霍尔效应实验报告材料.pdf

上传人:tbuqq 文档编号:5492172 上传时间:2020-05-23 格式:PDF 页数:10 大小:197.11KB
返回 下载 相关 举报
霍尔效应实验报告材料.pdf_第1页
第1页 / 共10页
霍尔效应实验报告材料.pdf_第2页
第2页 / 共10页
霍尔效应实验报告材料.pdf_第3页
第3页 / 共10页
霍尔效应实验报告材料.pdf_第4页
第4页 / 共10页
霍尔效应实验报告材料.pdf_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《霍尔效应实验报告材料.pdf》由会员分享,可在线阅读,更多相关《霍尔效应实验报告材料.pdf(10页珍藏版)》请在三一文库上搜索。

1、实用标准 文档大全 大 学 本(专)科实验报告 课程名称: 姓名: 学院: 系: 专业: 年级: 学号: 指导教师: 成绩: 年月日 实用标准 文档大全 (实验报告目录) 实验名称 一、实验目的和要求 二、实验原理 三、主要实验仪器 四、实验内容及实验数据记录 五、实验数据处理与分析 六、质疑、建议 实用标准 文档大全 霍尔效应实验 一实验目的和要求: 1、了解霍尔效应原理及测量霍尔元件有关参数. 2、测绘霍尔元件的 sH IV, MH IV曲线了解霍尔电势差 H V与霍尔元件控制 (工作) 电流 s I、励磁电流 M I之间的关系。 3、学习利用霍尔效应测量磁感应强度B及磁场分布。 4、判断

2、霍尔元件载流子的类型,并计算其浓度和迁移率。 5、学习用“对称交换测量法”消除负效应产生的系统误差。 二实验原理: 1、霍尔效应 霍尔效应是导电材料中的电流与 磁场相互作用而产生电动势的效应, 从本质上讲,霍尔效应是运动的带电 粒子在磁场中受洛仑兹力的作用而引 起的偏转。 当带电粒子 (电子或空穴) 被约束在固体材料中,这种偏转就导 致在垂直电流和磁场的方向上产生正 负电荷在不同侧的聚积,从而形成附 加的横向电场。 如右图( 1)所示,磁场B位于 Z 的正向,与之垂直的半导体薄片上沿 X 正向通以电流 s I(称为控制电流或 工作电流),假设载流子为电子( N 型 半导体材料) ,它沿着与电流

3、 s I相反的 X 负向运动。 由于洛伦兹力 L f的作用,电子即向图中虚线箭头所指的位于y 轴负方向的B侧偏转, 并使 B侧形成电子积累, 而相对的A侧形成正电荷积累。与此同时运动的电子还受到由于两 种积累的异种电荷形成的反向电场力 E f的作用。 随着电荷积累量的增加, E f增大, 当两力 大小相等(方向相反)时, Lf =- Ef ,则电子积累便达到动态平衡。这时在A、B 两端面之 间建立的电场称为霍尔电场 H E,相应的电势差称为霍尔电压 H V。 设电子按均一速度V向图示的X 负方向运动,在磁场B 作用下,所受洛伦兹力为 L f=- eVB 式中 e 为电子电量,V为电子漂移平均速

4、度,B为磁感应强度。 同时,电场作用于电子的力为leVeEf HHE / 式中 H E为霍尔电场强度, H V为霍尔电压,l为霍尔元件宽度 z x Y VH l d B I S B L A fE fL V 图 1 实用标准 文档大全 当达到动态平衡时, EL fflVBV H /(1) 设霍尔元件宽度为 l,厚度为 d,载流子浓度为n,则霍尔元件的控制(工作)电流为 ldVneI s (2) 由( 1) , (2)两式可得 d BI R d BI ne lEV s H s HH 1 ( 3) 即霍尔电压 H V(A、B间电压)与I s、B的乘积成正比,与霍尔元件的厚度成反比,比 例系数 ne

5、RH 1 称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导 率 =ne的关系,还可以得到: / H R(4) 式中为材料的电阻率、为载流子的迁移率,即单位电场下载流子的运动速度,一 般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用N型半导体材料。 当霍尔元件的材料和厚度确定时,设neddRK HH /1/(5) 将式( 5)代入式( 3)中得BIKV sHH (6) 式中 H K称为元件的灵敏度,它表示霍尔元件在单位磁感应强度和单位控制电流下的霍 尔电势大小,其单位是TmAmV / ,一般要求 H K愈大愈好。 若需测量霍尔元件中载流子迁移率, 则有 II V LV E

