微生物的生理2.ppt

上传人:京东小超市 文档编号:5968416 上传时间:2020-08-18 格式:PPT 页数:53 大小:625.50KB
返回 下载 相关 举报
微生物的生理2.ppt_第1页
第1页 / 共53页
微生物的生理2.ppt_第2页
第2页 / 共53页
亲,该文档总共53页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《微生物的生理2.ppt》由会员分享,可在线阅读,更多相关《微生物的生理2.ppt(53页珍藏版)》请在三一文库上搜索。

1、第四章 微生物的生理,第一节 微生物的酶 第二节 微生物的营养 第三节 微生物的产能代谢 第四节 微生物的合成代谢,渡贴息弗稻滓雨讶酪初号扦咨臻岿尼运剪宜舀铀血刮溪谚疏烩贞厌樟乘食微生物的生理2微生物的生理2,新陈代谢:发生在活细胞中的各种分解代谢(catabolism)和合成代谢(anabolism)的总和。新陈代谢 = 分解代谢 + 合成代谢 分解代谢:指复杂的有机物分子通过分解代谢酶系的催化,产生简单分子、腺苷三磷酸(ATP)形式的能量和还原力的作用。 合成代谢:指在合成代谢酶系的催化下,由简单小分子、ATP形式的能量和还原力一起合成复杂的大分子的过程。,代谢概论,吃间疑浮评酵怂肚腋埋抽

2、绪叁柳创刺伦晶班晕节赦榜谴碴弛肖揽推打缀勇微生物的生理2微生物的生理2,按物质转化方式分: 分解代谢:指细胞将大分子物质降解成小分子物质,并在这个过程中产生能量。 合成代谢:是指细胞利用简单的小分子物质合成复杂大分子过程。在这个过程中要消耗能量。 物质代谢:物质在体内转化的过程。 能量代谢:伴随物质转化而发生的能量形式相互转化。,蛤蔼畅辣烬奶惮予蓝铱葱扇筏劫皮忙袒茂盐袋诀伙砒焚牧麻磷逛关咋晚燃微生物的生理2微生物的生理2,按代谢产物在机体中作用不同分: 初级代谢: 提供能量、前体、结构物质等生命活动所必须的代谢物的 代谢类型; 产物:氨基酸、核苷酸等。 次级代谢: 在一定生长阶段出现非生命活动

3、所必需的代谢类型; 产物:抗生素、色素、激素、生物碱等。,盟务社曾呆沾轨臃焰车清僧辫愿匹怪键涧防昼烈视龋萌酸浮膛惕掩畜羞喀微生物的生理2微生物的生理2,代谢意义,一、代谢是生命的基本特征,二、代谢通过代谢途径完成,三、代谢途径是不平衡的稳态体系,四、代谢途径的形式多样,五、代谢途径有明确的细胞定位,六、代谢途径相互沟通,七、代谢途径间有能量关联,八、关键酶限制代谢途径的流量,逝痈马残狭夕博蘑恍乞训姻鹤怪抹臻蒂曳捣煮射该绒随畴染囱顾琵最莆走微生物的生理2微生物的生理2,第三节 微生物的产能代谢,一、产能代谢与呼吸作用的关系,微生物呼吸作用的本质是氧化与还原的同意过程,这过程中有能量的产生和能量的

4、转移。 微生物的呼吸类型有三类:发酵好氧呼吸无氧呼吸,化学反应中的一种物质失去电子被氧化,另一种物质得到电子被还原。微生物的产能代谢是通过上述三种氧化还原反应来实现的,微生物从中获得生命活动所需要的能量。,薪适蔓批省办葡醒暑折荤看挠膊难浊熊槛蚜沈搞澈水估疑烁模驭允狰月怜微生物的生理2微生物的生理2,最初 能源,有机物,还原态无机物,日光,通用能源 (ATP),一切生命活动都是耗能反应,因此,能量代谢是一切生物代谢的核心问题。,能量代谢的中心任务,是生物体如何把外界环境中的多种形式的最初能源转换成对一切生命活动都能使用的通用能源-ATP。这就是产能代谢。,化能异养微生物,化能自养微生物,光能营养

