优秀毕业设计:基于Proe的膨胀动力结构设计.doc

上传人:小小飞 文档编号:5035137 上传时间:2020-01-29 格式:DOC 页数:41 大小:1.92MB
返回 下载 相关 举报
优秀毕业设计:基于Proe的膨胀动力结构设计.doc_第1页
第1页 / 共41页
优秀毕业设计:基于Proe的膨胀动力结构设计.doc_第2页
第2页 / 共41页
优秀毕业设计:基于Proe的膨胀动力结构设计.doc_第3页
第3页 / 共41页
优秀毕业设计:基于Proe的膨胀动力结构设计.doc_第4页
第4页 / 共41页
优秀毕业设计:基于Proe的膨胀动力结构设计.doc_第5页
第5页 / 共41页
点击查看更多>>
资源描述

《优秀毕业设计:基于Proe的膨胀动力结构设计.doc》由会员分享,可在线阅读,更多相关《优秀毕业设计:基于Proe的膨胀动力结构设计.doc(41页珍藏版)》请在三一文库上搜索。

1、前言螺杆膨胀机是一门十分年轻的膨胀机种,在技术文献中关于其书籍甚少,因而很难普及。靠气体膨胀消耗内能来对外作功的机械叫原动机或发动机。如燃气轮机、蒸汽轮机、内燃烧机等均是这种动力机械,在实质上都是膨胀机。广义的膨胀机包括发动机狭义膨胀机是指将温度不高的但具有一定压力的气体的 内能转变为机械功的一种动力机械,因此也可叫气体发动机。本文讲的膨胀机主要是对狭义膨胀机而言。按膨胀机能量转换方式的不同,可将膨胀机分为两大类容积式膨胀机和透平膨胀机。不同种类的膨胀机,有着不同的应用范围。一般地讲,容积式膨胀机用于小流量,其中活塞式膨胀机适用于高、中及低压的中小型装置,也就是适用于大膨胀比,小流量的场合。而

2、透平膨胀机主要用于大型装置,即小膨胀比,小流量的场合,因透平膨胀机在高压、小流量的情况下,效率低,所以它的应用受着小气量的限制 。本文讨论的螺杆膨胀机属于容积式膨胀机,是一种新型的膨胀机。近年来日本和西德有人在研究低压螺杆膨胀机,但尚未投入正式商品生产。他们研究的目的,旨在于工业废热回收、地热发电以及制取冷量等。螺杆膨胀机在我国还是一遍未开垦的空白地。螺杆膨胀机用途宽广,可用于低温制冷天然气液化分离化工尾气,烟气,高炉气余热回收地热发电,井口高压天然气压力能回收,亦可在小流量下代替燃气透平,作为新型的燃气发动机用。本文主要进行螺杆膨胀机的结构设计,并应用三维软件绘制出所设计的膨胀机。螺杆膨胀机

3、的心脏部分是带有特殊螺齿的转子副,由于关于螺杆膨胀机的研究我们国家还不是很多,而且螺杆膨胀机的结构与螺杆压缩机相似,两者的工作过程是互逆的,所以在设计过程中借用的螺杆压缩机的转子型线等结构。螺杆压缩机的典型型线结构有SRM齿型,Sigma齿型,X齿型,CF齿型和单边非对称摆线-销齿圆弧齿型,其中最后一种齿型在70年代末被我国规定为螺杆压缩机非对称齿型的标准齿型,已知沿用至今,而本文中正是应用的这种齿型来设计的。第一章 绪论1.1 螺杆膨胀动力机的简介靠气体膨胀消耗内能来对外作功的机械叫原动机或发动机。如燃气轮机、蒸汽轮机、内燃机等均是这种动力机械,在实质上都是膨胀机。广义的膨胀机包括发动机 狭