6、V (7) 将(2) 式、 (5) 式、 (7) 式联立求得 I S H V I l L K(8) 其中 VI为垂直于 IS方向的霍尔元件两侧面之间的电势差,EI为由 VI产生的电场强度, L、 l 分别为霍尔元件长度和宽度。 由于金属的电子浓度n 很高,所以它的 H R或 H K都不大,因此不适宜作霍尔元件。此 外元件厚度d 愈薄, H K愈高,所以制作时,往往采用减少d 的办法来增加灵敏度,但不能 认为 d 愈薄愈好,因为此时元件的输入和输出电 阻将会增加,这对锗元件是不希望的。 应当注意, 当磁感应强度B和元件平面法线 成一角度时(如图2) ,作用在元件上的有效磁 场是其法线方向上的分量

7、cosB,此时 cosBIKVsHH (9) 所以一般在使用时应调整元件两平面方 位, 使 H V达 到 最大 , 即 =0 , H V=BIKBIK sHsH cos 由式( 9)可知,当控制(工作)电流 s I或磁感应强度B,两者之一改变方向时,霍尔 VHI 图(2) 实用标准 文档大全 电压 H V的方向随之改变;若两者方向同时改变,则 霍尔电压 H V极性不变。 霍尔元件测量磁场的基本电路如图3, 将霍尔元 件置于待测磁场的相应位置,并使元件平面与磁感 应强度 B垂直, 在其控制端输入恒定的工作电流 s I, 霍尔元件的霍尔电压输出端接毫伏表,测量霍尔电 势 H V的值。 三主要实验仪

8、器: 1、 ZKY-HS霍尔效应实验仪 包括电磁铁、二维移动标尺、三个换向闸刀开关、霍尔元件及引线。 2、 KY-HC霍尔效应测试仪 四实验内容: 1 、研究霍尔效应及霍尔元件特性 测量霍尔元件灵敏度KH,计算载流子浓度n(选做)。 测定霍尔元件的载流子迁移率。 判定霍尔元件半导体类型(P型或 N型)或者反推磁感应强度B的方向。 研究 H V与励磁电流 M I、工作(控制)电流IS之间的关系。 2、测量电磁铁气隙中磁感应强度B的大小以及分布 测量一定IM条件下电磁铁气隙中心的磁感应强度B的大小。 测量电磁铁气隙中磁感应强度B的分布。 五实验步骤与实验数据记录: 1、仪器的连接与预热 将测试仪按

9、实验指导说明书提供方法连接好,接通电源。 2、研究霍尔效应与霍尔元件特性 测量霍尔元件灵敏度KH,计算载流子浓度n。 (可选做)。 a.调节励磁电流IM为 0.8A ,使用特斯拉计测量此时气隙中心磁感应强度B的大小。 b.移动二维标尺,使霍尔元件处于气隙中心位置。 c.调节 s I=2.00 、 10.00mA (数据采集间隔1.00mA) ,记录对应的霍尔电压VH填入 表( 1) ,描绘 ISVH关系曲线,求得斜率K1(K1=VH/I S) 。 d.据式( 6)可求得 KH,据式( 5)可计算载流子浓度n。 测定霍尔元件的载流子迁移率。 a.调节 s I=2.00 、 10.00mA (间隔

10、为1.00mA) ,记录对应的输入电压降VI填入表 4, 描绘 ISVI关系曲线,求得斜率K2(K2=IS/VI) 。 b.若已知 KH、L、l ,据( 8)式可以求得载流子迁移率 。 H m v VH Is 图 (3) 实用标准 文档大全 c.判定霍尔元件半导体类型(P型或 N型)或者反推磁感应强度B的方向 根据电磁铁线包绕向及励磁电流IM的流向,可以判定气隙中磁感应强度B 的 方向。 根据换向闸刀开关接线以及霍尔测试仪IS输出端引线,可以判定IS在霍尔元 件中的流向。 根据换向闸刀开关接线以及霍尔测试仪VH输入端引线, 可以得出 VH的正负与 霍尔片上正负电荷积累的对应关系 d. 由 B的

11、方向、 IS流向以及VH的正负并结合霍尔片的引脚位置可以判定霍尔元件半 导体的类型( P型或 N型) 。反之,若已知IS流向、 VH的正负以及霍尔元件半导体 的类型,可以判定磁感应强度B的方向。 测量霍尔电压 H V与励磁电流 M I的关系 霍尔元件仍位于气隙中心,调节 sI =10.00mA,调节 MI =100、 200 1000mA (间隔为 100mA ) ,分别测量霍尔电压 H V值填入表( 2) ,并绘出 M I- H V曲线,验证线性关系的范围, 分析当 M I达到一定值以后, M I- H V直线斜率变化的原因。 3、测量电磁铁气隙中磁感应强度B的大小及分布情况 测量电磁铁气隙

