LED检验规范.doc

上传人:椰子壳 文档编号:5015108 上传时间:2020-01-28 格式:DOC 页数:38 大小:6.90MB
返回 下载 相关 举报
LED检验规范.doc_第1页
第1页 / 共38页
LED检验规范.doc_第2页
第2页 / 共38页
LED检验规范.doc_第3页
第3页 / 共38页
LED检验规范.doc_第4页
第4页 / 共38页
LED检验规范.doc_第5页
第5页 / 共38页
点击查看更多>>
资源描述

《LED检验规范.doc》由会员分享,可在线阅读,更多相关《LED检验规范.doc(38页珍藏版)》请在三一文库上搜索。

1、LED检验规范摘 要系统地在分析LED发光机理的基础上,阐述了LED半导体材料的发展历程,介绍了LED光源的优点和几个主要的应用场合,分析了国内外产业的发展状况,并指出LED光源面临的几个问题。介绍了与发光二极管测试有关的术语和定义,详细介绍了测试方法和测试装置的要求。 前 言自1879年爱迪生发明白炽灯以来,电光源照明已经经历一个多世纪,这其中有三个重要的发展阶段,其代表性光源分别是白炽灯、荧光灯和HID(高强度气体放电)灯。白炽灯安装使用简便,但它是热辐射光源,绝大部分输入电功率都变成了红外辐射以及较大的热损失, 落在可见光区的辐射所占比例较小, 因而其光效较低,而且寿命短,易损坏。荧光灯

2、的工作原理是:电流激发汞原子并使它们发出紫外线光子,这些光子激发荧光粉发出可见光。虽然其较白炽灯可以省电,但由于受到紫外线转换成可见光效率的制约,光效提高也有限,而且存在电磁污染、使用寿命短、易碎等缺点,其主要组成部分汞还会造成环境污染。HID灯光效已经可以超过100lm/W,但由于热导及紫外、红外等损失,光效也很难有较大的提高,且存在成本高、维护困难、寿命短、电磁辐射等问题。近几十年来,人们对于开发新照明光源的研究和探索从未停止过。欧洲专门制定了五年行动计划,提出新型光源要符合三个条件:高效、节能;材料对环境无害;模拟自然光,显色指数接近100。 发光二极管(Light Emitting D

3、iode简称LED)是一种重要的光电子器件,它在科学研究和工农业生产中均有非常广泛的应用.发光二极管虽小,但要准确测量它的各项光和辐射参数并非一件易事.目前在世界范围内的测试比对还有较大的差异.鉴于此,CIE(国际照明委员会)TC2-34 小组对此进行了研究,所提出的技术报告形成了CIE127-1997 文件。随着新一代半导体材料AlGaAs(砷化铝镓)、AlInGaP(磷化铝铟镓)和AlInGaN(氮化铝铟镓)的出现和发光二极管封装等技术的突破,单晶片红、绿、蓝、白光LED的功率等级不断提高,高亮度LED有望成为第四代光源。LED是电光源发展的一次全新革命和重大突破,从根本上改变了光源发光的

4、机理,具有光效高、光色全、寿命长、环保、尺寸小等优点,能够应用在各种各样的彩色和白色照明领域。LED光源在提升照明质量和效用的同时,能够节约能源,改善环境污染,有利于国计民生的和谐发展。因此积极研究LED光源新技术,加快发展LED照明产业具有重大的经济效益和深远的社会意义。 LED材料的发展历程 由LED发光机理可知,依材料的不同,电子和空穴所占有的能阶也不同,其相对能阶高度差即是决定两种载流子结合所发出能量的高低,可以产生具有不同能量的光子,藉此可以控制LED所发出光的波长,也就是光谱或颜色。因此,欲决定 LED 所发出光的颜色,可以由材料的结构来选择。实际上,LED的发展即是以半导体材料的

5、发展为基础的。 制造历史上第一个半导体激光器所使用的材料是p-n 同构接面的GaAs,其能隙为 1.424eV,所放出的光子波长大约在 0.84m,落于红外光谱。这种能隙与所发出光子波长的关系可以很容易由理论推算而来,研究人员依这些理论推算结果反推而预测出在各种可见光范围所须采用的材料,再根据这些材枓的特性而设计出制程技术以及相关设备。在发光材料中最为研究人员所熟知的除了 GaAs 之外,另有一种结构类似的称为磷化镓(GaP)的材料,其能隙为 2.261eV。将 GaAs 与 GaP 两种材料混合,可以得到 GaAs1-xPx 的结构,其中x代表着磷元素取代砷元素的百分比。当x由0渐增至1时,