4、义膨胀机是指将温度不高的但具有一定压力的气体的 内能转变为机械功的一种动力机械 ,因此也可叫气体发动机。本文讲的膨胀机主要是对狭义膨胀机而言。按膨胀机能量转换方式的不同,可将膨胀机分为两大类 容积式膨胀机和透平膨胀机。不同种类的膨胀机 ,有着不同的应用范围。一般地讲,容积式膨胀机用于小流量,其中活塞式膨胀机适用于高、中及低压的中小型装置,也就是适用于大膨胀比,小流量的场合。而透平膨胀机主要用于大型装置,即小膨胀比,小流量的场合,因透平膨胀机在高压、小流量的情况下,效率低,所以它的应用受着小气量的限制。本文讨论的螺杆膨胀机属于容积式膨胀机,是一种新型的膨胀机。近年来日本和西德有人在研究低压螺杆膨

5、胀机,但尚未投入正式商品生产。他们研究的目的,旨在于工业废热回收、地热发电以及制取冷量等。螺杆膨胀机用途宽广,可用于低温制冷天然气液化分离化工尾气 ,烟气 ,高炉气余热回收、地热发电井口高压天然、气压力能回收,亦可在小流量下代替燃气透平,作为新型的燃气发动机用。1.2 螺杆膨胀机发电的工作原理和工作过程螺杆膨胀机的工作周期是由齿间容积 中的进气、膨胀和排气三个过程组成。由于每个齿间容积依次进行这些过程,因而电力的产生是连续不断的,且还省去了必要的飞轮 。在进气过程中,气体直接从径向和轴向迸入,当进气 口关闭时,齿 间容积形成了一个由转和壳体围成的密闭空间,在密闭空间气体膨胀并产生一个转矩。转子

6、的啮合点随气体的膨胀是向排气端移动的,当它抵达排气端时,膨胀过程结束,齿间容积最大。与此同时,在进气端下一个啮合又开始了,其它进气端都有相应的啮合点,排气过程开始,齿间容积减少到与转子的转动相一致。这就是螺杆膨胀机作为容积式发电机的原理。螺杆膨胀机的主要组成部分如图1-1(a) ,1-1(b) 。图1-1(a) 螺杆膨胀机结构图图1-1(b) 螺杆膨胀机结构图1.径向轴承 2.径向止推轴承 3.阴螺杆转子 4.密封5.密封 6.同步齿轮 7.阳螺杆转子 8.缸体在节圆外具有凸齿的转子叫阳转子,在节圆内具有凹齿的转子叫阴转子螺杆膨胀机工作过如图1-2所示 。图1-2 螺杆膨胀机工作过程螺杆膨胀机

7、是容积式膨胀机械 ,其运转过程从吸气过程开始 ,然后气体在封闭的齿间容积中膨胀,最后移至排气过程 在膨胀机机体两端,分别开设一定形状和大小的孔口,一个是吸气孔 口 ,一个是排气孔口。阴、阳螺杆和气缸之间形成的呈“V”字形的一对齿间容积值随着转子的回转而变化 ,同时 ,其位置在空间也不断移动 。(1)吸气过程图图1-2a高压气体由吸气孔口分别进入阴 、阳螺杆“V ”字形的齿间容积,推动阴、阳螺杆向彼此背离的方向旋转,这两个齿间容积不断扩大,于是不断进气 ,当这对齿间容积后面一齿一旦切断吸气孔口时,这时齿间容积的吸气过程也就结束,膨胀过程开始图1-2b。(2)膨胀过程图1-2c在吸气过程结束后的齿

8、间容积对里充满着高压气休 ,其压力高于顺转向前面一对齿间容积对里的气体压力,在压力差的作用下,形成一定的转矩,阴、阳螺杆转子便朝相互背离的方向转去,于是齿间容积变大,气体膨胀,螺杆转子旋转对外作功。转子继续回转,经某转角后,阴、阳螺杆齿间容积脱离 ,再转一个角度,当阴螺杆齿间容积的后齿从阳螺杆齿间容积中离开时,这时阴、阳齿间容积值达最大值,膨胀结束,排气开始 。(3)排气过程图1-2d,当膨胀结束时,齿间容积与排气孔口接通,随着转子的回转,两个齿间容积因齿的侵入不断缩 ,将膨胀后的气体往排气端推赶,尔后经排气孔口排出,此过程直到齿间容积达最小值为止 。螺杆啮合所形成的每对齿间容积里的气体进行的

