高中物理试卷分类汇编物理动能与动能定理(及答案)及解析.docx

上传人:大张伟 文档编号:8698735 上传时间:2020-12-23 格式:DOCX 页数:23 大小:170.80KB
返回 下载 相关 举报
高中物理试卷分类汇编物理动能与动能定理(及答案)及解析.docx_第1页
第1页 / 共23页
高中物理试卷分类汇编物理动能与动能定理(及答案)及解析.docx_第2页
第2页 / 共23页
高中物理试卷分类汇编物理动能与动能定理(及答案)及解析.docx_第3页
第3页 / 共23页
高中物理试卷分类汇编物理动能与动能定理(及答案)及解析.docx_第4页
第4页 / 共23页
高中物理试卷分类汇编物理动能与动能定理(及答案)及解析.docx_第5页
第5页 / 共23页
点击查看更多>>
资源描述

《高中物理试卷分类汇编物理动能与动能定理(及答案)及解析.docx》由会员分享,可在线阅读,更多相关《高中物理试卷分类汇编物理动能与动能定理(及答案)及解析.docx(23页珍藏版)》请在三一文库上搜索。

1、高中物理试卷分类汇编物理动能与动能定理( 及答案 ) 及解析一、高中物理精讲专题测试动能与动能定理1 如图所示,在水平轨道右侧固定半径为R 的竖直圆槽形光滑轨道,水平轨道的PQ 段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A 点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;( 3)当 R 满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

2、【答案】 (1) 10.5J( 2)3J( 3) 0.3mR0.42m或 0R0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。从A 到压缩弹簧至最短的过程中,由动能定理得 : - mgl+W 弹 0-mv0 2由功能关系: W 弹 =-Ep =-Ep解得 Ep=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得-2 mgl Ek-mv02解得 Ek=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得-2 mgR mv22- Ek小物块能够经过最高点的

3、条件mmg,解得 R0.12m小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即mv12mgR,解得 R 0.3m;设第一次自A 点经过圆形轨道最高点时,速度为v1,由动能定理得:2-2-2 mgR mv1mv0且需要满足mmg,解得 R0.72m ,综合以上考虑,R 需要满足的条件为:0.3mR0.42m或 0R0.12m。【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。2 某游乐场拟推出一个新型滑草娱乐项目,简化模型如图所示。游客乘坐的滑草车(两者的总质量为 60kg),从倾角为53 的光

4、滑直轨道AC 上的 B 点由静止开始下滑,到达C 点后进入半径为R 5m ,圆心角为53 的圆弧形光滑轨道CD ,过 D 点后滑入倾角为( 可以在 0剟75范围内调节)、动摩擦因数为3 的足够长的草地轨道3DE 。已知 D 点处有一小段光滑圆弧与其相连,不计滑草车在D 处的能量损失, B 点到C 点的距离为 L0 =10m , g10m/s 。求:(1)滑草车经过轨道D 点时对轨道 D 点的压力大小;(2)滑草车第一次沿草地轨道DE 向上滑行的时间与的关系式;(3)取不同值时,写出滑草车在斜面上克服摩擦所做的功与tan的关系式。2t【答案】 (1) 3000N ; (2)3; (3)见解析si

5、ncos3【解析】【分析】【详解】(1)根据几何关系可知CD 间的高度差H CDR 1cos532m从 B 到 D 点,由动能定理得mg L sin53HCD1 mv2002D解得vD10 2m/s对 D 点,设滑草车受到的支持力FD ,由牛顿第二定律FDmgm vD2R解得FD3000N由牛顿第三定律得,滑草车对轨道的压力为3000N 。(2)滑草车在草地轨道 DE 向上运动时,受到的合外力为F合 mg sinmg cos由牛顿第二定律得,向上运动的加速度大小为F合g sing cosam因此滑草车第一次在草地轨道DE 向上运动的时间为tvDg cosg sin代入数据解得t23 cossi

6、n3(3)选取小车运动方向为正方向。当0 时,滑草车沿轨道DE 水平向右运动,对全程使用动能定理可得mg L0 sinR(1cos ) +Wf 1 =0 0代入数据解得Wf 16000J故当0 时,滑草车在斜面上克服摩擦力做的功为W克16000J当 030时,则g sing cos滑草车在草地轨道DE 向上运动后最终会静止在DE 轨道上,向上运动的距离为v2x2Dg cos )2( g sin摩擦力做功为Wf 2mg cosx2联立解得Wf 26000(J)3 tan1故当 030 时,滑草车在斜面上克服摩擦力做的功为W克 26000(J)3 tan1当 3075时g sing cos滑草车在

