无功功率与有功功率汇总.pdf

上传人:白大夫 文档编号:5418138 上传时间:2020-05-04 格式:PDF 页数:10 大小:103.50KB
返回 下载 相关 举报
无功功率与有功功率汇总.pdf_第1页
第1页 / 共10页
无功功率与有功功率汇总.pdf_第2页
第2页 / 共10页
无功功率与有功功率汇总.pdf_第3页
第3页 / 共10页
无功功率与有功功率汇总.pdf_第4页
第4页 / 共10页
无功功率与有功功率汇总.pdf_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《无功功率与有功功率汇总.pdf》由会员分享,可在线阅读,更多相关《无功功率与有功功率汇总.pdf(10页珍藏版)》请在三一文库上搜索。

1、有功功率和无功功率 在交流电路中,由电源供给负载的电功率有两种;一种是有功功率,一种是无功功率。 有功功率是保持用电设备正常运行所需的电功率,也就是将电能转换为其他形式能量 ( 机械能、光能、热能) 的电功率。比如:5.5 千瓦的电动机就是把5.5 千瓦的电能转换为机 械能, 带动水泵抽水或脱粒机脱粒;各种照明设备将电能转换为光能,供人们生活和工作照 明。有功功率的符号用P表示,单位有瓦(W)、千瓦 (kW)、兆瓦 (MW) 。 无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和 维持磁场的电功率。它不对外作功, 而是转变为其他形式的能量。凡是有电磁线圈的电气设 备,要

2、建立磁场,就要消耗无功功率。比如40 瓦的日光灯,除需40 多瓦有功功率( 镇流器 也需消耗一部分有功功率) 来发光外,还需 80 乏左右的无功功率供镇流器的线圈建立交变磁 场用。由于它不对外做功,才被称之为“无功”。无功功率的符号用Q表示,单位为乏 (Var) 或千乏 (kVar) 。 无功功率决不是无用功率,它的用处很大。 电动机需要建立和维持旋转磁场,使转子 转动, 从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的。变压器也 同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。因此,没 有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合

3、。为了形象地说 明这个问题,现举一个例子:农村修水利需要开挖土方运土,运土时用竹筐装满土,挑走的 土好比是有功功率,挑空竹筐就好比是无功功率,竹筐并不是没用,没有竹筐泥土怎么运到 堤上呢 ? 在正常情况下, 用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功 率。 如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场, 那么, 这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响 用电设备的正常运行。 无功功率对供、用电产生一定的不良影响,主要表现在: (1)降低发电机有功功率的输出。 (2)降低输、变电设备的供电能力。 (3)造成线路电

4、压损失增大和电能损耗的增加。 (4)造成低功率因数运行和电压下降,使电气设备容量得不到充分发挥。 从发电机和高压输电线供给的无功功率,远远满足不了负荷的需要,所以在电网中要 设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能 在额定电压下工作。这就是电网需要装设无功补偿装置的道理。 设负荷视在功率为S,有功功率为P,无功功率为Q,电压有效值为,电流有效值为I , 则功率三角形如图1-3。图中: P= Scosj= Icosj Q= Ssinj= Isinj S= I 有功功率常用单位为瓦或千瓦,无功功率为乏或千乏,视在功率为伏安或千伏安,相位 角 j 为有功功率与

5、视在功率的夹角,称为力率角或功率因数角,cosj 表示有功功率P和视 在功率 S的比值,称为力率或功率因数。图1-3 功率三角形在感性电路中,电流落后于电 压, j0 ,Q为正值,而在容性电路中,电流超前于电压,jcos ,所以提高功率因数后,线损率也下降了,减少设计容量、减 少投资,增加电网中有功功率的输送比例,以及降低线损都直接决定和影响着供电企 业的经济效益。所以,功率因数是考核经济效益的重要指标,规划、实施无功补偿势 在必行。 电网中常用的无功补偿方式包括: 集中补偿:在高低压配电线路中安装并联电容器组; 分组补偿: 在配电变压器低压侧和用户车间配电屏安装并联补偿电容器; 单台电动机就

