光电效应与光伏电池.ppt

上传人:京东小超市 文档编号:6040219 上传时间:2020-08-26 格式:PPT 页数:35 大小:5.17MB
返回 下载 相关 举报
光电效应与光伏电池.ppt_第1页
第1页 / 共35页
光电效应与光伏电池.ppt_第2页
第2页 / 共35页
亲,该文档总共35页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《光电效应与光伏电池.ppt》由会员分享,可在线阅读,更多相关《光电效应与光伏电池.ppt(35页珍藏版)》请在三一文库上搜索。

1、光电效应与光伏电池,太阳电池的基本原理和发展概况,砰积有痪并渠逃琅姻悔骗盛摊腺游叙鄂龙浊氯扑扎曲煮糯础寅牌春诲题雷光电效应与光伏电池光电效应与光伏电池,主要内容,光电效应简介 太阳电池的开发背景 光伏效应的基本原理 太阳电池的发展历程(类型) 无机纳米晶/有机半导体杂化太阳电池 太阳电池的应用和未来展望,告鸯程可硫爆搞犁扶测卷壮茎彦剁腆绷婉窗惜朽讫郧菲延澎蠕概诬力舌烩光电效应与光伏电池光电效应与光伏电池,光电效应和外光电效应,光电效应(photoelectric):物体吸收了光能后转换为该物体中某些电子的能量而产生的电效应。 1887年Heinrich Hertz在实验中发现了光电效应,爱因斯

2、坦因采用光量子(photon)的概念成功的解释了光电效应而获得了1921年诺贝尔物理奖。根据电子吸收光子能量后的不同行为,光电效应可分为外光电效应和内光电效应。 外光电效应:在光线作用下,物体内的电子逸出物体表面向外发射的现象。 其主要应用有光电管和光电倍增管。,侗绸种桑叠逾骸畸沂于铬咕得诚湾镰框墟祭粱匝售蜒电酵覆线霉蚤唾颅黄光电效应与光伏电池光电效应与光伏电池,内光电效应及其应用,内光电效应:光照射到半导体材料上激发出电子-空穴对而使半导体产了产生的电效应。内光电效应可分为光电导效应、光生伏特效应。 光电导效应是指光照射下半导体材料的电子吸收光子能量从键合状态过渡到自由状态,从而引起材料电阻

3、率的变化。其应用为光敏电阻。 光生伏特效应是指光照射下物体内产生一定方向的电动势的现象。其应用主要有光伏电池、光(电)敏二极管、光(电)敏三极管等。,畦寂氛裳柏提观蜜沽豆殴戒空性蕊嘘负波哥崎厌反朱苯华粳证医雷佰桐园光电效应与光伏电池光电效应与光伏电池,Energy & Nanotechnology Conference, Rice Iniversity, May 3, 2003,削满魄牢掀琉箔巫难盒骡胁篱受往板微沥建汪梭街龋辜腥捶亚拴椿抨侮惋光电效应与光伏电池光电效应与光伏电池,全人类共同的挑战,化石能源的大量使用导致了全球气候变化。政府间气候变化专门委员会(IPCC)的综合评估结果表明:近5

4、0年全球大部分增暖,非常可能(90%以上)是人类活动的结果,特别是源于化石燃料使用导致的人为温室气体排放。,化石能源的开发利用造成环境污染。我国每年排入大气的污染物中,有约80%的烟尘、87%的SO2和67%的NOx来源于煤的燃烧。这些污染物会形成硫酸烟雾、酸雨以及其它光化学烟雾等。,化石能源行将枯竭带给人类巨大的挑战。按照2008年的开采速度计算,全球石油剩余探明储量可供开采42年,天然气和煤炭分别可供应60年和122年。2008年我国煤炭储采比约为41年,天然气和石油储采比分别约为32年和11年。,必须加强替代能源包括核能、风能、太阳能、水能、地热和海洋能等的开发利用。,库偿啼菏蚊胸痉悄怕

5、锌殃勇嚼咋劈钓敌扶直仟哆峦仟万吮古智渍袖堂铣噪光电效应与光伏电池光电效应与光伏电池,太阳能的优点和缺点,太阳能的优点:太阳能是人类可利用的最直接的清洁能源,它分布广阔,获取方便;不会污染环境,没有废水、废渣、废气的排放;可以就地开发利用,不存在运输问题。太阳表面释放的能量换算成电能的功率约为3.81023KW左右,其中约22亿分之一到达地球,约1.21014KW(1.35KW/m2,太阳常数),这相当于现在地球上消耗能量的约1万倍。根据目前太阳产生的核能速率估算,氢的贮量足够维持上百亿年,而地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是取自不尽,用之不竭的。 太阳能的缺点:能源密

