北体同学运动生理学笔记(fason).doc

上传人:韩长文 文档编号:5094152 上传时间:2020-02-01 格式:DOC 页数:75 大小:265.50KB
返回 下载 相关 举报
北体同学运动生理学笔记(fason).doc_第1页
第1页 / 共75页
北体同学运动生理学笔记(fason).doc_第2页
第2页 / 共75页
北体同学运动生理学笔记(fason).doc_第3页
第3页 / 共75页
北体同学运动生理学笔记(fason).doc_第4页
第4页 / 共75页
北体同学运动生理学笔记(fason).doc_第5页
第5页 / 共75页
点击查看更多>>
资源描述

《北体同学运动生理学笔记(fason).doc》由会员分享,可在线阅读,更多相关《北体同学运动生理学笔记(fason).doc(75页珍藏版)》请在三一文库上搜索。

1、运动生理学(北京:人民体育出版社,2002王瑞元主编)绪论第一节 生命的基本特征 生命体的生命现象主要表现为以下五个方面的基本特征:新陈代谢、兴奋性、应激性、适应性和生殖 一、 新陈代谢:是生物体自我更新的最基本的生命活动过程。新陈代谢包括同化和异化两个过程。二、 兴奋性:在生物体内可兴奋组织具有感受刺激、产生兴奋的特性。 兴奋:可兴奋组织接受刺激后所产生的生物电反应过程及表现 三、 应激性:机体或一切活体组织对周围环境变化具有发生反应的能力或特性 四、 适应性:生物体所具有的这种适应环境的能力 五、 生殖补充:1.运动生理学是研究人体在体育运动的影响下机能活动变化规律的科学。2.人体的基本胜

2、利特征:新陈代谢、兴奋性、应激性、适应性。应激性:机体和一切活组织对周围环境条件的变化有发生反应的能力,这种能力和特性叫做应激性。可以引起反应的环境的变化叫刺激。 第二节 人体生理机能的调节 稳态:内环境理化性质不是绝对静止不变的,而是各种物质在不断转换中达到相对平衡状态,即动态平衡状态。这种平衡状态称为稳态。稳态是一种复杂的动态平衡过程,一方面是代谢过程使稳态不断的受到破坏,而另一方面机体又通过各种调节机制使其不断的恢复平衡。 一、 神经调节:是指在神经活动的直接参与下所实现的生理机能调节过程,是人体最重要的调节方式。 二、 体液调节:由内分泌线分泌的化学物质,通过血液运输至靶器官,对其活动

3、起到控制作用,这种形式的调节称为体液调节。 三、 自身调节:是指组织和细胞在不依赖外来的神经或体液调节情况下,自身对刺激发生的适应性反应过程。 四、 生物节律:生命体在维持生命活动过程中,除了需要进行神经调节、体液调节和自身调节外,各种生理功能活动会按一定的时间顺序发生周期性变化,这种生理机能活动的周期性变化,成为生物的时间结构,或称为生物节律。 当前运动生理学的几个研究热点(如何用生理学观点指导运动实践)1、 最大摄氧量的研究2、 对氧债学说的再认识 3、 关于个体乳酸阈的研究 4、 关于运动性疲劳的研究 5、 关于运动对自由基代谢影响的研究 6、 运动对骨骼肌收缩蛋白机构和代谢的影响 7、

4、 关于肌纤维类型的研究 8、 运动对心脏功能影响的研究 9、 运动与控制体重 10. 运动与免疫机能补充: 神经调节:特点是迅速而且精确;体液调节的特点是缓慢而广泛,作用持久。体液调节:机体的某些细胞产生某些特殊的化学物质,包括各种内分泌腺所分泌的激素,通过细胞外液或借助于血液循环被送到一定器官和组织,以引起特有的反应,并以此调节着人体的新陈代谢,生长发育,生殖以及对肌肉活动的适应等重要机能。.反馈分正反馈和负反馈 第一章 骨骼肌的机能 知识点内容: 人体的肌肉分为骨骼肌、心肌和平滑肌三大类。 骨骼肌的主要活动形式是收缩和舒张。通过舒缩活动完成运动、动作,维持身体姿势。 骨骼肌的活动是在神经系

5、统的调节支配下,在机体各器官系统的协调活动下完成的。 第一节 肌纤维的结构 一、 肌肉的基本结构和功能单位: 1.肌细胞即肌纤维,是肌肉的基本结构和功能单位。 2.肌纤维(肌内膜)集中形成肌束(肌束膜),肌束集中形成肌肉(肌外膜)。 3.肌纤维直径60微米,长度数毫米数十厘米。 4.肌肉两端为肌腱,跨关节附骨。 (1)肌原纤维和肌小节(肌细胞的结构) 肌原纤维(A、I带,H区,M线,Z线与粗、细肌丝的排列关系,粗细肌丝的空间排列规则等)视图 肌小节:两条Z线之间的结构,肌细胞最基本的结构和功能单位。 二、肌管系统 肌原纤维间的小管系统。 横小管:肌细胞膜延伸入肌细胞内部的小管,与肌纤维走向垂直

