2018版高三物理一轮复习专题5万有引力和天体运动含2014年高考真题.pdf

上传人:tbuqq 文档编号:5159090 上传时间:2020-02-09 格式:PDF 页数:8 大小:148.08KB
返回 下载 相关 举报
2018版高三物理一轮复习专题5万有引力和天体运动含2014年高考真题.pdf_第1页
第1页 / 共8页
2018版高三物理一轮复习专题5万有引力和天体运动含2014年高考真题.pdf_第2页
第2页 / 共8页
2018版高三物理一轮复习专题5万有引力和天体运动含2014年高考真题.pdf_第3页
第3页 / 共8页
2018版高三物理一轮复习专题5万有引力和天体运动含2014年高考真题.pdf_第4页
第4页 / 共8页
2018版高三物理一轮复习专题5万有引力和天体运动含2014年高考真题.pdf_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《2018版高三物理一轮复习专题5万有引力和天体运动含2014年高考真题.pdf》由会员分享,可在线阅读,更多相关《2018版高三物理一轮复习专题5万有引力和天体运动含2014年高考真题.pdf(8页珍藏版)》请在三一文库上搜索。

1、专题 5 万有引力和天体运动 12014 新课标全国卷 太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运 动当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称 为“行星冲日”据报道,2014 年各行星冲日时间分别是:1 月 6 日木星冲日; 4 月 9日火 星冲日; 5 月 11 日土星冲日; 8 月 29 日海王星冲日;10 月 8 日天王星冲日已知地球及各 地外行星绕太阳运动的轨道半径如下表所示,则下列判断正确的是( ) 地球火星木星土星天王星海王星 轨道半径 (AU)1.01.55.29.51930 A.各地外行星每年都会出现冲日现象 B在 2015 年内一

2、定会出现木星冲日 C天王星相邻两次冲日的时间间隔为土星的一半 D地外行星中,海王星相邻两次冲日的时间间隔最短 答案: BD 解析:本题考查万有引力知识,开普勒行星第三定律,天体追及问题因为冲日现象实质 上是角速度大的天体转过的弧度恰好比角速度小的天体多出2,所以不可能每年都出现(A 选项 ) 由开普勒行星第三定律有 T 2 木 T 2 地 r 3 木 r 3 地 140.608 ,周期的近似比值为 12,故木星的周期 为 12 年,由曲线运动追及公式 2 T1 t2 T2 t 2n,将n1 代入可得t 12 11年,为木星两次 冲日的时间间隔,所以2015 年能看到木星冲日现象,B 正确同理可

3、算出天王星相邻两次 冲日的时间间隔为1.01 年土星两次冲日的时间间隔为1.03 年海王星两次冲日的时间间 隔为 1.006 年,由此可知C错误, D正确 22014 新课标卷 假设地球可视为质量均匀分布的球体已知地球表面重力加速度在 两极的大小为g0,在赤道的大小为g;地球自转的周期为T,引力常量为G. 地球的密度为 ( ) A. 3 GT 2 g0g g0 B. 3 GT 2 g0 g0g C.3 GT 2 D. 3 GT 2 g0 g 答案: B 解析:在两极物体所受的重力等于万有引力,即 GMm R 2mg0,在赤道处的物体做圆周运动的 周期等于地球的自转周期T,则 GMm R 2mg

4、m 4 2 T 2R,则密度 3M 4R 3 3 4R 3 g0R 2 G 3g0 GT 2 (g0g) .B 正确 3 2014 天津卷 研究表明,地球自转在逐渐变慢,3 亿年前地球自转的周期约为22 小 时假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现 在的相比 ( ) A距地面的高度变大 B向心加速度变大 C线速度变大 D角速度变大 答案: A 解析:本题考查万有引力和同步卫星的有关知识点,根据卫星运行的特点“高轨、低速、 长周期”可知周期延长时,轨道高度变大,线速度、角速度、向心加速度变小,A正确, B、 C、D错误 4 2014 浙江卷 长期以来“卡戎星