9、上述三个过程是周而复始的 ,所以机器便不停地旋转。1.3 螺杆膨胀机特点就气体膨胀原理而言,螺杆膨胀机与活塞膨胀机一样,同属于容积式膨胀机就其工作件运动形式而言,螺杆膨胀机转子与透平膨胀机转子一样,作高速旋转运动 。故螺杆膨胀机兼有二者的特点。螺杆膨胀机具有较高的齿顶线速度,转速可达每分钟万转以上 。膨胀机小螺杆膨胀机没有曲轴活塞连杆机构,凸轮配气机构,也无进排气阀,结构非常借单,零件数极少,基本无易损件因此运转可靠,寿命长也不存在不平衡惯性力矩,所以甚至可以实现无基础运转。螺杆膨胀机是从高压膨胀到低压,不可能象螺杆压缩机那样进行喷油运转,抓油靠气体压力自动循环。因此螺杆膨胀机通常为干式运转,

10、除非另加 油泵,进行强制性喷油循环在干式螺杆膨胀机中,由于阴 、阳螺杆齿面间,齿顶 与缸孔间存在着间隙 ,因而内泄漏损失大,特别是在低转速时容积效率较低。但由于齿间间隙的存在,则可用于含液的二相流气体如地热发电站的全流螺杆膨胀机,含水、含原油的天然气压力能回收用螺杆膨胀机 ,也可用于含粉尘的气体 如烟气,燃气螺杆膨胀机螺杆膨胀机既可在设计压力下工作,也可在低的吸气压力下工作,即对吸气压力下降变工况的适应能力,不过有附加损失而已螺杆膨胀机 既可在设计气量下工作,也可在小于设计气量下工作,但回收能量亦呈减少趋势螺杆齿面是一空间曲面,加工精度要求很高,需要特制的刀具在专用机床上进行加工,我国有几个工

11、厂,在螺杆庄缩机加工方面已积累了不少宝贵经验 ,对于螺杆膨胀机的制造是不存在问题的 。螺杆齿形及螺杆参数可采用国标 JB2409一85 “螺杆压缩机转子和同步齿轮基本参数及尺寸 ”的规定 ,也可采用效率高的新齿形。1.4 国内外研究概况螺杆膨胀机的研究最早可追溯1952年,当时,H.R.Nillsen已取得了螺杆膨胀机作为动力机的专利。60年代初,美国劳伦斯辐射实验室进行了高温用石墨螺杆膨胀机实验,所用工质是惰性气体氢,而螺杆膨胀机作为汽液两相膨胀机的尝试始于1971年。1973年,美国水热电力公司的R.Sprankle则获得了螺杆膨胀机用于地热发电的专利。最初的螺杆膨胀机汽液两相实验室实验是

12、1975年在美国Lawerence Livemore Liboratary简记(LLL)进行的,但当时的实验参数范围较窄。1977年,该实验室用同一台螺杆膨胀机再度实验,其结果揭示了汽液两相螺杆膨胀机的一些特性。由于实验中采用“节流法 ”生成不同干度的工质,故实验干度范围较小。1981年,美国加州大学伯克利分校对LLL用过的螺杆机的密封做了改进后又进行了实验,获得了较丰富的实验数据,并对螺杆机内部损失的机理提出 了一些看法。在实验室研究的过程中,螺杆膨胀机应用于地热的现场实验也同时展开。1971年至1973年,美国水热电力公司将两台螺杆空气压缩机改为膨胀机,并分别在加里福尼亚Imperial