6、度较低,并且具有间歇性,使其大规模使用的成本和技术难度均很高,目前太阳能所提供的能源占世界商业能源总量不足1%。,滚埋边聊毋侗既味圈韭顽斟馁炊露键梧贯审校婉裙喉慌窒五言蔽皱剿瞥杂光电效应与光伏电池光电效应与光伏电池,金属、导体和绝缘体,金属,半导体,绝缘体,金属的价带是半满的,所以金属能够导电;绝缘体的价带是全满的,并且具有较大的禁带宽度,所以不能导电;半导体的价带也是全满的,但由于其具有较窄的禁带宽度,所以在一定的条件下能够导电。其电导率在10-4到1010欧姆厘米之间。,坎淋锭清箍若脆骡间蝴仑荡砷眺拍略炸缨枯隔裕醚瞻炯狠叼喳搽驳捌具否光电效应与光伏电池光电效应与光伏电池,本征半导体和掺杂半

7、导体,本征半导体:没有杂质和缺陷的半导体。其原子的排列处于非常整齐的状态,在一定条件下少数电子可能挣脱束缚而形成电子载流子n0,同时留下带正电的空位(空穴hole)p0,且浓度n0=p0。在本征半导体中载流子的总数仍然不能满足导电性的需要,所以本征半导体实际用处不大。常见的本征半导体有硅(Si)、锗(Ge)、砷化镓(GaAs)等。 掺杂半导体:为了提高半导体的导电性能,可以通过添加杂质的办法降低其电阻率,提高其导电性。例如对本征半导体硅掺入百万分之一的杂质,其电阻率就会从105下降到只有几个欧姆厘米。 p-型半导体:positive, 通过掺杂增加半导体内的空穴载流子的浓度,使空穴(正电子)成

8、为多数载流子(多子); n-型半导体:negative, 通过掺杂增加半导体内的电子载流子的浓度,是电子称为多数载流子。,姚证掀监呐彩弛禾郎属观牲癌鞍身欧衍鼠妇灭剿接攒耸沼昨谆确笼便凯扁光电效应与光伏电池光电效应与光伏电池,以硅为例,理想的硅原子结构示意图: 添加3价元素硼后的示意图: 黄色表示B元素,蓝色点表示空穴。空穴容易吸收电子而中和,就像空穴在流动一样。 掺杂5价元素磷后的示意图: 黄色表示P元素,红色点表示多余的电子,它非常活跃,容易流动形成电流。,翌忍峙憨疹烹哗材恐釜汹褂比碌魂麓儡栓狈谜货装雾樟赞柬赠臃千劣榨携光电效应与光伏电池光电效应与光伏电池,当p-型和n-型半导体结合在一起时

9、,由于p-型半导体多空穴,n-型半导体多自由电子,在界面处出现了浓度差。n-区的电子会扩散到p-区,p-区的空穴会扩散到n-区,这样会在交界面区域形成一个特殊的薄层,即空间电荷区。空间电荷区存在一个从n-区指向p-区的内建电场阻止扩散进行,内建电场与半导体内的扩散达到平衡后,就形成了这样一个特殊的薄层,这就是p-n结。,纠哭魁井尺绪骚洗芦卉螺煌嗡名轩榷筹腥良狰槐透贷纫欢诧捅虽宾愈门蒋光电效应与光伏电池光电效应与光伏电池,当光照射p-n结上时,如果入射电子的能量大于半导体材料的禁带宽度(Eg),就会在半导体内产生大量的自由载流子-空穴和电子。它们在p-n结内建电场的作用下,空穴往p-区移动,使p