5、(Charon) ”被认为是冥王星唯一的卫星,它的公转 轨道半径r119 600 km ,公转周期T16.39 天.2006 年 3 月,天文学家新发现两颗冥王星 的小卫星,其中一颗的公转轨道半径r248 000 km ,则它的公转周期T2最接近于 ( ) A15 天 B 25 天 C 35 天 D 45 天 答案: B 解析:本题考查开普勒第三定律、万有引力定律等知识根据开普勒第三定律 r 3 1 T 2 1 r 3 2 T 2 2,代入 数据计算可得T2约等于 25 天选项B正确 52014 安徽卷 在科学研究中, 科学家常将未知现象同已知现象进行比较,找出其共同 点, 进一步推测未知现象

6、的特性和规律法国物理学家库仑在研究异种电荷的吸引力问题时, 曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系已 知单摆摆长为l,引力常量为G,地球质量为M,摆球到地心的距离为r,则单摆振动周期T 与距离r的关系式为 ( ) AT2r GM l B T2r l GM CT 2 r GM l D T2l r GM 答案: B 解析:本题考查单摆周期公式、万有引力定律与类比的方法,考查推理能力在地球表面 有G Mm r 2mg,解得gG Mm r 2. 单摆的周期T2 l g 2r l GM ,选项 B正确 6 2014 福建卷 若有一颗“宜居”行星,其质量为地球的p倍,

7、半径为地球的q倍, 则该行星卫星的环绕速度是地球卫星环绕速度的( ) A.pq倍 B. q p 倍 C. p q倍 D. pq 3倍 答案: C 解析:由G Mm R 2m v 2 R可知,卫星的环绕速度 v GM R,由于“宜居”行星的质量为地球的 p倍,半径为地球的q倍,则有 v宜 v地 M宜 M地 R地 R宜 p 1 1 q p q,故 C项正确 22B (2014 上海) 、动能相等的两人造地球卫星A、B的轨道半径之比:1: 2 AB RR,它们的 角速度之比: AB ,质量之比: AB mm。 答案: B、22:1 ; 1 :2 解析:根据G Mm R 2m 2R 得出 3 R GM

8、 , 则A : B 3 A R GM : 3 B R GM 22:1 ;又 因动能 EK 1 2mv 2 相等以及 v=R ,得出 mA : m B 22 22 AA BB R R 1 : 2 7 2014 广东卷 如图 13 所示,飞行器P绕某星球做匀速圆周运动,星球相对飞行器的 张角为 ,下列说法正确的是( ) A轨道半径越大,周期越长 B轨道半径越大,速度越大 C若测得周期和张角,可得到星球的平均密度 D若测得周期和轨道半径,可得到星球的平均密度 答案: AC 解析:根据G Mm R 2mR 4 2 T 2,可知半径越大则周期越大,故选项A正确;根据G Mm R 2m v 2 R ,可知

9、 轨道半径越大则环绕速度越小,故选项B错误;若测得周期T,则有M4 2R3 GT 2,如果知道张 角 ,则该星球半径为rRsin 2 ,所以M4 2R3 GT 2 4 3( Rsin 2 ) 3,可得到星球的平均密 度,故选项 C正确,而选项 D无法计算星球半径,则无法求出星球的平均密度,选项 D错误 82014 江苏卷 已知地球的质量约为火星质量的10 倍,地球的半径约为火星半径的2 倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为( ) A3.5 km/s B5.0 km/s C17.7 km/s D35.2 km/s 答案: A 解析: 航天器在火星表面附近做圆周运动所需的向心力