6、材料结构由 GaAs 渐变为 GaP。其能隙则由 1.424eV 增至 2.261eV。在此范围内,理论上可以得到涵盖红外光至绿光范围的所有光波长。实际上,GaAs1-xPx 系统即是早期 LED 工业最重要的材枓结构。1962年,首个红光LED用复合半导体材料GaAsP制成。一直到四元元素发展成熟之前,几乎所有可见光LED都是以这一系列的材料制造。除了 GaAs 所发的红外光之外,其中应用最广的首推 GaP 以及 GaAs0.6P0.4 的红光 LED,GaAs0.35P0.65 的橙光LED,GaAs0.14P0.86 的黄光 LED 以及 GaP 的绿光 LED。GaP 的能隙在该系列材

7、料中为最高值,所发出的波长也最短,但却只达到绿光范围。 早期的红光LED光效很低,随着半导体材料AlGaAs的出现以及全晶格匹配直接能隙技术的应用,其光效有了显著的提高,超过了带红色滤光片的白炽灯。采用在AlGaAs衬底上再生长AlGaAs的透明衬底技术又将红光LED的光效增加了一倍。 OMVPE(有机金属气相磊晶)技术的发展促进了一种新材料AlInGaP的诞生,从而使得高亮度LED的发展由黄光转为红光。1990年代早期,Lumileds照明公司应用AlInGaP材料制作的高亮度LED可以发出红光及其附近波长的光谱。 最初,AlInGaP材料的性能并非特别良好,合金有序化、受主原子氢钝化、P-

8、N结的定位和含铝半导体层的氧合是亟待解决的几个问题,研究人员耗费近十年的时间将此问题解决之后,采用AlInGaP制作的LED其内部的光量子转化效率得以大幅提高,接近100%,几乎每一对电子和空穴复合都能够产生一个光子。然而,这些内部的光子却不能完全转化为LED外部的可见光。最主要的障碍在于光子会被GaAs基上的狭窄能隙吸收。1994年,Hewlett-Packard(惠普)公司采用蚀刻法将GaAs基除去,并采用晶片键合工艺以透明GaP取而代之,使其光效得到了显著改善,达到25lm/W,几乎是带红色滤光片白炽灯的十倍。红色LED也逐步应用于汽车尾灯、交通信号灯和户外广告牌等场合。 AlInGaP

9、商用化不久后,Nichia Chemical(日亚化学)公司的Shuji Nakamura、名古屋大学的Akasaki和Amano两位教授、以及名城大学逐步掌握了一种新的半导体材料制作工艺,即采用气压OMVPE在蓝宝石衬底上生长AlInGaN。与AlInGaP相比,AlInGaN的能隙较宽,能够发出绿、蓝和紫外光,但光效较低。AlInGaN绿光LED光量子转化效率约为20%-40%,蓝光约为40-60%。尽管绿光LED光效较低,但人眼对绿光的敏感程度比蓝光和红光高,于是Nichia Chemical和Lumileds等公司采用红、绿、蓝三基色LED制成了可以全色显示的指示灯和信号灯。 半导体技

10、术和材料的不断进步极大地推进了LED的发展。在过去的几十年里,与大规模集成电路中著名的摩尔定律相似,LED光通量的不断提高遵循着Haitz定律,即每18-24个月翻一番。最近十年,高亮度化、全色化一直是LED材料和器件工艺技术研究的前沿课题。高亮度是指发光强度达到或超过100mcd的LED,又称坎德拉(cd)级LED。高亮度AlInGaP和InGaN的研制进展十分迅速,现已达到常规材料GaA1As、GaAsP、GaP无法达到的性能水平。1991年日本东芝公司和美国惠普公司研制成AlInGaP 620nm橙色高亮度LED,1992年AlInGaP590nm黄色高亮度LED实用化。同年,东芝公司研

11、制成功InGaA1P 573nm黄绿色高亮度LED,法向光强达2cd。1994年日本日亚公司研制成InGaN 450nm蓝(绿)色高亮度LED。至此,彩色显示所需的三基色红、绿、蓝以及橙、黄多种颜色的LED都达到坎德拉级的发光强度,实现了高亮度化和全色化。 高亮度红A1GaAs系列LED与GaAsP系列 LED相比,具有更高的发光效率,透明衬底A1GaAs 系列LED(640nm)的流明效率已接近10lm/w,比红色GaAsP系列 LED大10倍。高亮度AlInGaP 系列LED提供的颜色与GaAsP系列 LED相同,包括:绿黄色(560nm)、浅绿黄色(570nm)、黄色(585nm)、浅黄

