此 e eiTT S SDP 2 )( =175MPa 0.9)( 2. 0

33、s =246.6Mpa 所以液压试验强度符 合要求 下部分: e e i TT S SDP 1 2 )( 0.9)( 2.0s P T=1.25P c Mpa Mpa Mpa t 170 170 292.015.1 =0.365Mpa S e=S n-C=5-1.5=3.5mm Di=3800mm 故 e e i T T S SDP 1 2 )( =0.365(3800+3.5)/(23.5)=201Mpa 而0.8)( 2 .0s =0.81274=219.2MPa 因此 e e i T T S SDP 1 2 )( =201MPa0.9)( 2. 0s =219.2Mpa 所以液压试验强度

34、 符合要求 综上所述,设计的材料选择, 壁厚计算数值和试验强度均符合实际操作要求。 4.1.5.3吸收塔最小壁厚的计算 根据相关规定,塔壳圆筒不包括腐蚀裕度的最小厚度,对于碳钢和低合金钢 制造的塔设备为 0.2%的塔径 20 ,而且不小于 4mm。 而喷淋塔的内径为 3800mm,所以最小壁厚Smin=0.2%3800=7.6mm 根据取腐蚀裕量 C 2=1.00mm 3 ,根据表 4-7 3 可得 C1=0.8mm 则C1+C 2=0.8+1=1.8mm 7.6+C=7.6+1.8=9.4mm圆整后取 Sn=10mm 综合以上计算壁厚和最小壁厚的结果,最终台喷淋塔的壁厚为10mm 4.1.6

35、吸收塔封头选择计算 考虑到封头与筒体采用双面焊接的焊接方法进行焊接,根据力学有关知识, 为了不使应力集中破坏设备, 决定两端封头采用浅碟形封头,根据相关知识, 在 浅碟形封头内部: (1) 球面部分半径 Ri不得大于筒体内径Ri Di,故 Ri Di, 一般取 Ri=0.9Di (2)折边半径 r 在任何情况下不得小于筒体内径Di的 10%即 380mm,而且 不应该小于 3 倍的封头名义壁厚Sn (封头)。 因此r 3 Sn且 r10% Di=380mm 浅碟形封头的尺寸是: Di=3800 mm;Ri=0.9Di=3420mm;r 取 400mm 则 浅碟形封头的形状系数M= r Ri 3

36、(* 4 1 )=0.25(3+) 400 3420 而92.2 400 3420 r Ri 取 r Ri =3.00(根据表 4-12 3 ) Pc=0.292Mpa,材料选用 16MnR 钢材,故 t =170Mpa, =1,取 C2=2.00mm 浅碟形封头的计算壁厚S= c t ic P RMP 5.0 2 (根据式 4-23 3 ) 所以 S=mmmmmm41.4 8.339 96.1497 292.05.011702 3420292.05 .1 S+ C2=6.41mm,根据表 4-7 3 ,负偏差 C1=0.5mm,C= C1+C2=2+0.5=2.5mm S+ C1+C2=4.

37、41+2.5=6.91mm圆整后取 Sn=7.00mm 此时浅碟形封头的最大允许工作压力P ei e t w SMR S 5. 0 2 Mpa(根据式 4-25 3 ) P ei e t w SMR S 5.0 2 =MPaMPa202.0298.0 5.45 .034205.1 5.41702 故脱硫塔的浅碟形封头设计强度不够。为了运行安全,应该增加壁厚,选择 封头的壁厚和筒体壁厚一致,则封头壁厚为10mm. 此时浅碟形封头的最大允许工作压力P 2 0.5 t e w ie S MRS Mpa(根据式 4-25 3 ) P 2 0.5 t e w ie S MRS = 2 1707.5255

38、0 0.4960.202 1.534200.57.551303.75 MPaMPa 故强度符合要求,因此浅碟形封头的壁厚为10mm。 下端碟形封头与塔体采用焊接的方式,上端碟形封头与塔体采用法兰盘的连 接方式。 4.1.7吸收塔裙式支座选择计算 立式容器的支座主要有耳式支座、腿式支座、 支承式支座和裙式支座四种。中 小型直立容器采用前三种支座,高大的塔设备则采用裙式支座。 本设计中,吸收塔(喷淋塔)内径为3800mm,而吸收塔(喷淋塔)的高度为 32m,根据服表 4-9 3 可知,选用的裙座规格为: ;5.15.;2. 8mmSmmS rs 基础环厚度裙座圈厚度 地脚螺栓个数 20 个,公称直