7、草地轨道DE 向上运动后仍会下滑,若干次来回运动后最终停在D 处。对全程使用动能定理可得mg L0 sin R(1cos) +Wf 3 =00代入数据解得Wf 36000J故当 3075时,滑草车在斜面上克服摩擦力做的功为W克 36000J所以,当0 或 3075 时,滑草车在斜面上克服摩擦力做的功为6000J;当030时,滑草车在斜面上克服摩擦力做的功为6000(J) 。3 tan13 如图所示,质量为m=1kg 的滑块,在水平力F 作用下静止在倾角为=30的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v0=3m/s ,长为L=1.4m,

8、今将水平力撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同滑块与传送带间的动摩擦因数=0.25,g=10m/s 2求(1)水平作用力F 的大小;(2)滑块开始下滑的高度h;(3)在第 (2)问中若滑块滑上传送带时速度大于3m/s ,求滑块在传送带上滑行的整个过程中产生的热量Q【答案】(1)(2)0.1 m或0.8 m(3)0.5 J【解析】【分析】【详解】解:( 1)滑块受到水平推力F、重力 mg 和支持力FN 处于平衡,如图所示:水平推力解得:(2)设滑块从高为h 处下滑,到达斜面底端速度为v 下滑过程由机械能守恒有:,解得:若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到

9、向右的滑动摩擦力而做匀加速运动;根据动能定理有:解得:若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:解得:(3)设滑块在传送带上运动的时间为t,则 t 时间内传送带的位移:s=v0t由机械能守恒有:滑块相对传送带滑动的位移相对滑动生成的热量?4 如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接, C 点切线水平,长为L=4m 的粗糙水平传送带 BD 与平台无缝对接。质量分别为m1=0.3kg 和 m2 =1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。已知传送带以v0=1.5m/s 的速度向左匀速运动,小物体与

10、传送带间动摩擦因数为=0.15某时剪断细绳,小物体m1 向左运动,m2 向右运动速度大小为 v2=3m/s ,g 取 10m/s 2求:(1)剪断细绳前弹簧的弹性势能Ep(2)从小物体 m2 滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E(3)为了让小物体m1 从 C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径 R和小物体m1 平抛的最大水平位移x 的大小。【答案】 (1)19.5J(2)6.75J(3)R=1.25m 时水平位移最大为x=5m【解析】【详解】(1)对 m1 和 m2 弹开过程,取向左为正方向,由动量守恒

11、定律有:0=m1v1-m2v2解得v1=10m/s剪断细绳前弹簧的弹性势能为:E p1 m1v121 m2v2222解得Ep=19.5J(2)设 m2 向右减速运动的最大距离为x,由动能定理得:1-m2gx=0-m2v222解得x=3m L=4m则 m2 先向右减速至速度为零,向左加速至速度为 v0=1.5m/s ,然后向左匀速运动,直至离开传送带。设小物体 m2 滑上传送带到第一次滑离传送带的所用时间为t。取向左为正方向。根据动量定理得:m2gt=m2v0-( -m2v2)解得:t=3s该过程皮带运动的距离为:x 带 =v0t=4.5m故为了维持传送带匀速运动,电动机需对传送带多提供的电能为

12、:E=m2gx 带解得:E=6.75J(3)设竖直光滑轨道AC的半径为 R 时小物体 m1 平抛的水平位移最大为x。从 A 到 C 由机械能守恒定律得:1 m1v121 m1vC22mgR22由平抛运动的规律有:x=vCt 12R1 gt122联立整理得x4R(104R)根据数学知识知当4R=10-4R即 R =1.25m 时,水平位移最大为x=5m5 如图所示,固定的粗糙弧形轨道下端B 点水平,上端A 与 B 点的高度差为 h10.3 m ,倾斜传送带与水平方向的夹角为 37,传送带的上端C 点到 B 点的高度差为h 0.1125m( 传送带传动轮的大小可忽略不计) 一质量为 m1 kg 的

13、滑块 (可看作质点 )从2轨道的 A 点由静止滑下,然后从B 点抛出,恰好以平行于传送带的速度从C 点落到传送带上,传送带逆时针传动,速度大小为v 0.5 m/s ,滑块与传送带间的动摩擦因数为 0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g10 m/s 2,试求:(1).滑块运动至 C 点时的速度 vC 大小;(2).滑块由 A 到 B 运动过程中克服摩擦力做的功Wf;(3).滑块在传送带上运动时与传送带摩擦产生的热量Q.【答案】 (1) 2.5 m/s ( 2) 1 J ( 3) 32 J【解析】本题考查运动的合成与分解、动能定理及传送带上物体的运动规律等知识。(1)在 C 点