12、(590nm)、橙色(605nm)、浅红(625nm)、深红(640nm)。透明衬底AlInGaP系列LED发光效率与其它LED结构比较,吸收衬底AlInGaP系列LED的流明效率为10lm/w,透明衬底为20lm/w,在590626nm的波长范围内比GaAsP系列LED的流明效率高1020倍;在560570的波长范围内则比GaAsP-GaP LED高24倍。高亮度InGaN LED提供兰色光和绿色光,其波长范围兰色为450480nm,兰绿色为500nm,绿色为520nm,流明效率为1015lm/w。高亮度LED目前的流明效率已超过了白炽灯,可以取代功率1w以内的白炽灯,而且用LED阵列可以取

13、代功率150w以内的白炽灯。对于许多应用,白炽灯都是采用滤光片得到红色、橙色、绿色和兰色,而AlInGaP和InGaN材料制造的高亮度LED将多个(红、蓝、绿)高亮度LED芯片组合在一起,无须滤光片也能得到各种颜色,包括红、橙、黄、绿、蓝,目前其发光效率均已超过白炽灯,正向荧光灯接近,发光亮度已高于1000mcd。LED的分类按发光管发光颜色分: 可分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿)、蓝光等。另外,有的发光二极管中包含二种或三种颜色的芯片。 根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。散射型发光

14、二极管和达于做指示灯用。按发光管出光面特征分 按发光管出光面特征分:圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等。圆形灯按直径分为2mm、4.4mm、5mm、8mm、10mm及20mm等。国外通常把3mm的发光二极管记作T-1;把5mm的记作T-1(3/4);把4.4mm的记作T-1(1/4)。 从发光强度角分布图来分有三类: (1)高指向性。一般为尖头环氧封装,或是带金属反射腔封装,且不加散射剂。半值角为520或更小,具有很高的指向性,可作局部照明光源用,或与光检出器联用以组成自动检测系统。 (2)标准型。通常作指示灯用,其半值角为2045。 (3)散射型。这是视角较大的指示灯,半

15、值角为4590或更大,散射剂的量较大。 按发光二极管的结构分: 按发光二极管的结构分有全环氧包封、金属底座环氧封装、陶瓷底座环氧封装及玻璃封装等结构。 按发光强度和工作电流分: 按发光强度和工作电流分有普通亮度的LED(发光强度100mcd);把发光强度在10100mcd间的叫高亮度发光二极管。 一般LED的工作电流在十几mA至几十mA,而低电流LED的工作电流在2mA以下(亮度与普通发光管相同)。 除上述分类方法外,还有按芯片材料分类及按功能分类的方法。LED灯的分类LED灯有好多种,有led照明灯、led灯带、led灯杯、led节能灯、led装饰灯、led轮廓灯、led投光灯、led射灯、

16、led橱柜灯、led小夜灯、led护眼灯、led天花灯、led埋地灯、led水底灯、led洗墙灯、led投光灯、led路灯、led招牌灯箱、led串灯、led筒灯、led异形灯、led星星灯、led护拦灯、led彩虹灯、led幕墙灯、led柔性灯、led条灯、led食人鱼灯、led日光灯、led高杆灯、led桥梁灯、led矿灯、led手电筒、led应急灯、led台灯、led灯饰、led交通灯、led汽车尾灯、led草坪灯、led彩灯、led水晶灯、led格栅灯、led遂道灯等。LED光源的优缺点 光线质量和发光效率高LED是基于半导体中载流子的复合而发光的,光谱几乎全部集中于可见光频率,不包含

17、紫外线和红外线,故无热量无辐射,效率可以达到80%-90%。白炽灯、卤钨灯光效为12-24流明瓦,荧光灯5070流明瓦,钠灯90140流明瓦,大部分的耗电变成热量损耗。LED光效经改良后将达到达50200流明瓦,而且其光的单色性好、光谱窄,无需过滤可直接发出有色可见光。但LED的发光效率无法和高压钠灯相比。能耗小 在当前全球能源短缺危机不断升高的背景下,节约能源是我们面临的重要问题。同样照明效果的情况下,耗电量是白炽灯泡的八分之一,荧光灯管的二分之一,而寿命则是白炽灯的100倍。LED单管功率0.030.06瓦,采用直流驱动,单管驱动电压1.53.5伏,电流1518毫安,反应速度快,可在高频操