10、是由万有引力提供的,由G Mm R 2m v 2 R知 v GM R ,当航天器在地球表面附近绕地球做圆周运动时有v地7.9 km/s , v火 v地 GM 火 R火 GM地 R地 M火 M地 R地 R火 5 5 ,故v火 5 5 v地 5 5 7.9 km/s 3.5 km/s ,则 A正确 92014 山东卷 2013年我国相继完成“神十”与“天宫”对接、“嫦娥”携“玉兔” 落月两大航天工程某航天爱好者提出“玉兔”回家的设想:如图所示,将携带“玉兔”的 返回系统由月球表面发射到h高度的轨道上, 与在该轨道绕月球做圆周运动的飞船对接,然 后由飞船送“玉兔”返回地球设“玉兔”质量为m,月球半径

11、为R,月面的重力加速度为 g月以月面为零势能面,“玉兔”在h高度的引力势能可表示为Ep GMmh R(Rh) ,其中G为 引力常量,M为月球质量若忽略月球的自转,从开始发射到对接完成需要对“玉兔”做的 功为 ( ) A. mg月R Rh( h2R) B. mg月R Rh( h2R) C.mg 月R Rh h 2 2 R D. mg月R Rh h 1 2R 答案: D 解析:本题以月面为零势面,开始发射时,“玉兔”的机械能为零,对接完成时,“玉兔” 的动能和重力势能都不为零,该过程对“玉兔”做的功等于“玉兔”机械能的增加忽略月 球的自转,月球表面上,“玉兔”所受重力等于地球对“玉兔”的引力,即G

12、 Mm R 2mg月,对 于在h高处的“玉兔”,月球对其的万有引力提供向心力,即G Mm (Rh) 2m v 2 Rh,“玉兔” 的动能Ek 1 2mv 2,由以上可得, Ek g月R 2m 2(Rh) . 对“玉兔”做的功WEkEp mg月R Rh h1 2R . 选项 D正确 102014 北京卷 万有引力定律揭示了天体运行规律与地上物体运动规律具有内在的一致 性 (1) 用弹簧秤称量一个相对于地球静止的小物体的重量,随称量位置的变化可能会有不同的 结果已知地球质量为M,自转周期为T,万有引力常量为G. 将地球视为半径为R、质量均 匀分布的球体,不考虑空气的影响设在地球北极地面称量时,弹簧

13、秤的读数是F0. a. 若在北极上空高出地面h处称量,弹簧秤读数为F1,求比值 F1 F0的表达式,并就 h1.0%R 的情形算出具体数值( 计算结果保留两位有效数字) ; b. 若在赤道地面称量,弹簧秤读数为F2,求比值 F2 F0的表达式 (2) 设想地球绕太阳公转的圆周轨道半径r、太阳的半径Rs和地球的半径R三者均减小为现 在的1.0%,而太阳和地球的密度均匀且不变仅考虑太阳和地球之间的相互作用,以现实 地球的 1 年为标准,计算“设想地球”的1 年将变为多长 解析: (1) 设小物体质量为m. a在北极地面 G Mm R 2F0 在北极上空高出地面h处 G Mm (Rh) 2F1 F1

14、 F0 R 2 (Rh) 2 当h1.0%R时 F1 F0 1 1.01 20.98. b在赤道地面,小物体随地球自转做匀速圆周运动,受到万有引力和弹簧秤的作用力,有 G Mm R 2F2m 4 2 T 2R 得 F2 F01 4 2R3 GMT 2. (2) 地球绕太阳做匀速圆周运动,受到太阳的万有引力,设太阳质量为MS,地球质量为M, 地球公转周期为TE,有 G MSM r 2Mr 4 2 T 2 E 得 TE 4 2r3 GMS 3r 3 GR 3 S. 其中 为太阳的密度 由上式可知, 地球公转周期TE仅与太阳的密度、 地球公转轨道半径与 太阳半径之比有关因此“设想地球” 的 1 年与