14、,竖直分速度: vy2gh21.5m / svyvcsin370 ,解得: vc2.5m / s(2)C 点的水平分速度与 B 点的速度相等,则 vB vx vC cos37 2m / s从 A 到 B 点的过程中,据动能定理得:mgh1 W f1 mvB2 ,解得: Wf 1J2(3)滑块在传送带上运动时,根据牛顿第二定律得:mgcos37 mgsin37 ma解得: a0.4m / s2vvc5s达到共同速度所需时间 ta二者间的相对位移xv vct vt 5m2由于 mgsin37mgcos37,此后滑块将做匀速运动。滑块在传送带上运动时与传送带摩擦产生的热量Q mgcos370x32J

15、6 如图所示,在某竖直平面内,光滑曲面AB 与水平面BC 平滑连接于B 点, BC右端连接内壁光滑、半径r=0.2m的四分之一细圆管CD,管口D 端正下方直立一根劲度系数为k=100N/m的轻弹簧,弹簧一端固定,另一端恰好与管口D 端平齐,一个质量为1kg 的小球放在曲面AB 上,现从距BC的高度为h=0.6m 处静止释放小球,它与BC间的动摩擦因数=0.5,小球进入管口C 端时,它对上管壁有FN=2.5mg的相互作用力,通过CD 后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能Ep=0.5J。取重力加速度g=10m/s2。求:(1)小球在 C 处受到的向心力大小;(2)在压缩弹簧过程中小球的最

16、大动能Ekm;(3)小球最终停止的位置。【答案】 (1)35N; (2)6J; (3)距离 B 0.2m 或距离 C 端 0.3m 【解析】【详解】(1)小球进入管口C 端时它与圆管上管壁有大小为F2.5mg 的相互作用力故小球受到的向心力为F向2.5mgmg3.5mg3.5 1 1035N(2)在C 点,由2vcF向 =代入数据得1 mvc2 3.5J2在压缩弹簧过程中,速度最大时,合力为零,设此时滑块离D 端的距离为x0则有kx0mg解得x0mg0.1mk设最大速度位置为零势能面,由机械能守恒定律有mg(r x0 )1 mvc2EkmE p2得Ekmmg (r x0 )1mvc2Ep33.

17、5 0.56J2(3)滑块从 A 点运动到 C 点过程,由动能定理得mg 3rmgs1 mvc22解得 BC间距离s0.5m小球与弹簧作用后返回C 处动能不变,小滑块的动能最终消耗在与BC水平面相互作用的过程中,设物块在BC上的运动路程为s ,由动能定理有mgs1 mvc22解得s0.7m故最终小滑动距离B 为 0.7 0.5m0.2m 处停下 .【点睛】经典力学问题一般先分析物理过程,然后对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。7 如图,在竖直平面内,半径R=0.5m 的光滑圆弧轨道ABC与粗糙的足够长斜面CD 相切于 C 点, CD 与水

18、平面的夹角=37,B 是轨道最低点,其最大承受力Fm=21N,过 A 点的切线沿竖直方向。现有一质量 m=0.1kg 的小物块,从 A 点正上方的 P 点由静止落下。已知物块与斜面之间的动摩擦因数 =0.5.取 sin37 =0.6.co37 =0.8,g=10m/s 2,不计空气阻力。(1)为保证轨道不会被破坏,求P、 A 间的最大高度差H 及物块能沿斜面上滑的最大距离L;(2)若 P、 A 间的高度差h=3.6m,求系统最终因摩擦所产生的总热量Q。【答案】 (1) 4.5m, 4.9m ;(2) 4J【解析】【详解】(1)设物块在 B 点的最大速度为vB,由牛顿第二定律得:Fmmg m v

19、B2R从 P 到 ,由动能定理得mg (H R)1 mvB202解得H=4.5m物块从 B 点运动到斜面最高处的过程中,根据动能定理得:-mg R( 1-cos37 )+Lsin37 - mgcos37 ?L=0 1 mvB22解得L=4.9m(3)物块在斜面上,由于mgsin37 mgcos37 ,物块不会停在斜面上,物块最后以B 点为中心, C 点为最高点沿圆弧轨道做往复运动,由功能关系得系统最终因摩擦所产生的总热量Q=mg (h+Rcos37 )解得Q=4J8 如图所示,在竖直平面内的光滑固定轨道由四分之一圆弧AB 和二分之一圆弧BC组成,两者在最低点B 平滑连接过BC圆弧的圆心O 有厚