13、Valley和墨西哥Cerro Prieto进行了现场实验。80年代初,在世界能源组织IEA的资助下,美国水热电力公司设计、建造了1MW大型螺杆膨胀机发电机组,并分别在新西兰、意大利和墨西哥作了实验。我国对全流螺杆膨胀机的研究始于80年代。当时,天津大学热能研究所结合西藏地热发电科研课题开展了螺杆膨胀机全流系统的研究。1987年,,该所建造了我国第一套螺杆膨胀机全流实验装置。目前天津大学热能工程系仍在进行这方面的研究,“汽液全流螺杆膨胀机发电技术”已被列为国家“九五 ”期间技术改造示范项目。1.5 螺杆膨胀机技术特点螺杆膨胀机的技术特点主要有以下几点: 它是一种容积式的全流动力设备,能适应过热

14、蒸汽、饱和蒸汽、汽水两相流体和热水(包括高盐分热水)工质; 无级调速,转速一般设计为(15003000)r/min,相比同功率汽轮机,有较高的内效率,一般在65%以上; 在热源参数、功率及热负荷50%变化范围内,能保持平稳工作且较高运行效率; 单机功率在(502000)Kw; 设备紧凑,占地少,工程施工量小; 操作方便,运行维护简单,而且具有除垢自洁能力,大修周期长; 起动不需要盘车、暖机。噪音低、平稳、安全、可靠,全自动无人值守运行;热源范围 直接驱动螺杆膨胀动力机的热源应用范围如下: 蒸汽参数: 0.15MPa 3.0MPa,温度 170 间接应用的热源范围如下: 蒸汽参数:压力 0.1M

15、Pa 以下的各种蒸汽双循环发电 热水参数:压力 65 的热水双循环发电 烟气参数:温度 200 的各种烟气配余热锅炉发电 1.6 本课题研究的主要内容及方法本课题着重对螺杆膨胀机的转子进行设计计算,以及对转子外壳及前后机座的设计,相关设计参数如下:1)进口蒸汽设计参数:1.0MPa, 180 2)出口蒸汽设计参数:0.07MPa, 90 3)流量设计:22 t/h(或者44t/h )4)折合到排气口的排量为:5)内效率:75%80%6)阳转子圆周速度8)发电功率: 500KW9外形尺寸:10)调节类型:电器控制11)系统重量:3000系统设计如下图1-3:图1-3 螺杆膨胀机系统设计第二章 螺

16、杆膨胀机设计设计分析螺杆膨胀机的设计主要是对螺杆转子的设计,包括接触线、泄漏三角形、封闭容积、齿间面积的设计,而这些要素的设计最主要的是取决于转自型线的设计,所以本设计主要叙述对螺杆膨胀机得转子型线的设计。本设计中采用阳转子右旋,阴转子左旋。2.1 转子型线的设计2.1.1转子型线及其要素螺杆膨胀机最关键的是一对相互啮合的转子,转子的齿面与转子轴线垂直面的截交线称为转子型线。对于螺杆膨胀机的转子型线的要求,主要是在齿间容积之间有优越的密封性能,因为这些齿间容积是实现气体膨胀的工作腔。对螺杆膨胀机性能有重大影响的转子型线要素有接触线、泄漏三角形、封闭容积和齿间面积等。(1)接触线。螺杆膨胀机的阴

17、、阳齿子啮合时,两转子齿面相互接触而形成的空间曲线称为接触线。如果转子间的接触线不连续,则在高压力区内的气体将通过接触线中断缺口,向低压力区泄漏。阴、阳转子型线啮合时的啮合点轨迹,称为啮合线。啮合线是知识接触线在转子面上的投影。显然接触线连续,意味着啮合线应该是一条连续的封闭曲线。(2)泄漏三角形。在接触线顶点和机壳的转子气缸孔之间,会形成一个空间曲边三角形,称为泄漏三角形。若啮合线顶点距阴、阳转子齿顶圆的交点较远,则说明泄漏三角形面积较大。(3)封闭容积。如果在齿间容积开始扩大时,不能立即开始吸气过程,就会产生吸气封闭容积。吸气封闭容积的存在,影响了齿间容积的正常充气。从转子型线可定性看出封