12、中磁感应强度B的大小 a.调节励磁电流IM为 01000mA范围内的某一数值。 b.移动二维标尺,使霍尔元件处于气隙中心位置。 c.调节 s I=2.00 、 10.00mA(数据采集间隔1.00mA) ,记录对应的霍尔电压VH填 入表( 1) ,描绘 ISVH关系曲线,求得斜率K1(K1=VH/I S) 。 d.将给定的霍尔灵敏度KH及斜率 K1代入式( 6)可求得磁感应强度B的大小。 (若实验室配备有特斯拉计,可以实测气隙中心B的大小,与计算的B值比较。) 考察气隙中磁感应强度B的分布情况 a.将霍尔元件置于电磁铁气隙中心,调节 MI =1000mA , sI =10.00mA, 测量相应

13、的 HV 。 b.将霍尔元件从中心向边缘移动每隔5mm 选一个点测出相应的 H V,填入表3。 c.由以上所测 H V值,由式( 6)计算出各点的磁感应强度,并绘出B-X 图,显示出气 隙内 B的分布状态。 为了消除附加电势差引起霍尔电势测量的系统误差,一般按 M I, s I的四种组合测 量求其绝对值的平均值。 实用标准 文档大全 五实验数据处理与分析: 1、测量霍尔元件灵敏度KH,计算载流子浓度n。 表 1 VH-IS M I=800mA IS( mA ) V1(mV ) V2(mV ) V3(mV ) V4(mV ) )( 4 4321 mV VVVV VH +IM+Is-IM+Is-I

14、M-Is+IM-Is 2.00 20.5 -19.1 19.1 -20.5 19.80 3.00 28.7 -30.7 30.7 -28.7 29.70 4.00 38.3 -41.0 41.0 -38.3 39.65 5.00 47.9 -51.3 51.2 -47.9 49.58 6.00 57.4 -61.5 61.4 -57.4 59.43 7.00 66.9 -71.7 71.6 -67.0 69.30 8.00 76.6 -82.1 82.0 -76.7 79.35 9.00 86.1 -92.3 92.2 -86.2 89.20 10.00 95.6 -102.5 102.4 -

15、95.8 99.08 根据上表,描绘出ISVH关系曲线 如右图。 求得斜率K1, K1=9.9 据式( 6)可求出K1, 本例中取铭牌上标注的KH=47, 取实 验指导说明书第3 页上的 d=2m 据式( 5)可计算载流子浓度n 。 。 。 。 2、测量电磁铁气隙中磁感应强度B的大小 取 M I=800mA ,则可由B=K 1/KH求出磁感应强度B的大小 3、 考察气隙中磁感应强度B的分布情况 表 3VH-X I M=1000mA Is=10.00mA X(mm) V1(mV ) V2(mV ) V3( mV ) V4(mV ) )( 4 4321 mV VVVV VH +IM+Is -I+I

16、s-I-Is+IM-Is 0118.2 -124.8 124.7 -118.3 121.50 5118.0 -124.8 124.6 -118.1 121.38 10117.7 -124.5 124.4 -117.8 121.10 15117.3 -124.1 124.0 -117.4 120.70 20107.3 -114.1 114.0 -107.4 110.70 2542.0 -48.9 48.8 -42.2 45.48 3020.0 -27.0 26.8 -20.1 23.48 由以上所测 H V值,由式( 6)计算出各点的磁感应强度如下表: X(mm) 051015202530 VH

17、 121.50121.38121.10120.70110.7045.4823.48 B 2.592.582.582.572.360.970.50 0 20 40 60 80 100 120 051015 Is VH 实用标准 文档大全 根据上表,描绘出B-X 关系曲线如右 图,可看出气隙内B的分布状态。 4、测定霍尔元件的载流子迁移率 表 4 IS-VI IS(mA) 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 VI(V) 20.5 28.7 38.3 47.9 57.4 66.90 76.6 86.1 95.6 根据上表,描绘出ISVI关系曲线

18、如右 图。 求得斜率K2 已知 KH、L、l (从实验指导说明书上可 查出),据( 8)式可以求得载流子迁移率。 。 。 。 。 5、测量霍尔电压 H V与励磁电流 M I的关系 表 2 VH-ISIs=10.00mA IM(mA ) V1(mV ) V2(mV ) V3( mV ) V4(mV ) )( 4 4321 mV VVVV VH +IM+Is-I M+Is-IM-Is+IM-Is 1009.4 -16.6 16.4 -9.6 13.00 20022.9 -30.0 29.8 -23.1 26.45 30035.6 -42.7 42.6 35.7 39.15 40048.4 -55.