10、-区获得附加正电荷;而电子往n-型区移动, n-区获得负电荷,产生一个光生电动势,这就是光伏效应(光生伏打效应)。当用导线连接p-型区和n-型区时,就会形成电流.,必央好喜睹交预倦邀俗译闽旦狙傀瘤阎敢淀瑚留逝哑小篇匆惕桓戴砂追媳光电效应与光伏电池光电效应与光伏电池,光电效应与光伏效应,关于光电效应和光伏效应的关系,有以下两种观点: 光伏效应是光电效应的一种:基于这种观点的光电效应是指物体吸收光能后引起电性能变化的效应,包括内、外光电效应。 光电效应和光伏效应是不同的两个概念:可以从两个方面理解: 这种观点中的光电效应是狭义上的光电效应,仅指外光电效应。 这种观点中的光电效应定义不同,即phot

11、oemission非photoelectric,其对应的材料仅指的是金属。“利用金属的光电效应也可以制备太阳电池,有光照的金属其化学势会稍微大于没有光照的金属的化学势,从而产生光伏电压”,而“光生伏特效应是指光子入射到半导体的 p-n 结后,从 p-n 结的二端电极产生可输出功率的电压伏特值”。 这篇文章中还指出:并不是能够转换入射光子能量而直接产生输出电压的器件都叫光生伏特效应。例如Dember效应,指半导体吸收光子后产生能自由移动的电子和空穴,由于电子和空穴的扩散系数不一样,因此会在分布不均的电子和空穴间产生内建电场。又如基于光电化学效应的染料敏化太阳电池,因为要用到电解质且涉及到了化学反

12、应,也不属于光生伏特效应。,丈亮杨胜髓叠氮茬幻纸吁阀畸来丢圆澄虑痔锋璃样苫础阴榆晃唬鼓彬浪屹光电效应与光伏电池光电效应与光伏电池,光伏电池和光电二极管都是基于光伏效应的光电器件。其主要区别在于:光伏电池在零偏置下工作,而光电二极管在反向偏置下工作光伏电池的掺杂浓度较高1016-19从而具有较强的光伏效应,而光电二极管掺杂浓度较低1012-13光伏电池的电阻率较低0.1-0.01 /cm,而光电二极管则为1000/cm光伏电池的光敏面积要比光电二极管大得多,因此光电二极管的光电流小得多,一般在uA级。,样虞蛇享范翌哺立讶竞讣于溉蹲谰近阜脆课静揣璃忍铸栅饼迟吭不恋玫矿光电效应与光伏电池光电效应与光

13、伏电池,发光二极管:Light Emitting Diode,在电场作用下,电子和空穴分别从阴极和阳极注入,空穴和电子在发光层中相遇、复合形成激子,激子经过驰豫、扩散、迁移等过程复合而产生光子。,郁蕊甸嚷舶董杨足卤膳涣于颜色杯唆酥跺循询类狰粮说会尉啤窃啊渍敌槛光电效应与光伏电池光电效应与光伏电池,光伏电池的性能参数,光伏电池的主要性能参数有开路电压VOC、短路电流ISC、最大输出功率Pm、填充因子FF、能量转换效率PCE等。 开路电压open-circuit voltage:太阳电池处于开路状态时两端的电压,可用高内阻的直流毫伏计测量。 短路电流short-circuit current:太阳

14、电池处于短路状态时流过的电流,常用短路电流密度JSC代替,用内阻小于1的电流表测量。 最大输出功率:太阳电池的输出功率随负载电阻而变化,其最大值成为最大输出功率,Pm=VmIm。 填充因子Fill Factor:最大输出功率与开路电压和短路电流乘积之比,始终小于1,代表太阳能电池在最佳负载时能输出的最大功率的特性。 能量转换效率Power Conversion Efficiency:太阳电池的最大输出功率和入射光的功率之比。,潞禄使岳较仲砾顿仪衙磕洁鬃田倒蚌劲卤先疲先拽饼掸涯替所农贞讥脓法光电效应与光伏电池光电效应与光伏电池,太阳电池的伏安曲线,太阳能电池输出特性测量电路示意图。当负载从0变化

15、到无穷大时,输出电压V则从0变到VOC,同时输出电流便从ISC变到0,由此得到电池的输出特性曲线。,除了以上5个主要参数,有些文献上还提到了其它参数,如光电转换效率IPCE(mono-chromatic incident photon-to-electron conversion efficiency )、外量子效率EQE(external quantum efficiency )及内量子效率IQE(Internal Quantum Efficiency )。,忙蛊摸惺央曲扛升棉族呕股旅耿囱娩滚屈捂丘腔芋矩酸稻企踩懦许斋坞伎光电效应与光伏电池光电效应与光伏电池,光伏电池的等效电路,理想太阳电池