18、闭容积的大小。(4)齿间面积。它是齿间容积在转子端面上的投影。转子型线的齿间面积越大,在相同的导程下,转子的齿间容积就越大。2.1.2转子型线的设计原则(1)满足啮合要求。螺杆膨胀机的阴、阳转子型线必须是满足啮合定律的共轭线。(2)形成较为合适长度的连续接触线。既要减少气体通过间隙带的泄露,又要求较小面积的泄漏三角形。(3)应使封闭容积较小。吸气封闭容积导致膨胀机功耗增加、效率降低、噪声增大。所以转子型线应使封闭容积尽可能的小。(4)齿间面积尽量大。较大的齿间面积是泄漏量占得份额相对减少,效率得到提高。2.2 型线方程和啮合线方程2.2.1建立坐标系及坐标变换(1)坐标系建立为了用数学方程描述

19、螺杆膨胀机的型线中各段组成齿曲线,建立如图2-1所示的四个坐标系:图2-1 坐标系关系图1)固结在阳转子的动坐标系2)固结在阴转子的动坐标系3)阳转子静坐标系4)阴转子静坐标系由于螺杆膨胀机的阴、阳转子之间是定传动比啮合,固有: (2-1)式中,、为阴、阳转子转角;、为阴、阳转子转速;、为阴、阳转子的角速度;、为阴阳转子节圆半径;,为阴阳钻子的齿数;为传动比;A为阴阳转子中心距。(2)坐标变换螺杆膨胀机转子型线上的每一点,都可以表示在上述四个坐标系中,这些坐标系之间的变换关系式如下:a)动做标系与静坐标系的变换 (2-2)b)动坐标系与静坐标系的变换 (2-3)c)静坐标系与静坐标系的变换 (

20、2-4)d)动坐标系与动坐标系的变换 (2-5)e)动坐标系与动坐标系的变换 (2-6)2.2.2齿曲线及其共轭曲线(1)齿曲线方程及其参数变换范围螺杆膨胀机的转子型线通常由多段组成齿曲线相接而成。在设计转转型线时,通常先在阳转子或者阴转子上给定一些组成齿曲线,用如下的参数方程表示在相应的转子动坐标系中: (2-7)上式中,参数的始点和终点决定了此组曲线的起点b和终点e的坐标和。(2)齿曲线的共轭曲线方程转子组成齿曲线的共轭曲线,是指另一个转子上与所选定的组成齿曲线相啮合的曲线段,现在假定已在阴转子上给定了一段组成齿曲线2为 (2-8)1)求出阴转子上组成齿曲线想对于阳转子运动时的曲线簇将方程

21、式(2-8)带人坐标变换式(2-5),得 (2-9)2)找出曲线簇的包络条件把包络条件的显函数形式带入曲线簇方程(2-9),就是曲线簇的包络线方程,即 (2-10)此包络线上任一点的切线斜率可微分上式,得 (2-11)与包络线共切于该点的曲线簇中的一条曲线(为常数),其斜率为 (2-12)由于是公切线,这两切线的斜率应该相等,令式(2-11)与式(2-12)右边相等,整理得: (2-13)或是 (2-14)同样,若假定在阳转子上给定了一段组成齿曲线1,即 (2-15) 将曲线一的方程(2-15)带入动坐标变换式(2-6),得到曲线簇的方程为: (2-16)经类似的推演,可得到其包络条件为: (

22、2-17)3)求共轭曲线方程若已在阴转子上给定了一段组成曲线2为: (2-18)则其共轭曲线方程,可用方程(2-10)及补充条件联立表示,即 (2-19) 同样,若已在阳转子上给定了一段曲线1为: 则其共轭曲线方程,可用方程(2-16)及补充条件联立表示,即: (2-20)4)共轭曲线的啮合线方程共轭曲线的啮合线方程一般式可表示为: (2-21) 第三章 转子型线设计3.1 单边不对称摆线销齿圆弧形线对于螺杆膨胀机转子,在阴阳转子之间的动力的传递只按照某一转向恒定的,因而转子的两边齿廓不需要无条件的造成对称,只要尽可能完善的密封就好。螺杆膨胀机按螺杆压缩机的逆原理工作,其基本构造与螺杆压缩机相