6、。 纵小管:围绕肌纤维形成网状,与肌纤维走向平行,又称肌质网在横管处膨大,形成终池,内贮钙离子。 三联管:两侧终池与横管合称。互不相通。 三、肌丝分子的组成 肌丝分为粗、细肌丝,为肌细胞收缩的物质基础。 肌丝主要由蛋白质组成,与收缩有关的蛋白质(50%60%/肌肉蛋白)是:肌凝(球)蛋白、肌纤(动)蛋白、原肌凝蛋白、肌钙(原宁)蛋白等。 第二节 骨骼肌细胞的生物电现象 可兴奋组织的生物电现象是组织兴奋的本质活动。生物电活动包括静息电位活动和动作电位活动,前者是后者的基础。 一、静息电位 概念:细胞处于安静状态时细胞膜内外所存在的电位差。 产生原理:膜内钾离子多于膜外,在静息膜钾通道开放时由膜内

7、向膜外运动,达到钾的平衡电位,形成膜外为正膜内为负的极化状态。 二、动作电位 概念:可兴奋细胞受到刺激时,膜电位发生的扩布性变化。 产生原理:膜外钠离子多于膜内,在受刺激时膜钠通道开放,钠由膜外向膜内运动,达到钠的平衡电位,在此过程中,经过去极化形成膜外为负膜内为正的反极化(锋电位,绝对不应期)状态,继而复极化(后电位,相对不应期、超常期),恢复到极化状态。 特点:全或无现象,不衰减性传导,脉冲式传导 三、动作电位的传导 神经纤维局部电流环路方式双向传导 有髓鞘神经呈跳跃式传导,速度快; 无髓鞘神经传导速度慢。 四、细胞间的兴奋传递 神经之间,神经与肌肉之间的兴奋传递 神经肌肉接头的结构 运动

8、终板:终板前膜(介质)、终板后膜(受体)、终板间隙(酶) 神经肌肉接头的兴奋传递 当动作电位延神经纤维传到轴突末梢时,引起轴突末梢处的接头前膜上的钙离子通道开放 ,钙离子从细胞外液进入轴突末梢,促使轴浆中含有乙酰胆碱的突触小泡向接头前膜移动。当突触小泡到达接头前膜后,突出小泡膜与接头前膜融合进而破裂,将乙酰胆碱释放到接头间隙。乙酰胆碱通过接头间隙到达接头后膜后和接头后膜上的乙酰胆碱受体结合,因其接头后膜上的钠、钾离子通道开放,使钠离子内流、钾离子外流,结果使接头后膜处的膜电位幅度减小,即去极化。这一电位变化称为终板电位。当终板电位达到一定幅度时,可引发肌细胞膜产生动作电位,从而使骨骼肌细胞产生

9、兴奋。 五、 肌电 肌电:骨骼肌在兴奋时,会由于肌纤维动作电位的传导和扩布而发生电位变化,这种电位变化称为肌电。 肌电图:用适当的方法将骨骼肌兴奋时发生的电位变化引导、放大并记录所得到的图形,称为肌电图。 第三节 肌纤维的收缩过程 一、 肌丝滑行学说 概念:在调节因素的作用下,肌小节中的细肌丝在粗肌丝的带动下向A带中央滑行,使肌小节长度变短,导致肌原纤维肌纤维以致整块肌肉的收缩。 二、肌纤维收缩的分子机制 运动神经冲动(动作电位)神经末梢神经-肌肉接头兴奋传递肌膜兴奋横管膜兴奋三联管兴奋终池(纵管、肌质网)释钙肌钙蛋白亚单位C+钙肌钙蛋白分子构型变化原肌球蛋白变构移位肌动蛋白结合位点暴露+粗肌

10、丝横桥ATP酶激活ATP分解供能横桥摆动细肌丝向H区滑行(多次)肌小节缩短肌肉收缩 肌肉收缩时形成的横桥联系数目越多,肌肉收缩的力量也就越大。 肌肉收缩时:肌浆中钙肌质网钙泵激活钙进入肌浆网肌浆中钙浓度钙与肌钙蛋白分离肌钙蛋白与原肌球蛋白构型恢复掩盖肌动蛋白结合位点横桥活动停止细肌丝回位肌肉舒张 三、肌纤维的兴奋-收缩耦联 概念:联系肌细胞膜兴奋(生物电变化)与肌丝滑行(机械收缩)过程的中介过程。钙离子是重要的沟通物质。 步骤: 1.兴奋通过横小管系统传到肌细胞内部;横小管是肌细胞膜的延续,动作电位可沿着肌细胞膜传导到横小管,并深入到三联管结构。 2.三联管处钙离子释放并与肌钙蛋白结合引起肌丝