5、微生物,白左肤司乏镭尸琶间绩宴蚤透芭楞竹壶邯到洱温蔡染块哉瘸甭脊实幅壹游微生物的生理2微生物的生理2,在代谢过程中,微生物通过分解作用(光合作用)产生化学能。,这些能量用于:1 、合成代谢; 2、微生物的运动和运输; 3、热和光。,无论是分解代谢还是合成代谢,代谢途径都是由一系列连续的酶反应构成的,前一部反应的产物是后续反应的底物。,细胞能有效调节相关的反应,生命活动得以正常进行。,某些微生物还会产生一些次级代谢产物。这些物质除有利于微生物生存外,还与人类生产生活密切相关。,愧蕴负婴培公姿稼有缅纶受救坍酣籍脱仲投念灾紊猾楼嗣爪肮轨交踌奇咸微生物的生理2微生物的生理2,二、产能代谢与呼吸类型,1

6、. 发酵(fermentation),有机物氧化释放的电子直接交给本身未完全氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物。,有机化合物只是部分地被氧化,因此,只释放出一小部分的能量。,发酵过程的氧化是与有机物的还原偶联在一起的。被还原的有机物来自于初始发酵的分解代谢,即不需要外界提供电子受体。,京课你愚综婿讯竟诌卖掣堤话核典喊辖膊望劈美擦量脂诊仰霍精主该律幕微生物的生理2微生物的生理2,发酵的种类有很多,可发酵的底物有碳水化合物、有机酸、氨基酸等,其中以微生物发酵葡萄糖最为重要。,生物体内葡萄糖被降解成丙酮酸的过程称为糖酵解(glycolysis)糖酵解是发酵的基础。,垒从栋拧滴黎

7、逢苞腑啪恿吁整鬼伟摩须侦溉骤活侮泌瞻痈犊映喀蔚瘸珍裹微生物的生理2微生物的生理2,底物脱氢的四种途径:EMP、HMP、ED、磷酸解酮酶途径,至张训完堕唉谦谰抱匝撞钝眶昌虚炎请挟擞结哪董防幂谢恶绣珠方苞剁制微生物的生理2微生物的生理2,a,a:预备性反应,b,b:氧化还原反应,底物水平磷酸化,底物水平磷酸化,EMP途径 (Embden-Meyerhof pathway),EMP途径意义: 为细胞生命活动提供ATP 和 NADH,葡萄糖,葡糖-6-磷酸,果糖-6-磷酸,果糖-1,6- 二磷酸,磷酸二羟丙酮,甘油醛-3-磷酸,1,3-二磷酸甘油酸,3-磷酸甘油酸,2-磷酸甘油酸,磷酸烯醇式丙酮酸,丙

8、酮酸,丈藐缓上投佰保力狼酚赛务啸帜拍蔫黎疯意居蔬粗搪摊淫喷粕消售址脊置微生物的生理2微生物的生理2,轿笛设嫁羌潞迭躲涕获瘪梦鹊时旱酵唐屿栏宜码醇帝瘸厘耿蛹滋拜尤船柯微生物的生理2微生物的生理2,EMP途径关键步骤,1. 葡萄糖磷酸化1.6二磷酸果糖(耗能) 2. 1.6二磷酸果糖2分子3-磷酸甘油醛 3. 3-磷酸甘油醛丙酮酸 总反应式: 葡萄糖+2NAD+2Pi+2ADP 2丙酮酸+2NADH2+2ATP CoA 丙酮酸脱氢酶 乙酰CoA,TCA,谈坊燕搞曹御掖堤巾馁验服锥炊同古嚏彝妒汲宛所棚此孟韵温霹泊钾泣著微生物的生理2微生物的生理2,老躬竭剪媒引卜廉缔透告闪各历靛设予纽恰错发八迷翌伟瞒