39、径 M27 裙座的材料选用 Q238-AR 钢材,塔体与裙座采用对接焊接, 塔体接头焊接系 1,裙座的壁厚取 12mm,裙座的壁厚附加量取C=2mm。 4.1.8吸收塔配套结构的选择 (1) 吸收塔(喷淋塔)进料浆液管道和配套阀门的设计选择 设计时应该充分考虑到石灰石浆液对管道系统的腐蚀与磨损,一般应该选用衬 胶管道或者玻璃钢管道。 管道内介质流速的选择既要考虑到应该避免浆液沉淀, 同时又要考虑到管道的磨损和屹立损失减少到最小 9 。而且浆液管道上的阀门应 该选用蝶阀,尽量少采用调节阀门。阀门的流通直径与管道一致 9 。 (2) 吸收塔(喷淋塔)配套结构的选择(人孔选择) 塔设备内径大于 25

40、00mm,封头和筒体都应该开设人孔,室外露天设备,考虑 清洗,检修方便,一般选用公称直径450mm 或者 500mm 的人孔;常压大型设 备,贮槽则选用公称直径为500mm 或者 600mm 的人孔。 综上所述,本设计方案中的吸收塔应该选用公称直径为500mm 的人孔。 dwS D D1 B b B1 B2 H1 H2 螺 栓 直 径长度 5306 620 585 300 14 10 12 160 90 M165 4.2 吸收塔最终参数的确定 (1)吸收塔(喷淋塔)数量:1 套1 units=1 套 (2)类型:管道内置型吸收塔(喷淋塔) (3)作用:烟气中的二氧化硫气体由吸收塔(喷淋塔)的浆

41、液吸收并去除,为 了使得烟气和浆液充分接触,应该合理地设计吸收塔(喷淋塔)内的除雾器、喷 嘴、搅拌器。 4.2.1设计条件 (1)烟气条件 吸收塔(喷淋塔)进出口烟气设计条件基于锅炉100BMCR 工 况。 进口出口备注 烟气量 (m 3 /s) 33.60(标况) 39.40(标况) 大气压:101325Pa 温度() 100 50 SO2浓度(mg/ m 3 ) 11800(标况) 590(标况) 设计工况压力进口/出口平均值: 0.202Mpa(2atm) (2)二氧化硫脱硫效率: 95%(最小值) (3)钙硫率: 1.02(最大) (4)烟气流速: 3.5m/s (5)吸收塔(喷淋塔)

42、液气比:12.20L/ m3 (6)浆液池循环时间: 4min ; (7)排浆时间: 16.5h 以上数值为经验值, 该时间可以确保浆液池内充分的石膏产品和晶体生长(参 考设计讲义)。 4.2.2吸收塔尺寸的确定 4.2.2.1喷淋区截面面积以及尺寸 根据吸收塔(喷淋塔) 出口实际烟气流量和上升和下降段烟气流速,喷淋区 域截面面积如下所示: 2 40.10 /3600 1 /5.3 1 (W)31,000m3/h1m hssm 2 40.10 4 1 mDD(此处没有将氧化空气和饱和蒸汽考虑在内) 根据该面积算出 D=3.64m3.8m,所以取内径为 3.8m 符合设计要求 4.2.2.2吸收

43、塔(喷淋塔)浆液循环量 根据吸收塔(喷淋塔)出口烟气量和液气比,浆液循环量计算如下所示: sLsmmL/68.480/40.39/20.12 33 125L/s4=500L/s 4.2.2.3喷淋区域高度和喷淋层数: 喷淋层数目: 4 层; 喷淋区域高度: 1.5 m4 层6.0 m 4.2.2.4已确定的参数尺寸( mm) 吸收塔(喷淋塔)380032000 喷淋区6000 出口烟道1200 进口烟道1200 反应池7100 4.2.2.5选材及防腐 塔本体:碳钢 16MnR 钢材 塔内部螺栓、螺母类: 6%Mo 不锈钢材料 塔内壁:衬里施工前经表面预处理,喷砂除锈,内衬材料为丁基橡胶板 塔