11、滑行;横小管膜上的动作电位可引起与其邻近的终末池膜及肌质网膜上的大量钙离子通道开放,钙离子顺着浓度梯度从肌质网内流入胞浆,肌浆中钙离子浓度升高后,钙离子与肌钙蛋白亚单位C结合时,导致一系列蛋白质的结构发生改变,最终导致肌丝滑行。 3.肌质网对钙再回收:肌质网膜上存在的钙泵,当肌浆中的钙浓度升高时 ,钙泵将肌浆中的钙逆浓度梯度转运到肌质网中贮存,从而使肌浆钙浓度保持较低水平,由于肌浆中的钙浓度降低,钙与肌钙蛋白亚单位C分离,最终引起肌肉舒张。 第四节 骨骼肌特性 一、骨骼肌的物理特性 骨骼肌为粘弹性体。 伸展性:骨骼肌在受到外力牵拉或负重时可被拉长的特性。(体操、投掷提重物等,地心引力走、跑、跳

12、) 弹性:外力或负重取消后,肌肉长度可恢复的特性。 粘滞性:肌浆内各物质分子的运动摩擦力,造成骨骼肌(肌小节)伸展 或恢复的阻力。 影响因素:温度。 温度粘滞性活动不易 温度粘滞性活动容易 准备活动降低粘滞性,否则易拉伤 二、骨骼肌的生理特性及兴奋条件 要引起骨骼肌兴奋必须具备必要的条件:刺激强度、刺激作用时间、刺激强度变化率 刺激强度:阈刺激强度:即引起肌肉兴奋的最小刺激强度。因肌而异,与肌 肉的训练程度有关, 阈上刺激阈刺激,阈下刺激阈刺激。 阈刺激为评定组织兴奋性的指标。阈刺激大说明组织兴奋性低,阈刺激小,说明组织兴奋性高。 肌肉训练程度愈高,兴奋性愈高,则所需阈强度愈小。(举例:A肌:

13、0.3毫伏 B肌:0.1毫伏,B兴奋性高于A。) 阈刺激与肌力的关系: 在整体中,阈下刺激不能引起单个肌肉收缩;只有阈刺激以上的刺激强度才能引起肌纤维收缩。 在一块肌肉中,每条肌纤维的兴奋性是不同的,阈刺激以上的刺激量小则兴奋性最高的肌纤维收缩,随着刺激量的增大,越来越多的肌纤维参加收缩,肌力也越来越大,当刺激强度达到最适宜状态时,肌肉可产生最大收缩。(一定范围内刺激增大) 刺激作用时间:兴奋的必需条件之一。作用时间与刺激强度成反比。 时值:用2倍的基强度刺激组织,引起组织兴奋所需的最短时间。 时值愈小则组织兴奋性愈高。(肱二头肌时值:一般人:0.058毫秒;二级举重运动员:0.051毫秒;举

14、重运动健将:0.047毫秒) 刺激强度变化率:刺激电流从无到有,从小变大的变化速率(通电、断电霎那)。 第五节 骨骼肌收缩 一、骨骼肌的收缩形式 肌肉收缩时,可表现为肌丝滑动引起的肌小节缩短,也可表现为无肌小节缩短的肌肉张力增加。根据肌肉收缩时的长度和张力变化,肌肉收缩可分为4种类型:等张(向心)收缩、等长收缩、离心收缩、等动收缩。 (一)等张(向心)收缩: 概念:肌肉收缩时,长度缩短的收缩称为向心收缩 。 特点:张力增加在前,长度缩短在后;缩短开始后,张力不再增加,直到收缩结束。 是动力性运动的主要收缩形式。 等张收缩的情况下肌肉作功。功=负荷重量*负荷移动距离的乘积。 顶点:在负荷不变的情

15、况下,在整个关节活动的范围内,肌肉收缩的用力程度随关节角度的变化(力矩)而不同。在此范围内,肌肉用力最大的一点为顶点。顶点状态下肌肉收缩的杠杆效率最差,故此时肌肉可达到最大收缩。 等张训练不利于发展整个关节范围内任何一个角度的肌肉力量。 例:杠铃举起后;跑步;提重物等。 (二)等长收缩 概念:肌肉收缩时张力增加长度不变。即静力性收缩,此时不做机械功。(不推动物体,不提起物体) 特点:超负荷运动;与其他关节的肌肉离心收缩和向心收缩同时发生,以保持一定的体位,为其他关节的运动创造条件。例:蹲起、蹲下(肩带、躯干;腿部、臀部);体操十字支撑、直角支撑;武术站桩等。 (三)离心收缩 概念:肌肉在产生张

16、力的同时被拉长。 特点:控制重力对人体的作用退让工作;制动防止运动损伤。 例:下蹲股四头肌;搬运放下重物上臂、前臂肌;高处跳下股四头肌、臀大肌 (四)等动收缩 概念:在整个肌肉活动的范围内,肌肉以恒定的速度、始终与阻力相等的力量收缩。 特点:收缩过程中收缩力量恒定;肌肉在整个运动范围内均可产生最大张力;为提高肌肉力量的有效手段。 需配备等动练习器。 例:自由泳划水 (五)骨骼肌不同收缩形式的比较 力量:离心收缩力量最大。 牵张反射、肌肉成分(弹性、可收缩成分)产生最大阻力产生最大张力 向心收缩:表现张力=产生张力-克服弹性阻力的张力。 可收缩成分产生抗阻力张力 肌电:在负荷相同的情况下,离心收