6、地补偿:在单台电动机处安装并联电容器等。 加装无功补偿设备,不仅可使功率消耗小,功率因数提高,还可以充分挖掘 设备输送功率的潜力。 确定无功补偿容量时,应注意以下两点: 在轻负荷时要避免过补偿,倒送无功造成功率损耗增加,也是不经济的。 功率因数越高,每千伏补偿容量减少损耗的作用将变小,通常情况下, 将功率因数提高到0.95就是合理补偿 就三种补偿方式而言,无功就地补偿克服了集中补偿和分组补偿的缺点,是 一种较为完善的补偿方式: 因电容器与电动机直接并联,同时投入或停用,可使无功不倒流,保证用 户功率因数始终处于滞后状态,既有利于用户,也有利于电网。 有利于降低电动机起动电流,减少接触器的火花,

7、提高控制电器工作的可 靠性,延长电动机与控制设备的使用寿命。 无功就地补偿容量可以根据以下经验公式确定: Q U 0 式中: Q- 无功补 偿容量(kvar ) ; U- 电动机的额定电压(V) ; 0-电动机空载电流(A) ;但是无 功就地补偿也有其缺点:不能全面取代高压集中补偿和低压分组补偿;众所周之, 无功补偿按其安装位置和接线方法可分为:高压集中补偿、低压分组补偿和低压就地 补偿。其中就地补偿区域最大,效果也好。但它总的电容器安装容量比其它两种方式 要大,电容器利用率也低。高压集中补偿和低压分组补偿的电容器容量相对较小,利 用率也高,且能补偿变压器自身的无功损耗。为此,这三种补偿方式各

8、有应用范围, 应结合实际确定使用场合,各司其职。 投切方式分类: 1. 延时投切方式 延时投切方式即俗称的“ 静态 “ 补偿方式。 延时投切的目的在于防止过于频繁的动 作使电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危 险的。 延时投切方式用于控制电容器投切的器件可以是投切电容器专用接触器、复合开 关或者 同步开关。 投切电容器专用接触器有一组辅助接点串联电阻后与主接点并联。在投入过程中 辅助接点先闭合,与辅助接点串联的电阻使电容器预充电,然后主接点再闭合,于是 就限制了电容器投入时的涌流。 复合开关就是将晶闸管与继电器接点并联使用,由晶闸管实现电压过零投入与电 流过零

9、切除,由继电器接点来通过连续电流,这样就避免了晶闸管的导通损耗问题, 也避免了电容器投入时的涌流。但是复合开关既使用晶闸管又使用继电器,于是结构 就变得比较复杂,成本也比较高,并且由于晶闸管对过流、过压及对dv/dt的敏感性 也比较容易损坏。在实际应用中,复合开关故障多半是由晶闸管损坏所引起的 同步开关是近年来最新发展的技术,顾名思义,就是使机械开关的接点准确地在 需要的时刻闭合或断开。对于控制电容器的同步开关,就是要在接点两端电压为零的 时刻闭合,从而实现电容器的无涌流投入,在电流为零的时刻断开,从而实现开关接 点的无电弧分断。由于同步开关省略了晶闸管,因此不仅成本降低,而且可靠性提高。 同

10、步开关是传统机械开关与现代电子技术完美结合的产物,使机械开关在具有独特技 术性能的同时,其高可靠性以及低损耗的特点得以充分显示出来。 当电网的负荷 呈感性时,如电动机 、电焊机等负载,这时电网的电流滞带后电压 一个角度, 当负荷呈容性时,如过补偿状态,这时电网的电流超前于电压的一个角度, 功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系 统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功 率。 下面就功率因数型举例说明。当这个物理量满足要求时,如cos 超前且 0.98 , 滞后且 0.95 ,在这个范围内,此时控制器没有控制信号发出,这时已投