23、似,工作过程相反。本设计采用我国规定的螺杆压缩机标准的单边不对称摆线销齿圆弧型线。如3-1所示:图3-1 单边不对称摆线销齿圆弧型线其组成齿曲线如下表3.1:表3.1 单边不对称摆线销齿圆弧型线个段得组成曲线阳转子阴转子齿廓曲线性质齿廓曲线性质AB直线GH摆线BC圆弧HI圆弧CD摆线I点D点IJ摆线DE直线JK摆线EF圆弧KL圆弧这种单边不对称摆线销齿圆弧型线与原始不对称型线的主要区别在于:采用径向直线AB及DE倒棱修正,去除了原始不对称型线外圆上的摆线形成点,并使摆线IJ的形成点想内移动。另外,将圆弧齿曲线扩大角度,形成保护角,使摆线CD的形成点I处于阳转子外圆之内,保护了度啮合性能很敏感的

24、摆线形成点。修正后,便于转子在加工、安装、运行及储运中保护摆线形成点。但使接触线顶点与转子齿顶圆交点距离略有增大,使通过泄漏三角形的泄露量增加。为此,通常限制直线段的长度在0.5-2mm的允许范围内。处在低压侧的直线段AB的长度,由于不影响气密性,通常从工艺出发,使其与圆弧BC光滑过度。3.2 转子各段齿曲线方程1)AB与GH AB方程阴转子上的AB为一径向直线,其方程为: (3-1)参数的变化范围为: (3-2)由三角形,有: (3-3) (3-4) 即: (3-5) 式中,、分别为阴阳转子的齿数,R为齿高半径,在标准中,规定。 GH方程阳转子上的GH为阴转子上径向直线AB 的共轭曲线,将A

25、B的方程(3-1)带入(2-5)得曲线簇方程为: (3-6)故有 : 将上述诸条件式带入包络条件式(2-14),可得位置参数与曲线参数的关系为: (3-7)联立(3-6)(3-7)可得到GH的方程,可发现GH的性质是一个摆线。 啮合线方程AB和GH啮合时的啮合线方程,可按(2-21)式,通过把AB的方程(3-1)带入坐标变换式(2-3),并与包络条件式(3-7)联立得到,即: (3-8)2)BC与HIBC方程阴转子上的曲线BC为一圆心在节点P,半径为R的圆弧,又称销齿圆弧,其方程为: (3-9)参数为: (3-10) 由直角三角形,有: 为保护角,通常为-,标准规定为。HI方程阳转子上的曲线H

26、I是阴转子上销齿圆弧BC的共轭曲线,将方程(3-9)带入坐标变换式(2-5),的曲线簇方程为: (3-11)故有: 将上述诸式带入包络条件式(2-14),可得包络条件为: 即: (3-12)由此可见,BC与HI仅在的位置啮合,而且是整条曲线同时啮合。把式(3-12)带入式(3-11),得到简化后的HI方程为: (3-13)销齿圆弧的共轭曲线仍是一完全的销齿圆弧,两曲线仅在的瞬间啮合,而且是沿着整个圆弧段同时啮合。啮合线方程把BC方程(3-9),带入坐标变换(2-3),并与包络条件(3-12)联立,得到啮合线方程为: (3-14)式(3-14)表明,销齿圆弧的啮合线是与销齿圆弧一样的圆弧。3)I