16、的等效电路:在恒定光照下,光电流是恒定的,它一部分流经负载,在负载两端建立起端电压;另一部分作用于p-n结,形成正向偏置,引起一股与光电流方向相反的暗电流。,实际太阳电池的等效电路:实际工作的太阳电池由于电极的接触和材料本身的电阻率,存在着串联电阻的损耗;电池边沿的漏电和电池的微裂纹、划痕等造成的金属桥漏电,相当于并联电阻的损耗。,捡涛蔬圭帛饭柯搀试异众薯酒儿型酬种切掖蓖稠婿够刑庭恋匝锯铬锤募召光电效应与光伏电池光电效应与光伏电池,单晶硅太阳电池生产简易流程,单晶硅太阳电池的制作过程: 砂子还原成冶金级硅:石英砂(SiO2)在电弧炉中用C还原为Si和CO,纯度一般95-99%,杂质为Fe、Al

17、、Ga、Mg等。冶金级硅提纯为半导体级硅:由工业硅制成硅的卤化物(如三氯硅烷,四氯化硅)通过还原剂还原成为元素硅,最后长成棒状(或针状、块状)多晶硅。半导体级硅转变为硅片:多晶硅经过区熔法(Fz)和坩埚直拉法(CG)制成单晶硅棒。硅片制成太阳电池:主要包括表面准备(化学处理和表面腐蚀)、扩散制(P-N)结、去边、去除背结、制作上下电极、制作减反射膜等。太阳电池封装成电池组件:将若干单体电池串、并联连接并严密封装成组件,主要有上盖板、粘接剂、底板、边框等部分。,城碱险疤那彤戌签轻风彬沂肤键抽株业杨坐顺饼搜隙铀剑曙巢频膨婶氦剧光电效应与光伏电池光电效应与光伏电池,太阳电池的类型,太阳能电池,蛮贺早

18、蹿住胎妨甥嘴骚船酸哨猾倦铡腮拆纸抛豫雪卵辈皋悠考衫关站隆钩光电效应与光伏电池光电效应与光伏电池,硅材料太阳电池,硅材料太阳电池: 单晶硅太阳电池: 以纯度为99.999%的单晶硅棒为原料制作而成,工艺复杂,电耗很大。目前单晶硅太阳电池的光电转换效率为15%左右,实验室可达25%,其理论最高效率为32%左右。 多晶硅太阳电池:按结构可分为两种,一种是块状(bulk),多半是用含有大量单晶颗粒的集合体,或用废次单晶硅料和冶金级硅材料熔化浇铸而成。制作工艺与单晶硅太阳电池相似,但材料制造简便,成本较低。另一种是薄膜状(thin-film),多采用化学气相沉积法(CVD)和液相外延法(LPPE)、溅射

19、沉积法制备。多晶硅薄膜电池成本远低于单晶硅电池,而效率高于非晶硅薄膜电池。多晶硅太阳电池目前光电转换效率12%左右,实验室可达19.8%。 非晶硅太阳电池:于1976年出现,硅材料消耗少,电耗低,常用辉光放电法、反应溅射法、化学气相沉积法、电子束蒸发法和热分解硅烷法制备。其光电转换效率较低,为10%左右,实验室可达14.5%。,蹭练混搬姬鼎毁腑篇鱼佑瓤煎敲径傣熊拌踌匀纱晨抵陛宽兔丛家传照篙僵光电效应与光伏电池光电效应与光伏电池,多元化合物薄膜电池,多元化合物薄膜电池: 砷化镓(GaAs)化合物薄膜太阳电池:砷化镓属于-化合物半导体材料,能隙(band gap,又叫禁带宽度forbidden b

20、andwidth)为1.4eV,并且耐高温性强,最高转换效率可达30%。砷化镓系列太阳能电池包括单晶GaAs、多晶GaAs、镓铝砷-GaAs异质结、金属-半导体GaAs、金属-绝缘体-半导体GaAs、GaSb(锑化镓)、GaInP等。 硫化镉(CdS)和碲化镉(CdTe)化合物薄膜电池:效率在10%以上。 铜铟硒(CuInSe2,CIS)和铜铟镓硒(CuInxGa1-xSe2,CIGS)化合物薄膜电池:CIS材料的能降为1.1eV,是良好的太阳能电池半导体材料,价格低廉、性能良好,目前光电转换效率约在15%左右。,指恨撬辫吠册粱峰塌籽苗瞎较升恿羹印眶计铲吸遁泌筹粘曳赎却漫缉夕羽光电效应与光伏电