9、广踢音由郝伍微生物的生理2微生物的生理2,HMP途径,从6-磷酸-葡萄糖开始,即在单磷酸已糖基础上开始降解的 故称为单磷酸已糖途径。,HMP途径与EMP途径有着密切的关系,HMP途径中的3-磷酸-甘油醛可以进入EMP途径, 磷酸戊糖支路。,HMP途径的一个循环的最终结果是一分子葡萄糖-6-磷酸转变成一分子甘油醛-3-磷酸、3个CO2、6个NADPH。,一般认为HMP途径不是产能途径,而是为生物合成提供大量还原力(NADPH)和中间代谢产物。,诗唇膛怒砒泊筒亦弊符恒虐彬搞瘁棚狗吓林茨瓤考市锗贝库鹅柠蛆吼凤榜微生物的生理2微生物的生理2,HMP途径的总反应:,6 葡萄糖-6-磷酸+12NADP+6

10、H2O 5 葡萄糖-6-磷酸+12NADPH+12H+12CO2+Pi,由六个葡萄糖分子参加反应,经一系列反应,最后回收五个葡萄糖分子,消耗了1分子葡萄糖(彻底氧化成CO2 和水),称完全HMP途径。,康窒刻雇马靳蕉挠找述获仕皖邢己逢佳陨扑褐昨沽抡闪龄赞东埔叛巫舒恫微生物的生理2微生物的生理2,HMP途径的重要意义,产生大量NADPH2,一方面为脂肪酸、固醇等物质的合成提供还原力,另方面可通过呼吸链产生大量的能量。 与EMP途径在果糖-1,6-二磷酸和甘油醛-3-磷酸处连接,可以调剂戊糖供需关系。 为核苷酸和核酸的生物合成提供戊糖-磷酸。,烧身绩姿邯漳瓤装匪藏疽瘸帜婴蒜苑庭条枕绷褪咖凡缘淖看手

11、血帐淫根险微生物的生理2微生物的生理2,途径中的赤藓糖、景天庚酮糖等可用于芳香族氨基酸合成、碱基合成、及多糖合成。 途径中存在37碳的糖,使具有该途径微生物的所能利用利用的碳源谱更为更为广泛。 通过该途径可产生许多种重要的发酵产物。如核苷酸、若干氨基酸、辅酶和乳酸(异型乳酸发酵)等。 HMP途径在总的能量代谢中占一定比例,且与细胞代谢活动对其中间产物的需要量相关。,封芍醛好铃吟嫡伴罗默笺票岗治蜘店曙酉评壬饥嚣迢帜俩略赁和邓浸撮览微生物的生理2微生物的生理2,ED途径,ED途径又称2-酮-3-脱氧-6-磷酸葡糖酸(KDPG)裂解途径。 1952年在Pseudomonas saccharophil

12、a中发现,后来证明存在于多种细菌中(革兰氏阴性菌中分布较广)。 ED途径可不依赖于EMP和HMP途径而单独存在,是少数缺乏完整EMP途径的微生物的一种替代途径,未发现存在于其它生物中。,迁杭恃腑报霞遮戮韶豺蓉峻侨京鬃颊仁拒舌迢恿昧饮叛驻揭淘汀坦谈冬凳微生物的生理2微生物的生理2,ED途径,ED途径是在研究嗜糖假单孢菌时发现的。,ED途径过程:,葡萄糖 KDPG,KDPG 醛缩酶,甘油醛-3-磷酸 丙酮酸,EMP,丙酮酸,ED途径结果:一分子葡萄糖经ED途径最后生成2分子丙酮酸、1分子ATP,1分子NADPH、1NADH。,ED途径在革兰氏阴性菌中分布较广 ED途径可不依赖于EMP与HMP而单独

13、存在 ED途径不如EMP途径经济。,畏讼猴庶迎赘尝帝羽代弘薛搪耘痔午甫芹护函灸勺铺糟川揪安尔累霄曰扒微生物的生理2微生物的生理2,ED途径的特点,葡萄糖经转化为2-酮-3-脱氧-6-磷酸葡萄糖酸后,经脱氧酮糖酸醛缩酶催化,裂解成丙酮酸和3-磷酸甘油醛, 3-磷酸甘油醛再经EMP途径转化成为丙酮酸。结果是1分子葡萄糖产生2分子丙酮酸,1分子ATP。 ED途径的特征反应是关键中间代谢物2-酮-3-脱氧-6-磷酸葡萄糖酸(KDPG)裂解为丙酮酸和3-磷酸甘油醛。ED途径的特征酶是KDPG醛缩酶。 反应步骤简单,产能效率低。 此途径可与EMP途径、HMP途径和TCA循环相连接,可互相协调以满足微生物对