27、点与CDI点方程阳转子上的I点为一固定点,在坐标系中的方程为: (3-15) 而又三角形可知: CD方程阴转子上的CD曲线是与阳转子上I点共轭的曲线,将I点方程(3-15)带入坐标变换式(2-6)得: (3-16) 参数变化范围为: (3-17) 阴转子CD曲线上任一点距阴转子中心的距离可用下式表示: (3-18)将式(3-16)代入(3-18),整理得: 即: (3-19) 故: (3-20) (3-21) 其中 (3-22) 其中e称为径向直线修正长度,标准规定为e=0.625%A。啮合线方程将I点方程(3-15)代入坐标变换式(2-2),并考虑到包络条件自然满足,得到啮合线方程为: (3

28、-23)其参数变化范围仍由式(3-17)确定。I点与其共轭曲线CD啮合时,其啮合线就是以阳转子中心为圆心,以I点到的距离为半径的圆弧,即I点在静止坐标系中的运动轨迹。4 )D点与IJ D点方程阴转子上的D点为一固定点,在坐标系中的坐标为: (3-24)其中 由曲线CD方程(3-16),有: (3-25) 式中由式(3-21)确定。 IJ方程将D点的方程(3-24)代入坐标变换式(2-5),即得IJ方程为: (3-26) 参数变化范围为: (3-27) 阴转子IJ曲线上任有点距阳转子中心的距离可用下式表示: (3-28) 将式(3-26)代入(3-28)中,得: 即 (3-29) (3-30)

29、(3-31) 方程在直角三角形中, (3-32)Z在三角形中, (3-33) 啮合线方程将D点方程(3-24)代入坐标变换式(2-3)中,并考虑到包络条件自然满足,得到啮合线方程为: (3-34)其参数变化范围仍由式(3-27)确定。其啮合线就是D点在静坐标系中的轨迹,即以为圆心,以D点到的距离为半径的圆弧。5)DE与JK DE方程阴转子上的DE为一径向直线,其方程为: (3-35) 参数的变化范围为: (3-36)JK方程将DE的方程(3-35)代入坐标变化(2-5),得曲线簇方程为: (3-37)故有 将上述诸式代入包络条件式(2-14),得到曲线参数与转角参数的关系为: (3-38)其参

30、数变化范围由式(57)确定,式(58)表明JK的性质是一摆线。 啮合线方程把DE的方程(3-35)代入坐标变换式(2-3),并与包络条件式(3-38)联立,即得到其啮合线方程为: (3-39)其参数变化范围由式(3-36)确定。6)EF与KL EK方程阴转子上EF曲线为一圆心,半径为的圆弧,其方程为: (3-40)参数t和变化范围为: (3-41)2)KL方程将EF的方程(3-40)代入坐标变换式(2-5),得: (3-42)故有: 将上述诸式代入包络条件(2-14),可得包络条件为 (3-43)把式(3-43)代入式(3-42),整理后得: (3-44)其参数变化范围仍由式(3-41)确定。

31、从式(3-44)可以看出,KL是圆心在,半径为的圆弧,这说明节圆圆弧的共轭曲线仍为节圆圆弧。 啮合线方程把EF的方程(3-40)代入坐标变换式(3),得: (3-45)上式表明节圆圆弧的啮合点是一固定点,即节点P。第四章 螺杆膨胀机转子尺寸设计4.1 螺杆公称直径和长径比螺杆直径是关系到螺杆膨胀动力机系列化和零件标准化、通用化的一个重要参数。确定螺杆直径系列的原则是:在最佳圆周速度的范围内,以尽可能少的螺杆直径规格数来满足尽可能广泛的排气量范围。通常,在系列标准中,螺杆直径按某种优选数系选取。我国规定螺杆直径系列为(mm):(63)、(80)、(100)、125、160、200、250、315