18、作。就桥梁护栏灯例,同样效果的一支日光灯40多瓦,而采用LED每支的功率只有8瓦,而且可以七彩变化。目前我国每年用于照明的电力约2500亿千瓦时,如果采用LED照明,每年就可节电2200多亿千瓦时,而这个数字是三峡电站年发电量的3倍。日本估计,如采用光效比荧光灯还要高两倍的LED替代日本一半的白炽灯和荧光灯。每年可节约相当于60亿升原油,可见LED的节能效果相当可观。调光性好 与白炽灯和荧光灯不同,LED的调光性能极佳,控制较为方便。只要调整正向电流,就可以调节光的强度和颜色,不同光色的组合变化多端,利用时序控制电路,更能达到丰富多彩的动态变化效果。其丰富的色彩、良好的可控性、变化多端的照明特

19、色远非白炽灯和荧光灯等传统光源所能及。 LED的照射过于集中,其照射的均匀度差。响应速度快 LED本身的工作机理决定了其发光对电流的响应速度极快,因此适合频繁开关以及高频运作的场合。 应用灵活 LED体积小,封装灵活,可以做成点、线、面等各种形式的轻薄短小产品。每个单元LED小片是3-5mm的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境。 可靠耐用 LED是环氧树脂封装的固体光源,结构中没有灯丝、玻璃壳等容易损坏的部件,是一种全固体结构,能够经受得住震动、冲击而不致引起损坏,非正常报废率很小,维护费用极为低廉。 安全环保 LED单位工作电压大致在1.5-5v之间,目前功率等级最大

20、的单个LED工作电流也仅几安培,对人体无害。LED废弃物可回收,没有污染,不像荧光灯一样含有汞等有害物质。消耗能量较同光效的白炽灯减少80% 。 寿命长 LED光通量衰减到70%的标准寿命是10万小时,约合50年,是白炽灯的100倍。10万小时,光衰为初始的50%。 颜色多变改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。如小电流时为红色的LED,随着电流的增加,可以依次变为橙色,黄色,最后为绿色。 价格昂贵LED的价格比较昂贵,较之于白炽灯,几只LED的价格就可以与一只白炽灯的价格相当,而通常每组信号灯需由上300500只二极管构成。 L

21、ED光源的应用 汽车信号指示灯 LED用于汽车指示灯与传统白炽灯相比具有许多优点。LED能够经受较强的机械冲击和震动。平均工作寿命MTBF比白炽灯泡高出几个量级,远远高于汽车本身的工作寿命,因此LED刹车灯可封装成一个整体,而不必考虑维修。LED与白炽灯相比具有相当高的流明效率,这样LED刹车灯和方向灯就能够在较低的驱动电流下工作,较低的电功率可降低汽车内部线路系统的体积和重量,同时还可减小集成化的LED信号灯的内部温升,允许透镜和外罩使用耐温性能较低的塑料,降低整车成本。LED刹车灯的响应时间为100ns,比白炽灯的响应时间短,这样便给司机留下更多的反应时间,从而提高了行车安全保证。 交通信

22、号指示灯 用LED取代白炽灯,用于交通信号灯、警示灯、标志灯现已遍及世界各地,市场广阔,需求量增长很快。据日本交通部门统计,日本每年在交通信号灯上的耗电量约为100万千瓦,采用LED取代白炽灯后,其耗电量仅为原来的12%。 LED交通信号灯与白炽灯相比,工作寿命较长,一般可达到10年。目前高亮度AlGaInP红、橙、黄色LED已实现产业化,价格也比较便宜,若用红色高亮度LED组成的模块取代传统的红色白炽交通信号灯头,则可将因红色白炽灯突然失效给安全造成的影响降低至最低程度。一般LED交通信号模块由若干组串联的LED单灯组成,当有一个LED单灯失效时,只会影响一组信号,而不会像白炽灯那样使整个信

23、号灯头失效。 大屏幕显示 大屏幕显示是LED应用的另一巨大市场,包括:图形、文字、数字的单色、双色和全色显示。传统的大屏幕有源显示一般采用白炽灯、光纤、阴极射线管等方法。LED显示曾一度受到LED本身性能和颜色的限制。如今,AlGaInP、TS-AlGaAs、InGaN LED已能够提供明亮的红、黄、绿、蓝等各种颜色,完全满足实现全色大屏幕显示的要求。用蓝、绿和红LED灯作为LED显示的三基色,可以提供逼真的全色性能,而且具有较大的颜色范围包括:蓝绿、绿红等,与国际电视系统委员会(NTSC)规定的电视颜色范围基本相符。 液晶显示(LCD)的背光源 至少有10%的液晶显示采用有源光作为背光源,光