21、池光电效应与光伏电池,有机半导体和无机半导体的区别,在无机半导体中,原子间因存在很强的相互作用(共价键或离子键)从而形成三维的周期晶格结构,原子间能级的重叠形成能带。而有机半导体中分子间只有很弱的范德华力结合在一起,导致分子的LUMO和HOMO之间相互作用力太弱不能形成导带和价带 (也可称之为“导带、价带”)。电子需要克服较大势垒而不能在分子间进行公有化运动,只能是以“跳跃”的方式运动,因此其载流子迁移率比无机半导体小很多。此外,无机半导体中吸收一定能量的光子后将会产生分离的自由点子和空穴,而有机半导体中产生的电子将束缚在空穴周围,形成呈电中性的电子空穴对-激子(exciton)。 有机半导体

22、材料也可区分为p-型与n-型的两大类, 缺电子型或可用作电子受体(Acceptor)的被称为n-型的有机半导体材料;而富电子型的或可用作电子给体(Donor)的化合物,则称为p-型半导体,因此p-n异质结在有机光伏器件中一般称作D-A结。多数的有机和高分子半导体材料是p-型的,如聚(苯乙烯撑) (PPV) 、聚噻吩、聚吡咯、聚苯胺等衍生物等。相比较起来n-型半导体种类较少,主要有PTCDI、苝类化合物、C60及其衍生物(PCBM)等。,害惺约兰鹰闲钱箱理册曼姜辣辆滁点晨可熊哲巫桔癌删纲数按竞啼卞要各光电效应与光伏电池光电效应与光伏电池,单层有机太阳电池,单层有机太阳电池又叫肖特基(Schott

23、ky)型太阳电池: 两个电极之间夹着一层有机材料,电极一般都是高功函数ITO(氧化铟锡)和低功函数金属Al、Ca、Mg,其内建电场源于两个电极的功函数差异或者金属-有机染料接触而形成的肖特基势垒。其性能强烈依赖于电极的性能,并且有机物的绝缘本性,只有当激子扩散到电极和材料接触处激子才可能分离,而扩散长度很短(10nm左右)使得产生的激子容易复合。,鸳栏瘟噪尤贼摄辰努惩集挑脂泰谴线旧跳四企梭池晃散孺峰版如疽卉深羔光电效应与光伏电池光电效应与光伏电池,A brief history of the development of organic and polymeric photovoltaics,

24、Solar Enegy Materials & Solar Cells, 2004, 83: 125-146,有机给体-受体异质结有机太阳电池: 当光与给体分子相互作用时,受激发的电子给体吸收光子,其最高已占轨道HOMO上的一个电子跃迁到最低未占轨道LUMO,形成激子,通常由于给体(p-型) LUMO的电离势比受体(n-型)LUMO的电离势低,电子就有给体转移到受体,从而完成电子的转移,实现激子的分离。激子分离后产生的电子和空穴向相反的方向运动,被收集在相应的电极上,形成光电压。C. W. Tang于1986年第一次提出了双层有机太阳电池的概念。,煞某庄砂频仙搏峭骡埋唉受悬飘橱跪巳枝炙八储峨直

25、斯枕耳玖首求浚任齿光电效应与光伏电池光电效应与光伏电池,混合异质结有机太阳电池,异质结电池中D-A界面处的激子分离最有效,但激子典型的扩散长度在10nm范围内,因此光激发层应尽量薄;而为了尽可能多的吸收光,又要求薄膜厚度应超过100nm。将施主材料和受主材料混合分布在同一层中,大大增加了施主/受主界面的面积,使激子能够运动非常短的距离就可以得到有效分离,这种结构叫分散式(混合或本体异质结Bulk Heterojuntion, BHJ)异质结。1994年将10:1(wt)的MEH-PPV和C60混合溶液制旋涂在ITO玻璃上支撑了第一个分散式聚合物异质结PV电池。 本体异质结结构是目前有机聚合物(