14、能量、还原力和不同中间代谢物的需要。好氧时与TCA循环相连,厌氧时进行乙醇发酵。,糠玻裂金蛆囚倒母链乎词廷于皋毫供痉肪矿黑脱艇腔挟从裸蔼践磨殿会欠微生物的生理2微生物的生理2,磷酸酮解途径,存在于某些细菌如明串珠菌属和乳杆菌属中的一些细菌中。 进行磷酸酮解途径的微生物缺少醛缩酶,所以它不能够将磷酸己糖裂解为2个三碳糖。 磷酸酮解酶途径有两种: 磷酸戊糖酮解途径(PK)途径 磷酸己糖酮解途径(HK)途径,绦啮渤抑辙敦剔蕾熄配佑埠崭新退激韵京析馋缩温珍桂仍钡刁奖练组肯严微生物的生理2微生物的生理2,磷酸戊糖酮解途径的特点:,分解1分子葡萄糖只产生1分子ATP,相当于EMP途径的一半; 几乎产生等量

15、的乳酸、乙醇和CO2。,磷酸己糖酮解途径的特点:,有两个磷酸酮解酶参加反应; 在没有氧化作用和脱氢作用的参与下,2分子葡萄糖分解为3分子乙酸和2分子3-磷酸-甘油醛, 3-磷酸-甘油醛在脱氢酶的参与下转变为乳酸;乙酰磷酸生成乙酸的反应则与ADP生成ATP的反应相偶联; 每分子葡萄糖产生2.5分子的ATP; 许多微生物(如双歧杆菌)的异型乳酸发酵即采取此方式。,江实豢阳败炳武酱胞筒廓婴党室怨疟埠办并萍坍感崖裤躁仙屋掣管博式昼微生物的生理2微生物的生理2,概念:在生物氧化中发酵是指无氧条件下,底物脱氢后所产生的还原力不经过呼吸链传递而直接交给一内源氧化性中间代谢产物的一类低效产能反应。在发酵工业上

16、,发酵是指任何利用厌氧或好氧微生物来生产有用代谢产物的一类生产方式。 发酵途径:葡萄糖在厌氧条件下分解葡萄糖的产能途径主要有EMP、HMP、ED和PK途径。 发酵类型:在上述途径中均有还原型氢供体NADH+H+和NADPH+H+产生,但产生的量并不多,如不及时使它们氧化再生,糖的分解产能将会中断,这样微生物就以葡萄糖分解过程中形成的各种中间产物为氢(电子)受体来接受NADH+H+和NADPH+H+的氢(电子),于是产生了各种各样的发酵产物。根据发酵产物的种类有乙醇发酵、乳酸发酵、丙酸发酵、丁酸发酵、混合酸发酵、丁二醇发酵、及乙酸发酵等。,发酵作用,瘩孕逃盯朗煤悠鸽销犬陋郎疯迫仗汕匪奎刘懊乳熬俄

17、撅阑汇隧虎料贱租铲微生物的生理2微生物的生理2,C6H12O6 2CH3COCOOH 2CH3CHO 2CH3CH2OH,NAD,NADH2,-2CO2,EMP,2ATP,乙醇脱氢酶,该乙醇发酵过程只在pH3.54.5以及厌氧的条件下发生。,酵母菌的乙醇发酵:,效呈岸决止拟勃耗厘综恩湍纺砒钎眶台锚枉巡耘稳蛔樟郭鸥颓霄姐痕躺锦微生物的生理2微生物的生理2,酵母菌(在pH3.5-4.5时)的乙醇发酵 脱羧酶 脱氢酶 丙酮酸 乙醛 乙醇 通过EMP途径产生乙醇,总反应式为: 细菌(Zymomonas mobilis)的乙醇发酵 通过ED途径产生乙醇,总反应如下: 葡萄糖+ADP+Pi 2乙醇+2CO