44、内件支撑:碳钢衬丁基橡胶 丁基橡胶是由异丁烯中混以1.5%4.5%的异戌二烯具有化学稳定性好、对 臭氧、酸碱的耐腐蚀能力强、 无吸水性等优良性能。 丁基橡胶经改性后有卤化丁 基橡胶,包括氯化丁基橡胶和溴化丁基橡胶,基本特性有: (1)具有优良的耐水气渗透性能、耐浆液磨损性能、耐腐蚀性特别是耐F性、 耐 SO2、 耐 CL -性及耐热性等。结合脱硫工程浆液介质条件, 通常来说厚度为 4mm 即可,在磨损严重的部位衬2 层 4mm 丁基橡胶。 (2)气体透过性小,气密性好回弹性小,在较宽温度范围内(3050)均不 大 20% ,因而具有吸收振动和冲击能量的特性。 (3)耐热老化性优良,且有良好的耐

45、臭氧老化、耐天候老化和对化学稳定性以 及耐电晕性能与电绝缘性好。 (4)耐水性好、水渗透率极低,因而适于做绝缘材料。缺点是硫化速度慢、粘 合性和自粘性差、与金属粘合性不好、与不饱和橡胶相容性差,不能并用。 4.2.3吸收塔的强度和稳定性校核 4.2.3.1强度和稳定性校核条件 (1)塔体内径 Di=3800mm,塔高度 32000mm,裙座高度 3060 mm,计算压力 0.292MPa,设计温度 200。 (2)设置地区:基本风压350N/m2,地震防烈度 8 度,场地土地类: B 类。 (3)沿塔高开设 3 个人孔,相应在人孔处安装圆形平台3 个 ,平台宽度 B=900mm,高度为 100

46、0 mm。 (4)塔外设置保温层厚度为100 mm,密度 300kg/m 3. (5)塔体与封头选用16MnR 钢材,其MPa t 170 MPaEMPaMPa t S 5 109.1,345,170 (6)裙座材料选用 Q238-AR (7)塔体与裙座对接焊接,塔体焊接系数1 (8)塔体与封头壁厚附加量取C=2.00 mm,裙座壁厚附加量取C=2.00 mm。 4.2.3.2塔设备质量载荷计算 (1) 塔体圆筒、封头、裙座质量m 01 圆筒质量kgm3.1873243.31596 1 封头质量 2 600 21200mkg 裙座质量 3 596 3.061823.76mkg 01123 21

47、756mmmmkg 其中塔体高度为 31.43米,查得 DN3800 mm,壁厚 10 mm 的圆筒每米质量为 596kg;; 查得 DN3800 mm,壁厚 10 mm 的封头每米质量为600kg;裙座高度 3060 mm。 (2) 塔 内 件 质 量 , 取 m a x0 10 20 30 4 402276 aWe mmmmmmmmkg 02 100mkg (3) 保温层质量 22 030203 1 (22 )(2) 2 4 inin mDSDSHm 22 03 1 3.14(380020.0120.1)(380020.01) 31.433002(1.541.18)300 4 m =118

48、36.7kg 其中 03 m封头保温层质量 (4) 平台扶梯质 22 040 11 (222)(22 ) 42 ininFF mDSBDSnqq H 22 04 11 (380020.0120.120.9)(380020.0120.1) 3 .504034 42 m =8659.5 kg (5) 操作时物料质量 22 051021 11 44 iWif mD hD hV 22 051 11 3.14387.0612573.143.8(31.437.06)1.01 44 f mV =100874 kg 其中 W h 为石灰质浆液高度, 7.06m 0 h 除浆液区外的塔高, 31.43-7.06m 1石灰石浆液密度, 1257 3 /kg m 2空气在 10050 75 2 C时候的密度, 1.01 3 /kg m (6) 附件质量 a m ,按照经验值取 01 0.250.25 215765439 a mmkg (7) 充水质量 2 0 1 2 4 Wif mD HV 2 1 3 . 1 43 . 83 1 . 4 31 0 0 021 . 1 81 0 0 0 4 W m=358631 kg 下面将塔分成六段,计算下列各质量载荷 表 6 吸收塔各计算段的质量 塔段0-1 1-2 2-3 3-4 4-5 5-塔顶合计 人孔与

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1