11、入的电容器 组不退出,没投入的电容器组也不投入。当检测到cos 不满足要求时,如cos 滞 后且 0.95 ,那么将一组电容器投入,并继续监测cos 如还不满足要求,控制器则 延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测 到超前信号如cos 0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵 循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为 300s ,而这套补偿装置有十路电容器组,那么全部投入的时间就为50 分钟,切除也 这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没 有设定延时时间,就可能会出现这

12、样的情况。当控制器监测到cos 0.95 ,迅速将 电容器组逐一投入,而在投入期间,此时电网可能已是容性负载即过补偿了,控制器 则控制电容器组逐一切除,周而复始,形成震荡,导致系统崩溃。是否能形成振荡与 负载的性质有密切关系,所以说这个参数需要根据现场情况整定,要在保证系统安全 的情况下,再考虑补偿效果。 无功补偿的投切器件 1.1 ,交流接触器控制投入型补偿装置。由于电容器是电压不能瞬变的器件,因 此电容器投入时会形成很大的涌流,涌流最大时可能超过100 倍电容器额定电流。涌 流会对电网产生不利的干扰,也会降低电容器的使用寿命。为了降低涌流,现在大部 分补偿装置使用电容器投切专用接触器,这种

13、接触器有1 组串联限流电阻与主触头并 联的辅助触头,在接触器吸合的过程中,辅助触头首先接通,使电容器通过限流电阻 接入电路进行预充电,然后主触头接通将电容器正常接入电路,通过这种方式可以将 涌流限制在电容器额定电流的20 倍以下。 此类补偿装置价格低廉,可靠性较高,应用最为普遍。由于交流接触器的触头寿 命有限,不适合频繁投切,因此这类补偿装置不适用频繁变化的负荷情况。 1.2 ,晶闸管控制投入型补偿装置。这类补偿装置就是SVC分类中的TSC 子类。 由于晶闸管很容易受涌流的冲击而损坏,因此晶闸管必须过零触发,就是当晶闸管两 端电压为零的瞬间发出触发信号。过零触发技术可以实现无涌流投入电容器,另

14、外由 于晶闸管的触发次数没有限制,可以实现准动态补偿(响应时间在毫秒级),因此适 用于电容器的频繁投切,非常适用于频繁变化的负荷情况。晶闸管 导通电压降约为1V 左右,损耗很大(以额定容量100Kvar的补偿装置为例,每相额定电流约为145A,则 晶闸管额定导通损耗为14513=435W ) ,必须使用大面积的散热片并使用通风扇。 晶闸管对电压变化率(dv/dt)非常敏感,遇到操作过电压及雷击等电压突变的情况 很容易误导通而被涌流损坏,即使安装避雷器也无济于事,因为避雷器只能限制电压 的峰值,并不能降低电压变化率。 此类补偿装置结构复杂,价格高, 可靠性差,损耗大, 除了负荷频繁变化的场合,

15、在其余场合几乎没有使用价值。 1.3 ,复合开关控制投入型补偿装置。复合开关技术就是将晶闸管与继电器接点 并联使用,由晶闸管实现电压过零投入与电流过零切除,由继电器接点来通过连续电 流,这样就避免了晶闸管的导通损耗问题,也避免了电容器投入时的涌流。但是复合 开关技术既使用晶闸管又使用继电器,于是结构就变得相当复杂,并且由于晶闸管对 dv/dt的敏感性也比较容易损坏。 1.4 ,同步开关投入型补偿装置。同步开关技术是近年来最新发展的技术,顾名 思义,就是使机械开关的接点准确地在需要的时刻闭合或断开。对于控制电容器的同 步开关, 就是要在开关接点两端电压为零的时刻闭合,从而实现电容器的无涌流投入,

16、 在电流为零的时刻断开,从而实现开关接点的无电弧分断。 同步开关技术中拒绝使用可控硅,因此仍然不适用于频繁投切。可以预见:使用 磁保持继电器的同步开关必将替代复合开关和交流接触器。 2. 瞬时投切方式 瞬时投切方式即人们熟称的“动态 “ 补偿方式, 应该说它是半导体电力 器件与数字 技术综合的技术结晶,实际就是一套快速随动系统,控制器一般能在半个周波 至 1 个 周波内完成采样、计算,在2 个周期到来时,控制器已经发出控制信号了。通过脉冲 信号使晶闸管导通,投切电容器组大约20-30毫秒内就完成一个全部动作,这种控制 方式是机械动作的接触器类无法实现的。动态补偿方式作为新一代的补偿装置有着广