18、2+ATP 细菌(Leuconostoc mesenteroides)的乙醇发酵 通过HMP途径产生乙醇、乳酸等,总反应如下: 葡萄糖+ADP+Pi 乳酸+乙醇+CO2+ATP 同型乙醇发酵:产物中仅有乙醇一种有机物分子的酒精发酵 异型乙醇发酵:除主产物乙醇外,还存在有其它有机物分子的发酵。,臆座劝晌屿完毒迟敛梯沫都钾危实梦柴七蛆挺户诀漱廷蛇费歪挎裸恕累堰微生物的生理2微生物的生理2,乳酸发酵,乳酸细菌能利用葡萄糖及其他相应的可发酵的糖产生乳酸,称为乳酸发酵。 由于菌种不同,代谢途径不同,生成的产物有所不同,将乳酸发酵又分为同型乳酸发酵、异型乳酸发酵和双歧杆菌发酵。 同型乳酸发酵:(经EMP途

19、径) 异型乳酸发酵:(经HMP途径) 双歧杆菌发酵: (经HK途径磷酸己糖解酮酶途径),贵收岩益濒霸抒觅皿洲棵睁闻港趟邀漳凿志身海鄂侦匝禁膨瑞矿砧纤挤辟微生物的生理2微生物的生理2,葡萄糖,3-磷酸甘油醛,磷酸二羟丙酮,2( 1,3-二-磷酸甘油酸),2乳酸 2丙酮酸,2NAD+ 2NADH,4ATP,4ADP,2ATP 2ADP,同型乳酸发酵,宝燃祥炔汞磕袱蛀冕绘札鲸埃系某芒滓音粉讨矫伤隆述项踪旨帅逃婚着胜微生物的生理2微生物的生理2,葡 萄 糖,6-磷酸葡萄糖,6-磷酸葡萄糖酸,5-磷酸木酮糖,3-磷酸甘油醛,乳 酸,乙酰磷酸,NAD+ NADH,NAD+ NADH,ATP ADP,乙醇

20、乙醛 乙酰CoA,2ADP 2ATP,-2H,-CO2,异型乳酸发酵:,誓哭法务帚烙仅绳掘棱蛤册谊忿晋气藤熄娶弯爆矢影碗约拉做须笺掀荧摹微生物的生理2微生物的生理2,同型乳酸发酵与异型乳酸发酵的比较,Lactobacillus brevis,2,ATP,1,乳酸,1,乙酸,1,CO2,HMP,异型,Leuconostoc,mesenteroides,1,ATP,1,乳酸,1,乙醇,1,CO,2,HMP,异型,Lactobacillus debruckii,2,ATP,2,乳酸,EMP,同型,菌种代表,产,能,/,葡萄糖,产物,途径,类型,滴焰凑柯碘施缝镶才违剖甄稀析咐续冗辞烬肆豫凹间妊冤叫咎骡

21、农肢贤惦微生物的生理2微生物的生理2,2. 呼吸作用,有氧呼吸(aerobic respiration):,以分子氧作为最终电子受体,无氧呼吸(anaerobic respiration):,以氧化型化合物作为最终电子受体,脊碳稳跋凛臼味冉宴傀秉文马敷烘蔬光惹凰捍舍敞禁址撑掇癸闪美样腑广微生物的生理2微生物的生理2,电子载体不是将电子直接传递给底物降解的中间产物,而是交给电子传递系统,逐步释放出能量后再交给最终电子受体。,呼吸作用与发酵作用的根本区别:,邹抚纱芭貌韭俞毙寅向啤疗补赠染孜聊齿昔闰鹃顶没马焕澈脚谍弘澳花伪微生物的生理2微生物的生理2,概念:是以分子氧作为最终电子(或氢)受体的氧化。

22、 过程:是最普遍、最重要的生物氧化方式。 途径:EMP,TCA循环。 特点:在有氧呼吸作用中,底物的氧化作用不与氧的还原作用直接偶联,而是底物在氧化过程中释放的电子先通过电子传递链(由各种电子传递体,如NAD,FAD,辅酶Q和各种细胞色素组成)最后才传递到氧。,由此可见, TCA循环与电子传递是有氧呼吸中两个主要的产能环节。,(1)有氧呼吸,佛匝瞧望进秒雅贞溪始镐顶躬葵臃羌剥衍均隔黔涨永恶叶遣牢瘴梭何瓣唱微生物的生理2微生物的生理2,有氧呼吸,糖酵解作用,有氧,无氧,葡萄糖,丙酮酸,发酵,三羧酸循环,各种发酵产物,被彻底氧化生成CO2和水,释放大量能量。,酱巷偶鲤予泰翔鄂钟侈逝乙泵瘴舒禹差侧啪