24、源可使LCD显示屏在黑暗的环境下易读,全色LCD显示也需要光源。LCD背光源主要有:白炽灯泡、场致发光、冷阴极荧光、LED等,LED在LCD背光源中有很强的竞争力,单个LED 体积小,极容易组合在一起成为面光源,具有很好的亮度均匀性,所需的辅助光学组件可以做得非常简单。LED 背光源颜色范围宽,色彩表现力强于其他几种背光源,可对显示色彩数量不足的液晶技术起到很好的弥补作用,色彩还原好。 普通照明 全色高亮度LED的实用化和商品化,使照明技术面临一场新的革命,由多个高亮度红、蓝、绿三色LED制成的固体照明灯不仅能够发出波长连续可调的各种色光,而且还可以制成高亮度的白色照明光源。这种体积小、重量轻

25、、方向性好、节能、寿命长、耐各种恶劣条件的固体光源必将对传统的光源市场造成冲击。尽管这种新型照明固体光源的成本依然偏高,但可以应用于一些特殊场合如矿山、潜水、抢险、军用装置的照明等。从长远看,如果高亮度LED的生产规模进一步扩大,成本进一步降低,其在节能和长寿命的优势足以弥补其价格偏高的劣势。LED将成为一种很有竞争力的新型电光源。 国内外研究情况 由于半导体照明具有良好的应用前景,美国、日本、欧盟、韩国等在近年内相继推出国家半导体照明计划,以加大研究开发力度。日本投资50亿日元推行“21世纪光计划”,制定了由多所公司和大学参加的21世纪照明技术研究发展计划,计划到2010年左右使得LED的发

26、光效率达到120lm/W;美国能源部设立了由13个国家重点实验室、公司和大学参加的“半导体照明国家研究项目”,从2000-2010年的10年间,耗资5亿美元开发LED照明。预计到2010年,用LED灯取代一半以上的白炽灯和荧光灯;欧盟则委托6个大公司和两所大学,于2000年7月启动了“彩虹计划”;韩国计划在2000-2008年间投入12亿美元,目标是将LED的发光效率提高到80lm/W。韩国光子技术所(KOPTI) 正在联合由许多大学、产业界和研究机构组成的联盟以发展新的LED照明技术和组建几个具有竞争力的产业支撑体系,并在2003年提议了LED照明的国家工程,得到了韩国政府批准。我国台湾地区

27、也在组织实施相关计划,设立了由16个生产科研机构和大学参加的“世纪照明光源开发计划”。 与此同时,世界三大照明公司GE、Phillips 、Osram集团都已启动大规模商用开发计划,纷纷与半导体公司合作或进行并购,成立半导体照明企业,并提出要在2010年前,使LED灯发光效率再提高8倍,价格降低100倍。 我国自主研制的第一只LED,比世界上第一只LED仅仅晚几个月。但从总体上看,目前我国半导体LED产业的技术水平与发达国家还有很大差距。大功率LED封装领域的产业化技术研究开发尚处于起步阶段,竞争力不强。而大功率LED 用外延片和芯片还处于研发阶段,离产业化水平相距甚远。2003年6月17日,

28、“国家半导体照明工程计划”开始启动。2004年7月3日,科技部宣布正式启动该工程的首批50个项目。根据计划,到2012 年后LED照明将逐步取代白炽灯和荧光灯。国家发改委计划“十一五”期间安排100亿元资金用于发展我国LED照明产业,以保证我国在该领域与国际同步发展。我国相关科研和生产单位正在有针对性地加大对高亮度LED高档芯片和大功率外延片、芯片的研发工作,提高大功率LED封装技术水平和产业化程度,大力开发和推广LED应用,扩大产业化规模,逐步建立并完善LED产业链。 LED光源面临的问题(1)单片LED的功率。目前单片LED的最大功率是5-10W,还远没有真正达到照明的等级。小功率等级的照