17、泛的应用前景。现在很多开关行业厂都试图生产、制造这类装置且有的生产厂已经生 产出很不错的装置。当然与国外同类产品相比从性能上、元器件的质量、产品结构上 还有一定的差距。 动态补偿的线路方式 2.1 LC串接法原理如图1 所示 这种方式采用电感 与电容的串联接法,调节电抗以达到补偿无功损耗的目的。从 原理上分析,这种方式响应速度快,闭环使用时,可做到无差调节,使无功损耗降为 零。从元件的选择上来说,根据补偿量选择1 组电容器即可,不需要再分成多路。既 然有这么多的优点,应该是非常理想的补偿装置了。但由于要求选用的电感量值大, 要在很大的动态范围内调节,所以体积也相对较大,价格也要高一些,再加一些

18、技术 的原因,这项技术到目前来说还没有被广泛采用或使用者很少。 2.2 采用电力半导体器件 作为电容器组的投切开关,较常采用的接线方式如图2。图中BK为半导体器件, C1 为电容器组。这种接线方式采用2 组开关,另一相直接接电网省去一组开关,有很 多优越性。 作为补偿装置所采用的半导体器件一般都采用晶闸管,其优点是选材方便,电路 成熟又很经济。其不足之处是元件本身不能快速关断,在意外情况下容易烧毁,所以 保护措施要完善。当解决了保护问题,作为电容器组投切开关应该是较理想的器件。 动态补偿的补偿效果还要看控制器是否有较高的性能及参数。很重要的一项就是要求 控制器要有良好的动态响应时间,准确的投切

19、功率,还要有较高的自识别能力,这样 才能达到最佳的补偿效果。 当控制器采集到需要补偿的信号发出一个指令(投入一组或多组电容器的指令), 此时由触发脉冲去触发晶闸管导通,相应的电容器组也就并入线路运行。需要强调的 是晶闸管导通的条件必须满足其所在相的电容器的端电压为零,以避免涌流造成元件 的损坏,半导体器件应该是无涌流投切。当控制指令撤消时,触发脉冲随即消失,晶 闸管零电流自然关断。关断后的电容器电压为线路电压交流峰值,必须由放电电阻尽 快放电,以备电容器再次投入。 元器件可以选单相晶闸管反并联或是双向晶闸管,也可选适合容性负载的固态接 触器,这样可以省去过零触发的脉冲电路,从而简化线路,元件的

20、耐压及电流要合理 选择,散热器及冷却方式也要考虑周全。 2.3. 混合投切方式 实际上就是静态与动态补偿的混合,一部分电容器组使用接触器投切,而另一部 分电容器组使用电力半导体器件。这种方式在一定程度上可做到优势互补,但就其控 制技术,目前还见到完善的控制软件 ,该方式用于通常的网络如工矿、小区、域网改 造,比起单一的投切方式拓宽了应用范围,节能效果更好。补偿装置选择非等容电容 器组,这种方式补偿效果更加细致,更为理想。还可采用分相补偿方式,可以解决由 于线路三相不平行造成的损失。 3. 无功功率补偿装置的选择 选择哪一种补偿方式,还要依电网的状况而定,首先对所补偿的线路要有所 了解,对于负荷

21、较大且变化较快的工况,电焊机、电动机的线路采用动态补偿,节能 效果明显。对于负荷相对平稳的线路应采用静态补偿方式,也可使用动态补偿装置。 一般电焊工作时间均在几秒钟以上,电动机启动也在几秒钟以上,而动态补偿的响应 时间在几十毫秒,按40 毫秒考虑则从40 毫秒到5 秒钟之内是一个相对的稳态过程, 动态补偿装置能完成这个过程。 无功补偿控制器 无功功率补偿控制器有三种采样方式,功率因数型、无功功率型、无功电流型。 选择那一种物理控制方式实际上就是对无功功率补偿控制器的选择。控制器是无功补 偿装置的指挥系统,采样、运算、发出投切信号,参数设定、测量、元件保护等功能 均由补偿控制器完成。十几年来经历