23、甲绣嫁像索堂磐巳聋焦媳靳翻微生物的生理2微生物的生理2,三羧酸循环,TCA循环Krebs循环或柠檬酸循环。在绝大多数异养,微生物的呼吸代谢中起关键作用。其中大多数酶在真核生,物中存在于线粒体基质中,在细菌中存在于细胞质中;只,有琥珀酸脱氢酶是结合于细胞膜或线粒体膜上。,主要产物:,C,3,CH,3,COCoA,NADH+4H,FADH,GTP,3CO,2,呼吸链,呼吸链,(底物水平),12ATP,2ATP,ATP,在物质代谢中的地位:枢纽位置,工业发酵产物:柠檬酸、苹果酸、延胡索酸、琥珀酸和谷氨酸,丢宽祟狂姻尝谤此话从灰棉冶犹紊捂费橡纤每蚜沤垛蔗亚筛房幂孺忠征成微生物的生理2微生物的生理2,丙

24、酮酸在进入三羧酸循环之先要脱羧生成 乙酰CoA,乙酰CoA和 草酰乙酸缩合成柠檬 酸再进入三羧酸循环。 循环的结果是乙酰CoA 被彻底氧化成CO2和H2O, 每氧化1分子的乙酰CoA 可产生12分子的ATP,草 酰乙酸参与反应而本身 并不消耗。,卵莽慈疏梅烦攘筷土俘迸候薪蛇魂迎渗匈愤平兼藤琉达线芽夫厂嘿喉牺骡微生物的生理2微生物的生理2,TCA循环的重要特点,1、循环一次的结果是乙酰CoA的乙酰基被氧化为2分子CO2,并重新生成1分子草酰乙酸; 2、整个循环有四步氧化还原反应,其中三步反应中将NAD+还原为NADH+H+,另一步为FAD还原; 3、为糖、脂、蛋白质三大物质转化中心枢纽。 4、循

25、环中的某些中间产物是一些重要物质生物合成的前体; 5、生物体提供能量的主要形式; 6、为人类利用生物发酵生产所需产品提供主要的代谢途径。如柠檬酸发酵;Glu发酵等。,茎凄烹迁象私诉龙讽榆种臻益阶跨啪弧古簧箕崇啪逢控督鳃达完措徐痢耍微生物的生理2微生物的生理2,递氢、受氢和ATP的产生,经上述脱氢途径生成的NADH、NADPH、FAD等还原型辅酶通过呼吸链等方式进行递氢,最终与受氢体(氧、无机或有机氧化物)结合,以释放其化学潜能。 根据递氢特别是受氢过程中氢受体性质的不同,把微生物能量代谢分为呼吸作用和发酵作用两大类。,发酵作用:没有任何外援的最终电子受体的生物氧化模; 呼吸作用:有外援的最终电

26、子受体的生物氧化模式; 呼吸作用又可分为两类: 有氧呼吸最终电子受体是分子氧O2; 无氧呼吸最终电子受体是O2以外的 无机氧化物,如NO3-、SO42-等。,矫搬昆疏聂瞥臂千捐扩底肥禾合认脓惭钻吴冬神炼辉蜗歌箩秦予蹲龙习丹微生物的生理2微生物的生理2,定义:由一系列氧化还原势不同的氢传递体组成的一组链状传递顺序。在氢或电子的传递过程中,通过与氧化磷酸化反应发生偶联,就可产生ATP形式的能量。 部位:原核生物发生在细胞膜上,真核生物发生在线粒体内膜上。 成员:电子传递是从NAD到O2,电子传递链中的电子传递体主要包括FMN 、CoQ、细胞色素b 、c 1、 c、a 、a和一些铁硫旦白。这些电子传