26、Polymer-fullerene)、有机小分子和无机纳米晶/有机半导体杂化太阳电池的主要研究方向。,昨屋兑蘑刷威域塑唤负位目文茅猖掩昭肖昆橙籍豪冗算歌徒混鱼郎雨比轴光电效应与光伏电池光电效应与光伏电池,染料敏化太阳电池,染料敏化太阳能电池模拟光和作用制作的,一般由多孔纳米TiO2薄膜组成的光阳极、镀铂对电极、染料敏化剂联(吡啶钌络合物)和电解质溶液(一般是I3/I)组成。吸附在纳米TiO2表面上的染料光敏化剂在可见光的作用下,电子通过吸收太阳光能而从基态跃迁到激发态。染料的激发态能级略高于TiO2导带能级,电子会注入到TiO2导带,被导电层收集后通过外回路回到对电极,产生光电流。被氧化的染料

27、分子被电解质溶液中的I还原为基态,电解质中产生的I3又被电子还原为I,从而构成了一个电化学循环。1991年瑞士的M. Grtzel教授制作了第一个染料敏化太阳电池,其转换效率达到7.9%,目前这种电池的转换效率可达11%以上,而其成本仅为硅太阳电池的1/5。,染料敏化太阳电池目前的主要挑战在于:高效电极的低温制备和柔性化;廉价、稳定的全光谱染料的设计和开发;液体电解质的封装和高效固态电解质的制备等。,翻裁曹付戈众氨泰碎咏褂江嫂绳毒觉坟锻染芍叛承液朔屉椿呸凛绪忘暗蝉光电效应与光伏电池光电效应与光伏电池,太阳光谱可以被分成连续的若干部分,用能带宽度与这些部分有最好匹配的材料做成电池,并按能隙从大到

28、小的顺序从外向里叠合起来,让波长最短的光被最外边的宽隙材料电池利用,波长较长的光能够透射进去让较窄能隙材料电池利用,这就有可能最大限度的将光能变成电能,这样的电池结构就是叠层电池,可以大大提高性能和稳定性。,捆廊案妹稻五令宦科幻俯疽堆梳沁评脸畴一杆煎档糟俘赡瀑浙丝挑合庆咸光电效应与光伏电池光电效应与光伏电池,概述,有机和无机材料复合物组成的杂化太阳电池,综合了无机半导体的优异性能和共轭聚合物的成膜性能。有机材料价格低廉,容易制备且能通过分子设计和化学合成调整其功能,而无机半导体能被制备成纳米结构,从而具有较高的吸光系数和尺寸可调性,通过改变纳米粒子的尺寸能改变其带隙进而调整其吸光范围。 CdS

29、、CdSe、CuInS2、TiO2和ZnO是目前研究得比较广泛的无机材料,其中ZnO相对于TiO2而言电导率较高,并且容易控制生长成纳米棒阵列结构或者纳米颗粒薄膜;常用的p型有机半导体有P3HT、MDMO-PPV及酞菁化合物等。目前制备杂化太阳电池薄膜的主要方法为旋涂法、电沉积法和层层自组装法(LBL:layer-by-layer assembly)。 目前有关nc-ZnO/有机半导体杂化太阳电池的研究方向主要有: nc-ZnO的不同制备方法、形貌及掺杂对器件性能的影响 聚合物的基团修饰或者混合对器件性能的影响 nc-ZnO和聚合物所用溶剂对器件性能的影响 缓冲层如V2O5,WO3,MoO3等

30、对杂化器件进行结构修饰对器件性能的影响 器件退火工艺对器件性能的影响,腿桓拖默奉参债仁结背雏挎蔫雏颁已蔗挛六巩宜联蚀空侯饿呜倦霸妄涝此光电效应与光伏电池光电效应与光伏电池,W. J. E. Beek, et al. Efficient hybrid solar cells from zine oxide nanoparticles and a conjugated polymer. Adv. Mater., 2004, 16(12): 1009-1014 器件结构为:ITO玻璃/PEDOT:PSS/nc-ZnO:MDMO-PPV/Al在0.71个太阳常数下PCE可达1.6%。 制备出能在氯苯(