17、缩的积分肌电较向心收缩低 代谢:离心收缩耗能低,生理指标反应低于向心收缩 肌肉酸痛:离心收缩等长收缩向心收缩 二、骨骼肌收缩的力学表现 (一) 绝对力量与相对力量 绝对肌力:某一块肌肉做最大收缩时所产生的张力。 相对肌力:肌肉单位横断面积所具有的肌力。 (二) 肌肉力量与运动 1、 肌肉收缩时产生的张力大小,取决于活化的横桥数目;而收缩速度则取决于能量释放速率和肌球蛋白ATP酶活性,与活化的横桥数目无关。 2、 肌肉力量与运动速度,力量越大的人动作速度越快。 三、运动单位的动员 1运动单位的概念 皮质运动中枢:锥体系脊髓前角:a-运动神经元轴突末梢(多个)肌纤维 1个a-运动神经元及其支配的肌

18、纤维组成的最基本的肌肉收缩单位称为运动单位 运动单位有大小之分。大运动单位中(如腓肠肌)肌纤维数目多,收缩时产生的张力大;小运动单位中(如眼外直肌)肌纤维数目少,收缩时比较灵活。 运动性(快肌)运动单位:冲动频率高,收缩力量大,易疲劳,氧化酶含量低; 紧张性(慢肌)运动单位:冲动频率低,持续时间长,氧化酶含量高。 同一运动单位肌纤维兴奋收缩同步;同一肌肉中属不同运动单位的肌纤维兴奋收缩不一定同步。(因神经冲动的不同频率及肌纤维的兴奋性) 2运动单位的动员 概念:参与活动的运动单位数目和神经发放冲动频率的高低结合,形成运动单位的动员。数目多,频率高:收缩强度大,张力大;反之则小。 表现:最大收缩

19、运动单位动员特点: MUI达最大水平并始终保持:运动单位动员达最大值,无从增加。由于动作电位的产生和传导相对不疲劳,运动单位动员也不会减少。(总数) 肌肉收缩力量随收缩时间的延长而下降:疲劳导致每个运动单位的收缩力量下降。(单个力量) 保持次最大力量致疲劳时运动单位动员的特点: 张力保持不变:部分肌肉疲劳后,新的动员补充。 MUI逐渐增加:起始未全部动员,疲劳后动员补充。 训练:欲使肌肉长时间保持一定的收缩力量应以次最大力量为基础。 第六节 肌纤维类型与运动能力 一、肌纤维类型的划分 方法:(1)根据收缩速度;分为快肌纤维和慢肌纤维。(2)根据收缩及代谢特征:分为快缩、糖酵解型,快缩、氧化、糖

20、酵解型和慢缩、氧化型。(3)根据收缩特性和色泽:分为快缩白、快缩红和慢缩红三种类型。(4)布茹克司:分为I型和II型,其中II型又分为Iia、 Iib、IIc 三个亚型 二、不同类型肌纤维的形态、机能及代谢特征 (一)形态特征:快肌纤维的直径,收缩蛋白较慢肌纤维大,多。快肌纤维的肌浆网也较慢肌纤维的发达。慢肌纤维周围的毛细血管网较丰富,且含有较多的肌红蛋白。慢肌纤维含有较多的线粒体,且线粒体的体积较大。在神经支配上,慢肌纤维由较小的运动神经元支配,运动神经纤维较细,传导速度较慢;而快肌纤维由较大的运动神经元支配,神经纤维较粗,传导速度较快。 (二)生理学特征: 1肌纤维类型与收缩速度:快肌纤维

21、收缩速度快,因每块肌肉中快慢肌不同比例混合,快肌比例高的肌肉收缩速度快。 2.肌纤维类型与肌肉力量快肌运动单位的收缩力量明显大于慢肌运动单位,因快肌直径大于慢肌,快肌中肌纤维数目多。运动训练可使肌肉的收缩速度加快,收缩力量加大。 3.肌纤维类型与疲劳:慢肌抗疲劳能力强于快肌。慢肌供氧供能强:线粒体多且大,氧代谢酶活性高,肌红蛋白(贮氧)含量丰富,毛犀血管网发达。快肌葡萄糖酵解酶含量高,无氧酵解能力强,易导致乳酸积累,肌肉疲劳。 (三) 代谢特征 慢肌纤维中氧化酶系统的活性都明显高于快肌纤维。慢肌纤维的线粒体大而多,线粒体蛋白的含量也较快肌纤维多。快肌纤维中一些重要的与无氧代谢有关酶的活性明显高