27、递体传递电子的顺序,按照它们的氧化还原电势大小排列,电子传递次序如下:,电子传递与氧化呼吸链,郁秉涛据秆养炒统耍辖盖窜惊交沫跪票昔袖傅棒罕茄赢馁木扼晕吻琴锭穿微生物的生理2微生物的生理2,MH2 NAD FMN C0Q b (-0.32v) (0.0v) C1 C a a3 O2 H2O (+0.26) (+0.28) (+0.82v) 呼吸链中NAD+/NADH的E0值最小,而O2/H2O的E0值最大,所以,电子的传递方向是:NADH O2 上式表明还原型辅酶的氧化,氧的消耗,水的生成。NADH+H+和FADH2的氧化,都有大量的自由能释放。证明它们均带电子对,都具有高的转移势能,它推动电子

28、从还原型辅酶顺坡而下,直至转移到分子氧。 电子传递伴随ADP磷酸化成ATP全过程,故又称为氧化呼吸链。,积旷榴钧姓豢耳柴覆西肾锑杭登蹿产委迂谍踢赣馁秦巾炬奎汲履汇十望页微生物的生理2微生物的生理2,NAD:含有它的酶能从底物上移出一个质子和两个电子,成为还原态NDAH+H+。 FAD和FMN:黄素蛋白的辅基。 铁硫蛋白(Fe-S):传递电子的氧化还原载体辅基为分子中的含铁硫的中心部分。存在于呼吸链中几种酶复合体中,参与膜上的电子传递。在固氮、亚硫酸还原、亚硝酸还原、光合作用、分子氢的激活和释放以及链烷的氧化作用中也有作用。在呼吸链的“2Fe+2S”中心每次仅能传递一个电子。 泛醌(辅酶Q):脂

29、溶性氢载体。广泛存在于真核生物线粒体内膜和革兰氏阴性细菌的细胞膜上;革兰氏阳性细菌和某些革兰氏阴性细菌则含甲基萘醌。在呼吸链中醌类的含量比其他组分多1015倍,其作用是收集来自呼吸链各种辅酶和辅基所输出的氢和电子,并将它们传递给细胞色素系统。 细胞色素系统:位于呼吸链后端,功能是传递电子。,微生物中重要的呼吸链组分,美掐蔡投锚酞廓厕志材供烧诵既街展司春崩汪鞍贸妹植绳度晕智恕徽督喻微生物的生理2微生物的生理2,(2)无氧呼吸,概念:以无机氧化物中的氧作为最终电子(和氢)受体的氧化作用。 一些厌氧和兼性厌氧微生物在无氧条件下进行无氧呼吸。 无机氧化物:如NO3-、 NO2-、 SO42- 、S2O

30、32-等。 在无氧呼吸过程中,电子供体和受体之间也需要细胞色素等中间电子递体,并伴随有磷酸化作用,底物可被彻底氧化,可产生较多能量,但不如有氧呼吸产生的能量多。 如:以硝酸钾为电子受体进行无氧呼吸时,可释放出1796.14KJ自由能。,妒扩阻绍瓢睛人部努侠垦境姐洽辈豌褐唉阵奉居焰傣蟹拯埃恼呸车位冠桥微生物的生理2微生物的生理2,某些厌氧和兼性厌氧微生物在无氧条件下进行无氧呼吸;,无氧呼吸的最终电子受体不是氧,而是NO3-、NO2-、SO42-、S2O32-、CO2等无机物,或延胡索酸(fumarate)等有机物。,无氧呼吸也需要细胞色素等电子传递体,并在能量分级释放过程中伴随有磷酸化作用,也能

31、产生较多的能量用于生命活动。,由于部分能量随电子转移传给最终电子受体,所以生成的能量不如有氧呼吸产生的多。,赁悉愧窟喳逐授成粤厂躲蜂泵宙戴如账继撮续锹丛青滋稻矿庞逛篓爪陛拧微生物的生理2微生物的生理2,能进行硝酸盐呼吸的细菌被称为硝酸还盐原细菌,主要生活在土壤和水环境中,如假单胞菌、依氏螺菌、脱氮小球菌等。,硝酸盐还原细菌被认为是一种兼性厌氧菌,无氧但环境中存在硝酸盐时进行厌氧呼吸,而有氧时其细胞膜上的硝酸盐还原酶活性被抑制,细胞进行有氧呼吸。,镜远悔辑女庙禽德客褥配盖纲埃午御歇仿舞费追脚踩挫蛰酥辩螺靶搬燃娟微生物的生理2微生物的生理2,土壤及水环境,氧被消耗而造成局部的厌氧环境,松土,排除过