31、或氯仿)与甲醇的混合溶液中稳定存在的ZnO纳米粒子,与溶解有MDMO-PPV的氯苯溶液混合后旋涂在提前旋涂一层PEDOT:PSS的ITO玻璃上,通过前驱体溶液中Zn2+:OH-浓度的比值调节ZnO粒子的尺寸由3.7nm到7nm不等,粒子尺寸越小,器件性能越高。活性层中ZnO的含量在70wt.%、活性层厚度在100nm时器件性能最佳。 用同样的方法通过加入2-丙胺活性剂制备出能在混合溶液中稳定存在的ZnO纳米棒,其性能稍微差于基于纳米粒子的器件,主要原因在于表面活性剂大大影响了器件的性能。 与此文章相比,我们需要解决的关键问题是CuPc的溶解。与共轭聚合物不同,其在有机溶剂中溶解度很低,文献中有

32、通过在有机溶剂中添加质子酸(浓硫酸或三氟乙酸TFA)提高其溶解度的报道,但这会影响ZnO粒子。 W. J. E. Beek, et al. Hybrid solar cells using a zine oxide precursor and a conjugated polymer. Adv. Funct. Mater., 2005, 15: 1703-1707,钟鸥十芭刘捷偶尘垦瞬汽温坚麦腹涂近惮虱迎须埋哄哄氯若吟浴媳政虱繁光电效应与光伏电池光电效应与光伏电池,除Beek外有关nc-ZnO杂化太阳电池的报道: Frederik C Krebs, et al. A simple nanost

33、ructured polymer/ZnO hybrid solar cell-preparation and operation in air. Nanotechnology, 2008, 19(42): 4013 Dongqin Bi, Fan Wu, Wenjin Yue, et al. Device performance correlated with structural properties of vertically aligned nanorod arrays in polymer/ZnO solar cells. J. Phys. Chem. C, 2010, 114: 13

34、846-13852 L. W. Ji, W. S. Shih, T. H. Fang, et al. Preparation and characteristics of hybrid ZnO-polymer solar cells. J. Mater. Sci., 2010, 45: 3266-3269 Narayan Ch. Das, Paul E. Sokol. Hybrid photovoltaic devices from regioregular polythiophene and ZnO nanoparticles composites. Renewable Energy, 20

35、10, 35: 2683-2688 Yun-Ju Lee, Matthw T. Lloyd, Dana C. Olson, et al. Optimization of ZnO nanorod array morphology for hybrid photovoltaic devices. J. Phys. Chem. C, 2009, 113: 15778-15782,丁徽蝶筛烧捐悯促梨离署律伯较孵箩然烁菱切下杭飘捏怖迄膛木篷谩犬卞光电效应与光伏电池光电效应与光伏电池,聚合物薄膜太阳电池的工业化,Frederik C. Krebs等人于2009年在Solar Energy Material

36、s & Solar cells、 Organic Electronics、 J. Mater. Chem等杂志上介绍了利用卷对卷(roll-to-roll)丝网印刷(screen printing)、涂布(spin cost)等技术制作的聚合物柔性太阳电池,PCE达到2.75%,并对提高这种电池的能量转换效率、生产成本和空气稳定性等性能的技术进行了分析。,瘁档格朵饿敖遣峪商硫窖侄文套钢榆加夫缀实娥响康土籽井滩控眺骂地呢光电效应与光伏电池光电效应与光伏电池,太阳能电池的应用,澳抓啊章洗讼捅延誓青告袁地锭疡匙讲晓灌近娶拘悯矣橱惰钻炕买匀殷霹光电效应与光伏电池光电效应与光伏电池,我国近期光伏发电的支

37、持重点,我国近期太阳能光伏发电方面的支持重点: 提高太阳电池能量转换效率的新概念、新机制研究。 光伏材料开发与性能改善。 光伏器件结构设计。 光伏材料和器件的制备与表征技术。 光伏系统及规模化利用相关的原理性、基础性、前瞻性问题。 我国将建设较大规模的太阳能光伏电站和太阳能发电电站,到2010年,建成大型并网光伏电站总容量2万千瓦,太阳能热发电总容量达到5万千瓦。到2020年,建成大型并网光伏电站总容量20万千瓦,太阳能热发电总容量达到20万千瓦。,但嫡狂键臂渤科煞哇遵丝茄闲穆硒村萌磕渭刀瘸兔纬莹灌硕盂红能昔靳釜光电效应与光伏电池光电效应与光伏电池,Thank You !,睦厅案檬描晃鹊乌仁穿刽羊蹲椰鸥余棕胰螟昌贩苇疥方赢霍蝎亿酿猩柯佣光电效应与光伏电池光电效应与光伏电池,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1