22、于慢肌纤维。 三、运动时不同类型运动单位的动员 低强度运动快肌首先动员;大强度运动快肌首先动员。 不同强度的训练发展不同类型的肌纤维:大强度快肌;低强度,长时间慢肌 四、肌纤维类型与运动项目 一般人中不同类型的肌纤维百分比差别大; 运动员肌纤维组成有明显的项目特点:大强度快肌;低强度,长时间慢肌;耐力慢肌;速度、爆发力快肌;速度耐力快、慢肌比例相当 五、训练对肌纤维的影响 (一) 肌纤维选择性肥大运动训练对肌纤维形态和代谢特征发生较大影响,耐力训练可引起慢肌纤维选择性肥大,速度、爆发力训练可引起快肌纤维选择性肥大。但肌纤维百分比却没有明显提高。 (二) 酶活性改变肌纤维对训练的适应还表现为肌肉

23、中有关酶活性的有选择性增强,在长跑运动员的肌肉中,与氧化功能有密切关系的瑚玻酸脱氢酶活性较高,而与糖酵解及磷酸化功能有关的乳酸脱氢酶和磷酸化酶活性最低。短跑运动员则相反。中跑运动员居短跑和长跑运动员之间。 第七节 肌电的研究与应用 试述肌电图在体育科研中的应用 1、利用肌电测定神经的传导速度 2、利用肌电评定骨骼肌的机能状态 3、利用肌电评价肌力 4、利用肌电进行动作分析补充:5.肌肉的生理特性:兴奋性、收缩性、传导性。6.引起兴奋的刺激条件:A刺激的强度B刺激强度的变化速率。C刺激作用时间。8.时值:法国生理学家拉披克提出以两倍基强度的刺激作用于组织引起兴奋所需的最短时间,作为衡量兴奋性的指

24、标。拉披克把这一特定时间称为是值。屈肌的时值比伸肌短。9.“全和无现象:用阈下刺激单个肌纤维,不能引起收缩;若用阈刺激就可以引起收缩,如果加大刺激(用阈上刺激)肌纤维的收缩幅度并不会增长,这种现象叫“全和无现象。14.跳跃式传导:在有髓鞘纤维中,它的兴奋和静息电位部位间的局部电流集中地通过邻近的朗氏结使之去极化,所以有髓鞘纤维中总是一个朗氏结兴奋,再刺激下一个朗氏结,是跳跃式的传导。15.兴奋-收缩藕连:兴奋由神经传递给肌肉的传递过程。(神经肌肉传递):运动神经末梢去极化,改变神经膜的通透性,使Ca进入末梢内,导致突触小泡的破裂,释放出Ach,Ach经过突触间隙扩散至终膜与终膜上的受体(R)结

25、合,形成R-Ach复合体,R-Ach是终膜去极化,产生终板电位(EPP)(EPP)达到一定的阈限时,作用于肌膜使它发放可传播的动作电位,肌膜动作电位通过收缩耦联引起肌纤维收缩。16.肌纤维的兴奋收缩过程:A肌膜的电位变化触发肌肉收缩即兴奋收缩耦联。B横桥的运动引起肌丝滑动。C引起肌收缩后的舒张。17.单收缩的过程:潜伏期、缩短期、宽息期。18.强直收缩:肌肉因成串刺激而发生的持续性缩短状态称强直收缩。21.肌纤维的分类;快肌纤维(白肌纤维)、慢肌纤维(红肌纤维)22.主要的生理特征:慢肌纤维(红肌纤维):运动神经元(小)、放电频率(低)、收缩速度(低)、耐力(高)、毛细血管密度(高)、血红蛋白

26、含量(高)、糖酵解酶活性(低)、线粒体酶活性(高)、肌原纤维ATP酶活性(低)。 白肌纤维与之相反。23不同运动项目肌纤维百分比:短跑的快肌纤维占70;长跑的慢肌纤维占70。中长跑介于其中。24.运动对肌纤维的影响:A肌纤维的选择性肥大(耐力项目引起慢肌纤维选择性肥大;速度爆发力引起快肌纤维选择性肥大)B肌纤维内酶活性增强 C肌纤维类型百分组成的变化。 第二章 血液 第一节 概 述 一、血液的组成 1血细胞与血浆 血液为人体内循环管道内流动的粘滞性液体。 组成:血细胞(40%50%):红细胞(男:40%50% 女:37%48%)、白细胞、血小板(1%) 血浆(50%60%):水、无机物(无机盐

27、离子)、有机物(代谢产物、营养物质、激素、抗体等) 血清:消耗了纤维蛋白原的血液液体成分 2血液与体液 体液的概念:人体内含有的大量液体及溶于其中的各种物质。为体重的60%70%。 分为:细胞内液(30%40%):细胞膜内,构成细胞浆。 细胞外液(20%):血浆(15%)、组织间液(5%)、体腔液 二、内环境 1概念:体内细胞直接生存的环境。即细胞外液。 与人体直接生活的自然环境外环境相比,内环境存在着其自身的理化特性,如酸碱度、渗透压、气体分压、温度等等,并在一定的范围内变化,细胞只有在正常的内环境中才能正常生存。 细胞外液内环境的主要功能是细胞通过其与外界环境进行物质交换,以保证新陈代谢正