32、、400、500、630、(800)。带括号的直径只适用于不对称齿形,其中以160、200、250、315最为常用。由于排气量与螺杆直径的平方成正比,相邻系列螺杆直径的排气量数值差别较大,特别是在螺杆直径较大时尤为显著。为此,在各螺杆直径下,列出几个长径比值,以变化排气量范围,能使相邻系列螺杆直径的排气量交错相接。如前所述,所谓长径比是指螺杆压缩机的轴向长度l,与螺杆(公称)直径D0的比值,并记做 .其通常范围是 。排气量相同时,长径比小的机器其螺杆直径较大,吸排气空口面积也大,因而气体流动损失较小。近代螺杆压缩机目前用 值多为1或1.5.当排量不变时,降低相对长度 ,则螺杆直径上升。因此吸气

33、口与排气口的面积也增大,不但减少气体进入时与排出时的压力损失,而且螺杆直径变大,转子具有良好的刚性在此次设计中,为了获得所需的排量,我们选择螺杆公称直径为100mm,长径比为1.5,即螺杆相对长度为150mm。4.2 导程和扭转角我国螺杆系列标准的导程T、长径比 、扭转角 列于表4.1中。通常,节圆圆柱面上的螺旋角不大于60。过大的螺旋角,使螺杆齿面扭曲得厉害,恶化了螺杆的切削工艺性。螺杆的扭转角 、导程T及长度l之间的关系为: (4-1)或用长径比 表示为: (4-2) 表4.1 导程T、长径比、扭转角齿形及项目短导程长导程特长导程对称圆弧齿形导程TT1=4/3D,T2=2DT1=1.8D,

34、T2=2.7D-长径比(0.9)1.01.2(1.18)1.321.50阳螺杆扭转角243270324236264300阴螺杆扭转角162180216157.3176200不对称齿形导程TT1=1.2D0,T2=1.8D0T1=1.8D0,T2=2.7D0T1=2.7D0,T2=4.05D0长径比(0.8)0.91.0(1.2)1.351.5(1.8)(2.0)(2.25)阳螺杆扭转角240270300240270300240266.7300阴螺杆扭转角160180200160180200160177.8200由以上两式及表4.1可以看出:1) 螺杆直径和导程确定后,长径比与扭转角成正比;2)

35、 如前所述,螺杆的扭转角变动范围不大。由此,螺杆直径为某定值时,导程与长径比只有不多的组合方案,以得到上述的扭转角度数值。3) 对同一螺杆直径而言,大螺旋角 对应于短导程,小螺旋角对应于长导程。内压力比相同时,具有大螺旋角的螺杆,能得到较大的径向与轴向排气孔面积,如图4-1所示: 图4-1 螺旋角对排气孔口面积的影响4.3 螺杆设计4.3.1 螺杆转子齿型参数的确定单边不对称-销齿圆弧型线齿廓的端面形状主要由以下参数决定:阳转子齿数z1 阴转子齿数z2中心距a 阳转子直径D1阴转子直径D2 齿高半径 R=25.625%a阴转子节圆直径 Dw1 阳转子节圆直径 Dw2 此外还有齿的螺旋数据转子长

36、度L 阳转子导程h1目前通用的结构,阳转子齿数z1=4,阴转子齿数z2=6。 在阳转子长度上螺齿的扭角为: ,本设计选取300。阳转子转速: 阴转子转速:节圆螺旋角:国标JBT2049-1999规定螺杆压缩阴阳转子的尺寸如下表4.2:表4.2 螺杆压缩机阴阳转子尺寸转子公称直径中心距A节圆直径齿高半径外径阴转子直线段阳转子阴转子阳转子阴转子6350.440.3260.4812.91566.1560.480.315806451.276.816.48476.80.410080649620.5105960.51251008012025.625131.251200.625参照表表4.1和表4.2可计算出螺杆膨胀机的参数,列于表4.3中:表4.3 螺杆膨胀机的阴阳转子参数参数阳转子阴转子齿数中心距A(mm)节圆直径Dw(mm)齿根圆直径Di(mm)齿顶圆直径D(mm)齿高半径R(mm)R=20.5扭转角 ()转速(r/min)倒程(mm)转子螺杆长度L(mm)L=150节圆螺旋角径向直线修正长度4.3.2阴阳转

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1