20、度不计的水平挡板和竖直挡板各一块,挡板与圆弧轨道之间有宽度很小的缝隙AB 弧的半径为2R,BC 弧的半径为R.一直径略小于缝宽的小球在A 点正上方与A 相距 2R 处由静止开始自由下落,经A 点沿圆弧轨3道运动不考虑小球撞到挡板以后的反弹(1)通过计算判断小球能否沿轨道运动到C 点(2)若小球能到达C 点,求小球在B、 C两点的动能之比;若小球不能到达C 点,请求出小球至少从距A 点多高处由静止开始自由下落才能够到达C 点(3)使小球从A 点正上方不同高度处自由落下进入轨道,小球在水平挡板上的落点到O 点的距离x 会随小球开始下落时离A 点的高度h 而变化,请在图中画出x2 - h图象(写出计

21、算过程 )【答案】 (1) 1 mg(2) 41(3)过程见解析3【解析】【详解】(1)若小球能沿轨道运动到C 点,小球在C 点所受轨道的正压力N 应满足 N0设小球的质量为m,在 C 点的速度大小为vC,由牛顿运动定律和向心加速度公式有mvC 2NmgR小球由开始下落至运动到C 点过程中,机械能守恒,有2mgR1 mvC232由两式可知1Nmg3小球可以沿轨道运动到C 点 .(2)小球在C 点的动能为EkC,由机械能守恒得EkC设小球在 B 点的动能为EkB,同理有2mgR38mgREkB3得EkB EkC 4 1(3)小球自由落下,经ABC圆弧轨道到达C 点后做平抛运动。由动能定理得:12

22、mghmvC由平抛运动的规律得:R1 gt 22x=vCt解得:x2Rh因为 x3R ,且 vCgR 所以R 3Rh24x2-h 图象如图所示:9 如图所示,倾角为30的光滑斜面的下端有一水平传送带,传送带正以6m/s 的速度运动,运动方向如图所示一个质量为2kg 的物体(物体可以视为质点),从h=3.2m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失物体与传送带间的动摩擦因数为0.5,重力加速度g=10m/s 2,求:( 1)物体第一次到达 A 点时速度为多大?( 2)要使物体不从传送带上滑落,传送带AB 间的距离至少多大?( 3)物体随传

23、送带向右运动,最后沿斜面上滑的最大高度为多少?【答案】( 1) 8m/s ( 2)6.4m ( 3) 1.8m【解析】【分析】( 1)本题中物体由光滑斜面下滑的过程,只有重力做功,根据机械能守恒求解物体到斜面末端的速度大小;( 2)当物体滑到传送带最左端速度为零时, AB 间的距离 L 最小,根据动能定理列式求解;(3)物体在到达A 点前速度与传送带相等,最后以6m/s 的速度冲上斜面时沿斜面上滑达到的高度最大,根据动能定理求解即可【详解】(1)物体由光滑斜面下滑的过程中,只有重力做功,机械能守恒,则得:mgh1 mv22解得: v2gh2 10 3.2 8m/s(2)当物体滑动到传送带最左端

24、速度为零时,AB 间的距离 L 最小,由动能能力得:mgL01 mv22解得:v282m 6.4mLg20.5102(3)因为滑上传送带的速度是8m/s 大于传送带的速度6m/s,物体在到达A 点前速度与传送带相等,最后以v带6m/s 的速度冲上斜面,根据动能定理得:mgh01 mv带22得: hv带262m1.8m2g210【点睛】该题要认真分析物体的受力情况和运动情况,选择恰当的过程,运用机械能守恒和动能定理解题10 雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关,雨滴间无相互作用且雨滴质量不变,重力加速度为g;(1)质量为 m 的雨滴由静止开始,下落高度 h 时速

25、度为 u,求这一过程中空气阻力所做的功 W( 2)研究小组同学观察发现,下雨时雨滴的速度跟雨滴大小有关,较大的雨滴落地速度较快,若将雨滴看作密度为 的球体,设其竖直落向地面的过程中所受空气阻力大小为f=kr2v2,其中 v 是雨滴的速度,k 是比例常数,r 是球体半径a. 某次下雨时,研究小组成员测得雨滴落地时的速度约为v0,试计算本场雨中雨滴半径r的大小;b. 如果不受空气阻力,雨滴自由落向地面时的速度会非常大,其v- t图线如图所示,请在图中画出雨滴受空气阻力无初速下落的v- t图线( 3)为进一步研究这个问题,研究小组同学提出下述想法:将空气中的气体分子看成是空间中均匀分布的、静止的弹性