22、了由分立元件- 集成线路- 单片机 -DSP 芯片一 个快速发展的过程,其功能也愈加完善。就国内的总体状况,由于市场的需求量很大, 生产厂家也愈来愈多,其性能及内在质量差异很大,很多产品名不符实,在选用时需 认真对待。在选用时需要注意的另一个问题就是国内生产的控制器其名称均为“XXX 无功功率补偿控制器“ ,名称里出现的“ 无功功率“ 的含义不是这台控制器的采样物理 量。采样物理量取决于产品的型号,而不是产品的名称。 1. 功率因数型控制器 功率因数用cos 表示,它表示有功功率在线路中所占的比例。当cos =1 时,线路中没有无功损耗。提高功率因数以减少无功损耗是这类控制器的最终目标。 这种

23、控制方式也是很传统的方式,采样、控制也都较容易实现。 * “ 延时 “ 整定, 投切的延时时间,应在 10s-120s范围内调节 “ 灵敏度 “ 整定, 电流灵敏度,不大于0-2A 。 * 投入及切除门限整定,其功率因数应能在0.85 (滞后)-0.95 (超前)范 围内整定。 * 过压保护设量 * 显示设置、循环投切等功能 这种采样方式在运行中既要保证线路系统稳定、无振荡现象出现,又要兼顾 补偿效果,这是一对矛盾,只能在现场视具体情况将参数整定在较好的状态下工作。 即使调整的较好,也无法祢补这种方式本身的缺陷,尤其是在线路重负荷时。举例说 明:设定投入门限;cos =0.95 (滞后)此时线

24、路重载荷,即使此时的无功损耗已很 大,再投电容器组也不会出现过补偿,但cos 只要不小于0.95 ,控制器就不会再有 补偿指令,也就不会有电容器组投入,所以这种控制方式建议不做为推荐的方式。 2. 无功功率(无功电流)型控制器 无功功率(无功电流)型的控制器较完善的解决了功率因数型的缺陷。一个 设计良好的无功型控制器是智能化的,有很强的适应能力,能兼顾线路的稳定性及检 测及补偿效果,并能对补偿装置进行完善的保护及检测,这类控制器一般都具有以下 功能: * 四象限操作、自动、手动切换、自识别各路电容器组的功率、根据负载自 动调节切换时间、谐波 过压报警及保护、线路谐振 报警、过电压保护、线路低电

25、流报 警、电压、电流畸变率测量、显示电容器功率、显示cos 、 U、 I 、 S、 P、Q及 频率 。 由以上功能就可以看出其控制功能的完备,由于是无功型的控制器,也就将 补偿装置的效果发挥得淋漓尽致。如线路在重负荷时,那怕 cos 已达到0.99( 滞后), 只要再投一组电容器不发生过补,也还会再投入一组电容器,使补偿效果达到最佳的 状态。采用DSP芯片的控制器,运算速度大幅度提高,使得富里叶变换得到实现。当 然,不是所有的无功型控制器都有这么完备的功能。国内的产品相对于国外的产品还 存在一定的差距。 3. 用于动态补偿的控制器 对于这种控制器要求就更高了,一般是与触发脉冲形成电路一并考虑的,要 求控制器抗干扰能力强,运算速度快,更重要的是有很好的完成动态补偿功能。由于 这类控制器也都基于无功型,所以它具备静态无功型的特点。 目前,国内用于动态补偿的控制器,与国外同类产品相比有较大的差距,一 是在动态响应时间上较慢,动态响应时间重复性不好;二是补偿功率不能一步到位, 冲击电流过大,系统特性容易漂移,维护成本高、造成设备整体投资费用高。另外, 相应的国家标准也尚未见到,这方面落后于发展。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1