29、明可以采用单片LED,大多数应用场合中,必须将多个LED晶片集中封装才能达到照明的要求,这必然对系统的供电、散热以及光学系统的设计等方面提出了苛刻的要求。 (2)光谱质量与光源稳定性。由于人眼对光源的颜色以及光谱的分布相当敏感,光谱偏移即意味着灯的质量低劣。因此如何提高LED光源的质量与稳定性非常重要,目前LED本体器件对这一要求的满足还有相当大的困难,而且随着使用时间的推移以及周边环境的改变(如温度),这一问题更严重。另外,各个LED之间由于材料、封装、生产工艺等原因,其光电参数存在一定的差异,在用多个LED组成光源的情况下,必须考虑如何保证各个LED发光性能的一致性。通常可以检测光参数并形

30、成闭环反馈控制来解决这类问题,但增加了系统的复杂性,成本会上升。 (3)光衰。尽管LED晶片的寿命在100000小时以上,但如果LED晶片结温超过其限定值,会引起其发光强度的衰减,即随着使用时间的增加,LED的光强会逐渐变弱,直至失效,严重缩短了LED光源的寿命。在制作LED灯具时,必须合理地选择芯片、设计良好的封装形式、提供可靠的散热结构。 (4)成本。鉴于各种原因,目前LED光源的成本特别是单位流明的成本相对较高,尽管在某些能源供给稀缺的场合(比如太阳能供电的小岛),能耗小具有其优势。但多数场合下,成本高的问题限制了LED光源的应用和推广。 (5)半导体材料与工艺。LED光源的核心是半导体

31、材料,前面提到的问题多数根源于半导体晶片的制造和器件封装,实际上LED照明发展的主线也是其晶片材料持续更新和加工工艺不断进步的过程。研究和开发新的LED半导体材料对于优化光源质量、提高发光效率、减缓光衰程度、降低系统成本等具有重要的意义。 (6)白光LED。目前,LED实现白光的方法主要有三种。一是通过红绿蓝三基色多芯片组和发光合成白光,该方法的优点是效率高、色温可控、显色性较好,缺点是三基色光衰不同导致色温不稳定、控制电路较复杂、成本较高。二是蓝光LED芯片激发黄色荧光粉,由LED蓝光和荧光粉发出的黄绿光合成白光,为改善显色性能还可以在其中加入少量红色荧光粉或同时加入适量绿色、红色荧光粉,该

32、方法的优点是效率高、制备简单、温度稳定性较好、显色性较好,但也存在着一致性差、色温随角度变化的缺点。三是紫外光LED激发荧光粉合成白光,优点是显色性好、制备简单,缺点在于有紫外光泄漏问题,效率较低。 (7)驱动电源。LED本身的特性对其驱动电源也提出了较为严格的要求。目前,低效率的供电系统影响了LED节能效果。性能优良、高效率、低成本、小体积、高可靠性、长寿命的驱动是保证LED发光品质及整体性能的关键。在一些亮度和色彩要求变化的场合,还须为其研究和设计专用的驱动控制和调光电路。 发光二极管 LED的定义除半导体激光器外,当电流激励时能发射光学辐射的半导体二极管。严格地讲,术语LED应该仅应用于

33、发射可见光的二极管;发射近红外辐射的二极管叫红外发光二极管(IRED,Infrared Emitting Diode);发射峰值波长在可见光短波限附近,由部份紫外辐射的二极管称为紫外发光二极管;但是习惯上把上述三种半导体二极管统称为发光二极管。LED基本理论知识 LED发光原理 发光二极管是由-族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与

34、多数载流子(多子)复合而发光,如图1所示。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数m以内产生。 理论和实践证明,光的峰值波长与发光区域的半导体材料禁带宽度g有关,即 1240/Eg(mm) 式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光780nm红光),半

35、导体材料的Eg应在3.261.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。LED的特性、相关术语及其测试方法:中国光学光电子行业协会光电器件专业分会根据国内及行业内部的实际情况,初步制定了行业标准发光二极管测试方法,2002 年起在行业内部试行。本文叙述了与发光二极管测试有关的术语和定义,在此基础上,详细介绍了测试方法和测试装置的要求,以期收到抛砖引玉之效果。一极限参数的意义 1、允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 2、最大正向直流电流IFm:允许

36、加的最大的正向直流电流。超过此值可损坏二极管。 3、最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。在25环境或管基温度时的最大连续正向电流(IF )和减额定值曲线或减额定值系数。在适当地方,在规定脉冲条件下,在25环境或管基温度时的最大峰值正向电流(IFM ) 4、工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。 二电和光参数的意义 1、光谱分布和峰值波长及测试:某一个发光二极管所发之光并非单一波长,其波长大体按下图所示。 由图可见,该发光管所发之光中某一波长0的光强最大,该波长为峰值波长。