15、现实地球的1 年时间 相同 11 2014 四川卷 石墨烯是近些年发现的一种新材料,其超高强 度及超强导电、导热等非凡的物理化学性质有望使21 世纪的世界发 生革命性的变化,其发现者由此获得2010 年诺贝尔物理学奖用石 墨烯制作超级缆绳,人类搭建“太空电梯”的梦想有望在本世纪实 现科学家们设想, 通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯仓沿着这条 缆绳运行,实现外太空和地球之间便捷的物资交换 (1) 若“太空电梯”将货物从赤道基站运到距地面高度为h1的同步轨道站,求轨道站内质量 为m1的货物相对地心运动的动能设地球自转角速度为,地球半径为R. (2) 当电梯仓停在距地面高度h24

16、R的站点时,求仓内质量m250 kg 的人对水平地板的压 力大小取地面附近重力加速度g取 10 m/s 2,地球自转角速度 7.3 10 5 rad/s ,地球 半径R 6.4 10 3 km. 解析: (1) 设货物相对地心的距离为r1,线速度为v1,则 r1Rh1 v1r1 货物相对地心的动能为Ek1 2m 1v 2 1 联立得Ek 1 2m 1 2( Rh1) 2 (2) 设地球质量为M,人相对地心的距离为r2,向心加速度为an,受地球的万有引力为F,则 r2Rh2 an 2r 2 F Gm2M r 2 2 g GM R 2 设水平地板对人的支持力大小为N,人对水平地板的压力大小为N,则

17、 FNm2an NN 联立式并代入数据得N 11.5 N ? 12 (15分)2014 重庆卷 题 7 图为“嫦娥三号”探测器在月球上着陆最后阶段的示意 图,首先在发动机作用下,探测器受到推力在距月球表面高度为h1处悬停 ( 速度为0,h1远 小于月球半径 ) ;接着推力改变, 探测器开始竖直下降,到达距月面高度为h2处的速度为v; 此后发动机关闭,探测器仅受重力下落到月面,已知探测器总质量为m( 不包括燃料 ) ,地球 和月球的半径比为k1,质量比为k2,地球表面附近的重力加速度为g,求: 题 7 图 (1) 月球表面附近的重力加速度大小及探测器刚接触月面时的速度大小; (2) 从开始竖直下

18、降到刚接触月面时,探测器机械能的变化 解析: (1) 设地球质量和半径分别为M和R,月球的质量、半径和表面附近的重力加速度分 别为M、R和g,探测器刚接触月面时的速度大小为vt. 由mgG Mm R 2和mgG Mm R 2得g k 2 1 k2g 由v 2 tv 22gh 2 得vtv 22k 2 1gh2 k2 (2) 设机械能变化量为E,动能变化量为Ek,重力势能变化量为Ep. 由EEkEp 有E 1 2m (v 22k 2 1gh2 k2 ) m k 2 1 k2 gh1 得E 1 2mv 2k 2 1 k2mg (h1h2) 13 2014 全国卷 已知地球的自转周期和半径分别为T和

19、R,地球同步卫星A的圆轨道 半径为h,卫星B沿半径为r(rh) 的圆轨道在地球赤道的正上方运行,其运行方向与地球 自转方向相同求: (1) 卫星B做圆周运动的周期; (2) 卫星A和B连续地不能直接通讯的最长时间间隔( 信号传输时间可忽略) 解析: (1) 设卫星B绕地心转动的周期为T,根据万有引力定律和圆周运动的规律有 G Mm h 2m 2 T 2 h G Mm r 2m 2 T 2 r 式中,G为引力常量,M为地球质量,m、m分别为卫星A、B的质量由式得 T r h 3 2T (2) 设卫星A和B连续地不能直接通讯的最长时间间隔为; 在此时间间隔 内,卫星A和B绕地心转动的角度分别为和,则 T 2 T 2 若不考虑卫星A的公转,两卫星不能直接通讯时,卫星B的位置应在图中B点和B点之间, 图中内圆表示地球的赤道 由几何关系得 BOB 2 arcsin R harcsin R r 由式知,当rh时,卫星B比卫星A转得快,考虑卫星A的公转后应有 BOB 由式得 r 3 2 (h 3 2 r 3 2) arcsin R harcsin R r T

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1