19、1 54.9 -48.5 51.73 50060.4 -67.4 67.3 -60.5 63.90 60072.5 -79.2 79.1 -72.6 75.85 70084.1 -91.1 90.9 -84.2 87.58 80095.8 -102.3 102.2 -96.0 99.08 900106.8 -113.8 113.7 -106.9 110.30 1000118.2 -124.8 124.7 -118.3 121.50 根据上表,描绘出 M I- H V关系曲线如 右图 , 由此图可验证线性关系的范围。 分析当 M I达到一定值以后, M I- H V 直线斜率变化的原因。 。 。

20、 。 。 。 。 Is 0 2 4 6 8 10 12 050100150 VI Is 0 200 400 600 800 1000 1200 050100150 VH IM 0 5 10 15 20 25 30 35 0.000.100.200.30 B X 实用标准 文档大全 6、实验系统误差分析 测量霍尔电势VH时,不可避免地会产生一些副效应,由此而产生的附加电势叠加在霍 尔电势上,形成测量系统误差,这些副效应有: (1)不等位电势 0 V 由于制作时,两个霍尔电势极不可能绝对对称地焊在霍尔片两侧(图5a) 、霍尔片电阻 率不均匀、 控制电流极的端面接触不良(图 5b)都可能造成A、B两

21、极不处在同一等位面上, 此时虽未加磁场,但A 、B间存在电势差 0 V,此称不等位电势,VIV s0 ,V是两等位面间 的电阻,由此可见,在V确定的情况下, 0 V与 s I的大小成正比,且其正负随 s I的方向而改 变。 (2)爱廷豪森效应 当元件的X 方 向通以工作电流 sI ,Z 方向加磁场B 时,由于 霍尔片内的载流子速度 服从统计分布,有快有 慢。在达到动态平衡时, 在磁场的作用下慢速与快速的载流子将在洛伦兹力和霍尔电场的共同作用下,沿 y 轴分别向 相反的两侧偏转,这些载流子的动能将转化为热能,使两侧的温升不同,因而造成 y 方向上 的两侧的温差(TA-TB) 。 图 6 正电子运

22、动平均速度图中VVVV 因为霍尔电极和元件两者材料不同,电极和元件之间形成温差电偶,这一温差在A、B 间产生温差电动势VE,VEIB 这一效应称爱廷豪森效应,VE的大小与正负符号与I 、B的大小和方向有关,跟VH与 I 、 B的关系相同,所以不能在测量中消除。 (3)伦斯脱效应 由于控制电流的两个电极与霍尔元件的接触电阻不同,控制电流在两电极处将产生不同 A B VO ISIS 1 图 5(a) A B VO I S I S 图 5(b) z x Y VH B I B fL V” V V 实用标准 文档大全 的焦耳热,引起两电极间的温差电动势,此电动势又产生温差电流(称为热电流)Q ,热电 流

23、在磁场作用下将发生偏转,结果在y 方向上产生附加的电势差 H V且 V N QB这一效应称为伦斯脱效应,由上式可知 H V的符号只与B的方向有关。 (4)里纪勒杜克效应 如( 3)所述霍尔元件在X方向有温度梯度 dx dT ,引起载流子沿梯度方向扩散而有热电 流 Q通过元件,在此过程中载流子受Z方向的磁场B作用下,在y 方向引起类似爱廷豪森效 应的温差TA-TB,由此产生的电势差 H VQB ,其符号与B 的的方向有关,与 S I的方向无 关。 为了减少和消除以上效应引起的附加电势差,利用这些附加电势差与霍尔元件控制(工 作)电流 S I,磁场 B (既相应的励磁电流 M I)的关系,采用对称

24、(交换)测量法进行测量。 当 M I, S I时 RNEHAB VVVVVV 01 当 M I, S I时 RNEHAB VVVVVV 02 当 M I,SI时RNEHABVVVVVV03 当 M I, S I时 RNEHAB VVVVVV 04 对以上四式作如下运算则得: EHABABABAB VVVVVV)( 4 1 4321 可见,除爱廷豪森效应以外的其他副效应产生的电势差会全部消除,因爱廷豪森效应所 产生的电势差 E V的符号和霍尔电势 H V的符号,与 S I及 B 的方向关系相同,故无法消除, 但 在 非 大 电 流 、 非 强 磁 场 下 , H V E V, 因 而 E V可 以 忽 略 不 计 , H V EH VV 4 4321 VVVV 。 一般情况下,当 H V较大时, 1AB V与 3AB V同号, 2AB V与 4AB V同号,而两组数据反号, 故 4/|)|(|4/)( 43214321ABABABABABABABAB VVVVVVVV 即用四次测量值的绝对值之和求平均值即可。 六、质疑、建议

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1