28、常进行。 外界:氧、营养血浆组织液细胞 外界 血浆组织液细胞:二氧化碳 2内环境相对稳定的意义 内环境相对稳定性概念: 通过人体内多种调节机制的调节,内环境中各种理化因素的变化不超出正常生理范围,保持动态平衡。(在一定范围内变化。例:运动中酸性程度增加缓冲调节等,体内温度增加散热增加;出汗使血液浓缩尿量减少,多饮;高原环境氧分压低,体内环境氧分压低循环、呼吸代偿,EPO增加等)。 在新陈代谢活动中内环境会受到破坏新的平衡 如果内环境平衡紊乱不能恢复则会发生疾病。 内环境相对稳定的生理意义: 内环境的相对稳定是细胞进行正常新陈代谢的前提,是维持细胞正常兴奋性和各器官正常机能活动的必要保证。 三、

29、血液的功能 1维持内环境的相对稳定作用 血液能维持水、氧和营养物质的含量;维持渗透压、酸碱度、体温和血液有形成分等的相对稳定。这些因素的相对稳定会使人体的内环境相对稳定。只有在内环境相对稳定时,人体组织细胞才有正常的兴奋性和生理活动。 2运输作用 血液不断地从呼吸器官吸入的氧和消化器官吸收的营养物质运送到身体各处,供给组织细胞进行代谢;同时,又将全身各组织细胞的代谢产物二氧化碳、水和尿素等运输到肺、肾和皮肤等器官排出体外。 3调节作用 血液将内分泌的激素运输到周身,作用于相应的器官改变其活动,起着体液调节的作用。通过皮肤的血管舒缩活动,血液在调节体温过程中发挥重要的作用。温度升高时,皮肤的血管

30、舒张,血液将体内深部产热器官产生的热运送到体表散发,温度降低时,皮肤血管则收缩,减少皮肤的血流量,以维持体温。 4防御和保护作用 血液有防御和净化作用,白细胞有吞噬分解的作用,成为细胞防御。血浆中含有多种免疫物质,总称为抗体,能消灭外来的细菌和毒素。血小板有加速凝血和止血作用,血液能在伤口处凝固,防止继续出血,对人体具有保护作用。 四、血液的理化特性 1 颜色和比重 动脉血含氧多,呈鲜红色;静脉血含氧少,呈暗红色。血浆和血清含胆红质,呈淡黄色。全血液的比重主要取决于红细胞的数量和血浆蛋白的含量。 2粘滞性 形成:血液流动时液体内各种分子或颗粒彼此摩擦,产生阻力,形成粘滞性。黏度测定反映血液的粘

31、滞性和流动性。黏度愈大,则粘滞性愈大,流动性愈小。 影响因素:全血粘滞性:红细胞数量和血红蛋白含量、表面结构、内部状态、易变性、相互作用等。 血浆粘滞性:血浆蛋白数量,红细胞及血浆蛋白愈多则粘滞性愈大。 例:登山缺氧红细胞增多血液粘滞性高 长跑出汗血液浓缩血液粘滞性高血流阻力大血压高 大量饮水血液稀释粘滞性降低流速快 3渗透压 溶液促使膜外水分子向内渗透的力量即为渗透压 与血浆正常渗透压近似的溶液称为等渗溶液(0.9%NACL,5%葡萄糖溶液) 在低渗NACL溶液中,由于水分进入红细胞过多,引起膨胀,最终破裂,红细胞解体,血红蛋白被释放,这一现象总称为红细胞溶解,简称溶血。 4酸碱度 血液的酸

32、度和碱度用PH值评定。 PH值7为中性;大于7为碱性;小于7为酸性 血浆酸碱度PH值=7.357.45 最大变化范围:6.97.8 血浆(血液)为缓冲溶液,存在由数对抗酸(碱性 弱酸盐)和抗碱(酸性 弱酸)物质组成的缓冲体系。 主要缓冲对: 血浆:碳酸氢钠/碳酸 蛋白质钠盐/蛋白质 磷酸氢二钠/磷酸二氢钠; 红细胞:碳酸氢钾/碳酸 血红蛋白钾盐/血红蛋白 磷酸氢二钾/磷酸二氢钾 碱贮备:通常以每100毫升血浆的碳酸氢钠 含量来表示碱储备量。 测定:每100毫升血浆中碳酸能解离出的二氧化碳毫升数 正常值:50%70% 意义:反映缓冲能力,运动员碱贮备高10%。 缓冲反应式举例: 乳酸+碳酸氢钠乳