26、质点,将雨滴的下落看成是一个面积为 S 的水平圆盘在上述弹性质点中竖直向下运动的过程已知空气的密度为0,试求出以速度 v 运动的雨滴所受空气阻力f 的大小(最后结果用本问中的字母表示)【答案】( 1) W1mu2mgh( 2) r3kv02,24 g( 3) f2Sv2【解析】【详解】(1)由动能定理: mgh W1 mu22解得: W1mu2mgh2(2) a. 雨滴匀速运动时满足:4r 3g kr 2v02 ,33kv02解得 r4gb. 雨滴下落时,做加速度逐渐减小的加速运动,最后匀速下落,图像如图.(3)设空气分子与圆盘发生弹性碰撞在极短时间t 内,圆盘迎面碰上的气体质点总质量为:mS

27、 vt以 F 表示圆盘对气体分子的作用力,对气体根据动量定理有:F t m2v解得: F2 Sv2由牛顿第三定律可知,圆盘所受空气阻力FF2Sv211 如图所示,一个质量为m=0.2kg的小物体(P 可视为质点),从半径为R=0.8m的光滑圆强轨道的A 端由静止释放,A 与圆心等高,滑到B 后水平滑上与圆弧轨道平滑连接的水平桌面,小物体与桌面间的动摩擦因数为=0.6,小物体滑行L=1m后与静置于桌边的另一相同的小物体Q 正碰,并粘在一起飞出桌面,桌面距水平地面高为h=0.8m 不计空气阻力,g=10m/s2.求:(1)滑至 B 点时的速度大小;(2)P 在 B 点受到的支持力的大小;(3)两物

28、体飞出桌面的水平距离;(4)两小物体落地前损失的机械能.【答案】 (1) v14m/s (2) FN6N(3)s=0.4m (4) E=1.4J【解析】【详解】(1)物体 P 从 A 滑到 B 的过程,设滑块滑到B 的速度为v1 ,由动能定理有:12mgRmv1解得: v14m/s(2)物体 P 做匀速圆周运动,在B 点由牛顿第二定律有:FNmgmv12R解得物体 P 在 B 点受到的支持力FN6N(3) P 滑行至碰到物体 Q 前,由动能定理有 :mgL1 mv221 mv1222解得物体 P 与 Q 碰撞前的速度 v22m/sP 与 Q 正碰并粘在一起,取向右为正方向,由动量守恒定律有:m

29、v2mm v3解得 P 与 Q 一起从桌边飞出的速度v31m/s由平碰后 P、 Q 一起做平抛运动,有:h 1 gt 22sv3t解得两物体飞出桌面的水平距离s=0.4m(4)物体 P 在桌面上滑行克服阻力做功损失一部分机械能:E1mgL1.2J物体P 和 Q 碰撞过程中损失的机械能 :E21 mv221 (m m) v320.2J22两小物体落地前损失的机械能EE1E2解得: E=1.4J12 如图所示,一轻质弹簧左端固定在轻杆的A 点,右端与一质量m1kg 套在轻杆的小物块相连但不栓接,轻杆AC 部分粗糙糙,与小物块间动摩擦因数=02, CD 部分为一段光滑的竖直半圆轨道 小物块在外力作用

30、下压缩弹簧至B 点由静止释放 ,小物块恰好运动到半圆轨道最高点 D, BC5m ,小物块刚经过C 点速度 v4ms , g 取 10m / s2 ,不计空气阻力 ,求:( 1)半圆轨道的半径 R;( 2)小物块刚经过 C 点时对轨道的压力 ;(3)小物块在外力作用下压缩弹簧在B 点时,弹簧的弹性势能E p 【答案】 0.4m 50N 方向垂直向下 (3) 18J【解析】【分析】【详解】(1)物块由 C 点运动到D 点,根据机械能守恒定律2mgR1 mv22R=0.4m小物块刚过C 点时Nv2F mg = mR所以 FNv2mg m50 NR根据牛顿第三定律知小物块刚经过C 点时对轨道的压力:FFN50N方向垂直向下(3)小物块由 B 点运动到C 点过程中,根据动能定理W弹mgLBC1mv22带入数据解得: W弹 =18J所以 Ep 18J

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 科普知识


经营许可证编号:宁ICP备18001539号-1