37、测试目的: 在规定正向工作电流下,测量被测LED 器件的峰值发射波长,光谱辐射带宽和光谱功率分布。测试框图D:被测LED 器件;G:电流源;L:聚焦透镜系统;G:电流源(直流或脉冲);D2,D3:消除杂散光光栏;M:单色仪;RM:包括光阑D1 的辐射探测系统。注:单色仪的波长分辨率和带宽应该使测试有合适的精度。辐射探测系统的光谱响应应该校准。为便于测量,曲线峰值可以用100表示。如果单色仪的光谱透过率和辐射探测系统的光谱灵敏度不是常数,记录的测量数据应该修正。测试步骤:在需要的光谱范围内调整单色仪的波长直到辐射测量系统获得最大读数,相应的波长就是峰值波长(p ),然后往p的两边调整单色仪的波长

38、直到峰值波长读数的一半,获得相对应的波长1 和2 ,两者之差就是光谱辐射带宽。按照要求的波长间隔分别测量记录每个波长时的光谱功率数值,即为光谱功率分布。规定条件环境和管基温度;规定的正向电流(直流或脉冲)。2、发光强度IV及测试:发光二极管的发光强度通常是指法线(对圆柱形发光管是指其轴线)方向上的发光强度。若在该方向上辐射强度为(1/683)W/sr时,则发光1坎德拉(符号为cd)。由于一般LED的发光二强度小,所以发光强度常用坎德拉(mcd)作单位。测试目的: 测量半导体发光二极管平均LED强度。测试框图D-被测LED 器件;G-电流源;PD-包括面积为A 的光阑D1 的光度探测器;D2、D

39、3-消除杂散光光栏, D2,D3 不应限制探测立体角;d-被测LED 器件与光阑D1 之间的距离。注1:调整被测LED 器件使它的机械轴通过探测器孔径的中心。注2:光度探测器的光谱灵敏度在被测器件发射的光谱波长范围内应该校准到CIE(国际照明委员会)标准光度观测者光谱曲线;测试辐射参数时应采用无光谱选择性的光探测器。测试系统应该按距离d 和光阑D1 用标准器校正。测量距离d 应按CIE 推荐的标准条件A 和B 设置。在这两种条件下,所用的探测器要求有一个面积为100mm2(相应直径为11.3mm)的园入射孔径。注3:对于脉冲测量,电流源应该提供所要求的幅度,宽度和重复率的电流脉冲。探测器上升时

40、间相对于脉冲宽度应该足够小,系统应该是一个峰值测量仪器。测试步骤:被测LED 器件按照选定的形式定位给被测器件加上规定的电流,在光度测量系统测量平均LED 强度。规定条件:环境温度和合适的大气条件;正向电流和,需要的话,宽度和重复率;3、光谱半宽度:它表示发光管的光谱纯度.是指1/2峰值光强所对应两波长之间隔. 4、半值角1/2和视角及测试: 1/2是指发光强度值为轴向强度值一半的方向与发光轴向(法向)的夹角。 半值角的2倍为视角(或称半功率角)。 给出的二只不同型号发光二极管发光强度角分布的情况。中垂线(法线)AO的坐标为相对发光强度(即发光强度与最大发光强度的之比)。显然,法线方向上的相对

41、发光强度为1,离开法线方向的角度越大,相对发光强度越小。由此图可以得到半值角或视角值。 测试目的: 测量半导体发光二极管在规定的工作电流下的平均LED 强度的空间分布和半最大强度角及偏差角。半强度角 1/2 是发光(或辐射)强度大于等于最大强度一半构成的角度(见图8),在平均LED 强度分布图形中,最大强度方向(光轴)与机械轴Z 之间的夹角即为偏差角 。测试框图D:被测LED 器件;G:电流源;PD:包括面积为A 的光阑D1 的光度探测器;D2,D3:消除杂散光光栏, D2,D3 不应限制探测立体角;d:被测LED 器件与光阑D1 之间的距离;:Z 轴和探测器轴之间的夹角。注1:距离d 应该设

42、置为CIE 标准条件A 或B;注2:对于脉冲测量,电流源应该提供所要求的幅度、宽度和重复率的电流脉冲,探测器上升时间相对于脉冲宽度应该足够小,系统应该是一个峰值测量仪器;注3:被测LED 定位在一种装置上(如:旋转中心位于系统光轴上的角度盘上,度盘应该有足够的角度刻度精度),要求:-被测LED 器件位置可精确再现;-变化角度、器件D 光学窗口的中心能保持固定;-能测量夹角;-能绕被测器件Z 轴旋转;-能测量关于X 轴的旋转角。测试步骤:a) 给被测器件加上规定的工作电流。调正被测器件D 的机械轴与光探测器轴重合,即0,测量光探测器的信号,把这个值设置为 I0100;b) 从090旋转度盘,光电