33、酸钠+碳酸 CA 二氧化碳+水 血液PH值恒定的意义: 保证酶的正常活性,维持正常细胞的新陈代谢、兴奋性和器官的正常机能,如紊乱,则会发生酸中毒或碱中毒。 第二节 运动对血量的影响 一、成年人总血量:体重的7%8%。约每公斤体重7080毫升。 循环血量:人体在安静状态下,心血管中迅速流动的血液。 贮存血量:潴留于肝、脾、腹腔静脉以及皮下静脉丛处的血液。流速极慢,血浆量少,红细胞多,必要时通过神经体液调节,释放入循环血量。 二、失血: 一次失血总血量的10%,对生理可无明显影响,失血可分别从组织液、血浆、红骨髓处补充;如超过30%,可出现血压降低,需及时输血补充血量。 运动对血容量的影响:一次性

34、运动对血容量变化的主要影响因素: 一次性运动对血容量的影响,取决于运动的强度、持续时间、项目特点、环境温度和湿度、热适应和训练水平。从事短时间大强度运动时,血浆含量和血细胞容量都明显增加,而血细胞容量增加较明显。短时间运动时总血容量增加,主要是由于储血库里的血被动员入循环 ,使循环血量增加;而短时间运动出现的血液相对浓缩,其原因可能是由于储血库中血浆量相对较少,血细胞容量较大,进入循环血中使血细胞浓度相对增高。在长时间耐力性运动时,红细胞不会发生显著变化。血容量改变主要是由血浆水分转移情况决定,如果血浆中的水分从毛细血管中渗出到组织间液或排出体外,将引起血浆容量减少,产生血液浓缩现象。反之,如

35、果组织间液的水分渗入到毛细血管,血浆容量增加,则血液稀释。 三、运动项目: 耐力性项目(长时间,强度较低):血量增加最为显著。变化亦最为显著。 增加:贮血库释血 变化:血管内与组织间水分转移 排汗散热增加(摄氏35度:0.58/1克汗,体重下降3%8%,则血浆容量减少6%25%)引起的血浆容量变化。 一次性长时间运动可使体重下降10%。强调运动中应注意充分补充水分。防止脱水。脱水可造成心输出量机体供血供氧有氧能力,代谢产物疲劳运动能力下降 速度性项目(短时间,大强度):贮血库紧急动员,血量增加,但血液相对浓缩,血细胞量和血浆量均增加,但前者增加尤为明显。 第三节 运动对血细胞的影响 一、运动对

36、红细胞的影响 1红细胞的生理特性:无核、双凹圆盘形、直径:69微米; 具有可塑变形性:可随血液流速和血管口径而改变形态 寿命:120天;生成:红骨髓 破坏:血流冲撞成碎片,由网状内皮系统吞噬 正常值:男性:450550万个/每立方毫米,平均500万个/每立方毫米 女性380450万个/每立方毫米,平均420万个/每立方毫米 主要功能:运输氧及二氧化碳;缓冲血液酸碱度 2运动对红细胞数量的影响: 运动可使红细胞数量发生变化。影响因素:运动种类、强度、持续时间 (100%最大摄氧量强度运动后即刻,红细胞数目比运动前增加10%,运动后30分钟还有5%的增加) (1)一次性运动对红细胞数量的影响: 运

37、动后即可观察到的红细胞数增多,主要是由于血液重新分布的变化引起的。长时间运动时,排汗和不感蒸发的亢进引起血液浓缩。运动中肌细胞中代谢产物浓度升高,与毛细血管中血浆渗透压梯度增大,钾离子进入细胞外液使肌肉毛细血管舒张,而对于短时间运动后即刻的红细胞增多。在短时间的静力性或动力性运动中,肌肉持续紧张收缩使静脉受到压迫,血液流向毛细血管增多,并驻留在那使毛细血管内压升高,血浆中的水分渗出,也使血液出现浓缩。运动中红细胞数量的暂时性增加,在运动停止后便开始恢复,1-2小时后可恢复到正常水平。 (2)长期训练对红细胞数量的影响 运动性贫血:经过长时间的系统的运动训练,尤其是耐力性训练的运动员在安静时,其

38、红细胞数并不比一般人高,有的甚至低于正常值,被诊断为运动性贫血。 真性贫血: 表现:红细胞数量绝对减少,红细胞比容绝对降低 原因:运动中红细胞破坏增多 假性贫血: 表现:血容量增加,血浆量增加较多,红细胞数量增加较少红细胞数量相对减少,红细胞比容相对降低; 医学单位容积或体积测定表现相对正常情况, 原因:红细胞工作性溶解加强刺激红细胞和血红蛋白的生成 生理意义:安静状态下降低血黏度,减少循环阻力,减少心脏负荷; 运动状态下血液相对浓缩,保证血红蛋白量相应提高 为优秀运动员有氧工作机能潜力的重要影响因素之一。 3运动对红细胞压积的影响 红细胞压积(比容): 概念:红细胞在全血中所占的容积百分比。