32、多的水分,保 证土壤中有良好的通气条件。,硝酸盐是一种容易溶解于水的物质,通常通过水从土壤流入水域中。如果没有反硝化作用,硝酸盐将在水中积累,会导致水质变坏与地球上氮素循环的中断。,反硝化作用的生态学作用:,好氧性机体的呼吸作用,硝酸盐还原细菌进行厌氧呼吸,反硝化作用在氮素循环中的重要作用,土壤中植物能利用的氮 (硝酸盐NO3-)还原成 氮气而消失,从而降低 了土壤的肥力。,河跋麻芹花屑绢诫么抄簿驭稍竞涡糟诱狄累奖拨畸詹翰洞概付铁生吟谰谊微生物的生理2微生物的生理2,其它厌氧呼吸:,延胡索酸呼吸:兼性厌氧,将延胡索酸还原成琥珀酸,以往都是把琥珀酸的形式作为微生物的一般发酵产物来考虑。实际上在延

33、胡索酸呼吸中,延胡索酸是最终电子受体,而琥珀酸是还原产物。,独行豆暑穗铁撞寞勾嚷舷篷悲工名亏憨淀疑咆晚魄纫汕轨诲绘蛇消隆败间微生物的生理2微生物的生理2,第四节 微生物的合成代谢,一、产甲烷菌的合成代谢,从产能代谢中知道,产甲烷菌利用C1和C2有机物产生CO2和CH4,利用其中间代谢产物和能量物质ATP合成蛋白质,多糖,脂肪和核酸等物质,用以构成自身的细胞,ATP在产甲烷菌中的作用: 为合成细胞物质提供能量 启动和催化甲烷产生反应 阻止质子泄漏 通过水解创造一个高能量的膜状态 起嘌呤化和磷酸化酶及辅因子的作用。,侩缩册混剩赛原剐娘镶肃妊挛蚌钟篇民邦宴菊奈埠催袜厅貌眼变繁林誓熏微生物的生理2微生

34、物的生理2,二、化能自养型微生物的合成代谢,1、亚硝化细菌(氨氧化细菌)合成代谢,铸歧趁惶燥婪尾浸忍斡挚乔琅详缴究犁蒋柴处岭偿隅皖祸熊抉枯慨解葡次微生物的生理2微生物的生理2,2、硝化细菌(亚硝酸氧化细菌)合成代谢,3、硫氧化细菌合成代谢,4、铁氧化细菌合成代谢 氧化亚铁硫杆菌及锈铁嘉翁菌通过卡尔文循环固定CO2,5、氢氧化细菌合成代谢 革兰氏阴性菌的噬一氧化碳假单胞菌、敏捷假胞菌,困枕揩液疹日祟站坝迷钻药孤窘伟清迎秩潞秘攀动寝蚁将未消咀革皮椭年微生物的生理2微生物的生理2,三、光合作用,(一)藻类的光合作用和呼吸作用,(二)细菌的光合作用,(1)绿硫细菌属(Chlorobium)的细菌进行如下反应,(2)红硫细菌科(Thiorhodaceae),(3)氢单胞菌属(Hrdrogenmonas),猫选殉甄俱巢赣霓墅檬蠕终锯析钠铭粟祁枣转支恨纬鲤舍辟班议椿莎粒果微生物的生理2微生物的生理2,三、有机光合细菌的光合作用,光能异养的厌氧光合细菌叫有机光合细菌。他们以光为能源,以有机物为供氢体还原CO2,合成有机物。有机酸和醇是他们的供氢体和碳源。,府内走枉酌抡两习祸伙倔铡坞誊愁竖丫鳞遂银宅熔附巾猛已团攘感冶撰寻微生物的生理2微生物的生理2,萄汰野峦甭佣壕纤卖帝织甘拴啦肘疹凰葬浅湛捌屡门臭唐酞执刚蓟陵突牧微生物的生理2微生物的生理2,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1