43、测量系统测量各个角度时的发光强度值,得到相对强度I /I0 与之间的关系,优先采用极坐标图来表示,其它形式,如直角坐标图,在空白详细规范中定义后可以使用。在该图上分别读取半最大强度点对应的角度1 2 ,半强度角=|2 -1 |。偏差角就是Imax 和I0 方向之间的夹角。规定条件:环境和管基温度;规定正向电流IF 或者辐射功率e;机械参照平面。5、光轴 Optical axis: 最大发光(或辐射)强度方向中心线。颜色和波长的关系图6、正向工作电流IF(Forward Current):它是指发光二极管正常发光时的正向电流值。在实际使用中应根据需要选择IF在0.6IFm以下。 IF = ( U

44、-VF ) / R (U-为供电电压,R-为限流电阻。)7、正向工作电压VF(Forward voltage)及测试:通过发光二极管的正向电流为确定值时,在两极间产生的电压降。参数表中给出的工作电压是在给定的正向电流下得到的。一般是在IF=20mA时测得的。发光二极管正向工作电压VF在1.43V。在外界温度升高时,VF将下降。电路设计,应该避免回路中的脉冲高压。 测试目的:测量LED 器件在规定正向工作电流下,两电极间产生的电压降。检测LED是否发光与其颜色。测试框图D-被测LED 器件;G-恒流源; A-电流表; V-电压表。测试步骤a) 按上图原理连接测试系统,并使仪器预热;b) 调节恒流

45、源,使电流表读数为规定值,这时在直流电压表上的读数即为被测器件的正向电压。DC5V电源+330电阻。规定条件环境或管基温度;电源电压;正向偏置电流。8、反向电压VR(Reverse voltage)及测试:被测LED 器件通过的反向电流为确定值时,在两极间所产生的电压降。测试目的:测量通过LED 器件的反向电流为规定值时,在两电极之间产生的反向电压。测试框图见下图D-被测LED 器件;G-稳压源;A-电流表;V-电压表。测试步骤a)按上图原理连接测试系统,并使仪器预热。b)调节稳压电源,使电流表读数为规定值,这时在直流电压表上的读数即为被测器件的反向电压。测量在被测LED 器件施加规定的反向电

46、压时产生的反向电流。9、反向电流IR(Reverse current)及测试:加在发光二极管两端的反向电压为确定值时,流过发光二极管的电流。测试目的:测量通过LED器件的正向电压为规定值时,在两电极之间产生的反向电流。测试框图见下图D-被测LED 器件;G-稳压源;A-电流表;V-电压表。测试步骤a)按上图原理连接测试系统,并使仪器预热。b) 调节稳压电源,使电压表读数为规定值,这时在直流电流表上的读数即为被测器件的反向电流。规定条件环境或管基温度;电源电压;反向电流。10、V-I特性:发光二极管的电压与电流的关系可用图4表示。 在正向电压正小于某一值(叫阈值)时,电流极小,不发光。当电压超过

47、某一值后,正向电流随电压迅速增加,发光。由V-I曲线可以得出发光管的正向电压,反向电流及反向电压等参数。正向的发光管反向漏电流IR。 11、总电容C(Capacitance)及测试:在规定正向偏压和规定频率下,发光二极管两端的电容。测试目的:在被测LED 器件施加规定的正向偏压和规定频率的信号时,测量被测器件两端的电容值。测试框图见下图D-被测LED 器件;C0-隔离电容;A-电流表;V-电压表;L-电感。测试步骤a) 按图6 原理连接测试系统,并使仪器预热;b) 调节电压源和调节电容仪,分别给被测LED 器件施加规定的正向偏压和规定频率的信号,将电容仪刻度盘上读数扣去电容C0 等效值即为被测LED 器件总电容值。规定条件环境或管基温度;正向偏置电压;电容仪提供规定频率的信号。12、开关时间(Switching time)及测试:涉及以下概念的最低和最高规定值是10和90,除非特别注明。测试目的:测量被测LED 器件的开启时间ton (开启延时时间td(on) 上升时间tr )和关闭时间toff (关

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 研究报告 > 商业贸易


经营许可证编号:宁ICP备18001539号-1