39、 正常值:37%50%,女低于男。 生理意义:影响血黏度(带氧能力)的主要因素。正常黏度范围内红细胞数量、压积增加可使红细胞功能增强; 如大于50%则血黏度与红细胞压积呈指数关系上升时: 单位体积红细胞红细胞压积血黏度循环阻力血液流速运输能力、调节能力、清除能力运动能力 与训练水平的关系:耐力性运动训练水平低者红细胞压积增加明显,血黏度增加,心脏负荷重,易疲劳,运动能力下降。为耐力运动员机能评定指标 4运动对红细胞流变性的影响 红细胞流变性的概念 在血液中流动的红细胞,在切应力的作用下变形,以减少血流的阻力。使红细胞在比容较高的情况下也能顺利发生轴流现象,顺利通过小于自身直径的微血管和狭窄部位

40、,保证微循环有效灌注,提高氧气的运转效率。 红细胞流变性下降红细胞聚集血黏度血液流速、氧运输 测定指标:红细胞渗透脆性、红细胞悬液黏度、滤过率、压积、电泳率等 运动时红细胞流变性的变化 强度、持续时间、训练水平的关系 一次性最大强度、持续时间长、训练水平低:红细胞变形能力降低,持续1小时。 影响因素:红细胞表面积/容积比值、红细胞内部黏度、红细胞膜弹性 红细胞变形能力血液流变性供氧心脏负荷运动能力恢复 无训练者不宜进行一次性高强度极限运动。 有训练者安静时红细胞变形能力增强:新生红细胞细胞膜脆性弹性 二、运动对白细胞的影响 1白细胞的生理特性 形态:无色,有核,体积大于红细胞。 分类:颗粒性白

41、细胞中性、噬酸性、噬碱性 无颗粒白细胞淋巴、单核 分类计数:各类白细胞所占的白细胞总数百分比 功能:吞噬:中性、单核 免疫:淋巴、单核 寄生虫反应:噬酸 变态过敏反应:噬碱 正常值:400010000/立方毫米 下午、运动、进食、炎症、月经期、分娩期白细胞增多,变形能力低,但可引起微血管血流间歇,微血管血流永久性栓塞 2运动时白细胞变化的三个时相 肌动白细胞增多:运动引起的白细胞增多 三个时相: 淋巴细胞时相:总数增多,始动时或赛前状态出现,贮血库及淋巴结释放增多,淋巴细胞为主。 中性粒细胞时相:总数及中性粒细胞明显增加,大强度或长时间运动时出现。 中毒时相:为无训练者进行长时间大强度运动训练

42、时,造血系统机能下降的表现。 再生阶段白血病总数大大增加,噬酸性细胞消失; 变质阶段白细胞总数下降。 运动时白细胞的变化 白细胞总数及淋巴细胞的增加与运动强度正相关,与运动时间负相关; 30分钟内的一次性运动,无论强度如何,主要是淋巴细胞增加。 运动后白细胞的恢复 恢复速度与运动强度、持续时间负相关; 如白细胞在运动中变化幅度大,恢复慢,将会明显影响到免疫功能。 三、运动对血小板的影响 血小板的生理特点及功能 形态:体积微小,由骨髓中巨核细胞产生。寿命812天。 数量:1030万个/每立方毫米,三分之一贮存于脾脏。 生理机能:在止血、凝血过程中发挥重要作用;参与保持毛细血管的完整性。生理特点:

43、 黏着:血管内膜受损时,黏着于其胶元组织。 聚集:在诱聚剂的引导下血小板之间破裂黏着(第一相聚集,第二相聚集),促使血栓形成。 释放:血小板分泌生物活性物质:5HT、儿茶酚胺、ADP等,促使小血管收缩,止血。 收缩:血小板收缩蛋白产生收缩作用,使血凝块回缩硬化。 吸附:吸附凝血因子,加速凝血过程。 运动对血小板数量和功能的影响 血小板数量的增加与负荷强度高度正相关。 一次性激烈运动后即刻:血小板数量、平均容积增加,活性增强。(肾上腺素、ADP、血小板激活因素增加有关) 运动后血小板黏附率、最大聚集率明显增加,血小板活化。 原因:1.运动中血细胞破坏增加,使诱聚剂释放增多, 2.运动处于机能应激

44、状态, 作用:可修复微血管损伤和调节血管壁通透性。 第四节 运动对血红蛋白的影响 一、血红蛋白的功能 结构:珠蛋白(96%)、亚铁血红素(4%) 部位:完整的红细胞膜内。如膜破裂(溶血),血红蛋白逸出,则功能丧失。 功能:1.携带氧(亚铁离子氧合作用、氧离作用)和二氧化碳(氨基,二氧化碳的结合和解离) 2.缓冲对,缓冲血液酸碱度 3运动能力评定指标:机能状态、训练水平、预测有氧运动能力等 影响因素:同红细胞。血红蛋白的变化与红细胞一致。 二、血红蛋白与运动训练 对运动员血红蛋白正常值的评定 正常值:14克%(血黏度4单位)小于20克%(血黏度6单位) 过高:血流阻力增加,心脏负荷加重,机能紊乱; 过低:贫血,供氧不足,机能能力下降。 血红蛋白半定量分析法进行个

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 绩效管理


经营许可证编号:宁ICP备18001539号-1