高考物理曲线运动提高训练.docx

上传人:罗晋 文档编号:8699525 上传时间:2020-12-23 格式:DOCX 页数:12 大小:191.79KB
返回 下载 相关 举报
高考物理曲线运动提高训练.docx_第1页
第1页 / 共12页
高考物理曲线运动提高训练.docx_第2页
第2页 / 共12页
高考物理曲线运动提高训练.docx_第3页
第3页 / 共12页
高考物理曲线运动提高训练.docx_第4页
第4页 / 共12页
高考物理曲线运动提高训练.docx_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《高考物理曲线运动提高训练.docx》由会员分享,可在线阅读,更多相关《高考物理曲线运动提高训练.docx(12页珍藏版)》请在三一文库上搜索。

1、高考物理曲线运动提高训练一、高中物理精讲专题测试曲线运动1 如图所示,倾角为45的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b,整个轨道处在竖直平面内 . 一质量为速下滑进入圆环轨道,接着小滑块从最高点m的小滑块从导轨上离地面高为H=3ra 水平飞出,恰好击中导轨上与圆心的d 处无初O 等高的c 点 . 已知圆环最低点为e 点,重力加速度为g,不计空气阻力. 求:( 1)小滑块在 a 点飞出的动能;()小滑块在 e 点对圆环轨道压力的大小;( 3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】( 1)142mgr ;() ;( )Ek2=6mg2F314【解析】【分析

2、】【详解】( 1)小滑块从 a 点飞出后做平拋运动:水平方向: 2r vat竖直方向: r1gt 22解得: vagr小滑块在 a 点飞出的动能 Ek1mva21mgr22(2)设小滑块在e 点时速度为 vm ,由机械能守恒定律得:1 mvm21 mva2mg 2r22在最低点由牛顿第二定律:Fmgmvm2r由牛顿第三定律得:F=F解得: F =6mg(3) bd 之间长度为L,由几何关系得:L221 r从 d 到最低点 e 过程中,由动能定理 mgHmg cos L1mvm22解得42142 如图所示,竖直圆形轨道固定在木板 B 上,木板小球 A 静止在木板 B 上圆形轨道的左侧一质量为B

3、固定在水平地面上,一个质量为m 的子弹以速度v0 水平射入小球并停3m留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动圆形轨道半径为 R,木板B 和圆形轨道总质量为12m,重力加速度为g,不计小球与圆形轨道和木板间的摩擦阻力求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围32mv02(3) v04 2gR 或 45gR v0 8 2gR【答案】 (1)mv0(2) 16mg4R8【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题(1)子弹射入

4、小球的过程,由动量守恒定律得:mv0 (m3m)v1由能量守恒定律得:Q1 mv0214mv1222代入数值解得: Q3 mv028(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式(m3m)v12得 F1(m3m) gR以木板为对象受力分析得F212mgF1根据牛顿第三定律得木板对水平的压力大小为F2木板对水平面的压力的大小F216mgmv024R(3)小球不脱离圆形轨有两种可能性: 若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:1m 3m v12m 3m gR2解得: v042gR 若小球能通过圆形轨道的最高点小球能通过最高点有:(m 3m)v(m

5、 3m) gR22由机械能守恒定律得:1 (m 3m)v122(m 3m)gR1 ( m 3m)v2222代入数值解得:v04 5gR要使木板不会在竖直方向上跳起,木板对球的压力:F312mg(m3m)v在最高点有:F3(m3m)gR23由机械能守恒定律得:1(m 3m)v122(m 3m)gR1( m 3m)v3222解得: v082gR综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是v04 2gR 或 4 5gRv08 2gR3 如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点 D点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑

6、轨道MNP,其形状为半径R0.45m 的圆环剪去左上角 127 的圆弧, MN 为其竖直直径, P 点到桌面的竖直距离为R, P点到桌面右侧边缘的水平距离为1.5R若用质量 m1 0.4kg 的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m2 0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x 4t 2t 2,物块从 D 点飞离桌面后恰好由P 点沿切线落入圆轨道g 10m/s 2,求:(1)质量为 m2的物块在 D 点的速度;(2)判断质量为m2 0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为 m2 0.2kg 的

7、物块释放后在桌面上运动的过程中克服摩擦力做的功.【答案】( 1) 2.25m/s (2)不能沿圆轨道到达 M 点 ( 3) 2.7J【解析】【详解】(1)设物块由 D 点以初速度 vD 做平抛运动,落到P 点时其竖直方向分速度为:vy2gR2 100.45 m/s 3m/svy4tan53 vD3所以: vD 2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则2mgm v,R解得: vgR32 m/s2物块到达P 的速度:vPvD2vy2322.252 m/s 3.75m/s若物块能沿圆弧轨道到达M 点,其速度为vM ,由 D 到 M 的机械能守恒定律得:1 m2vM21 m2

8、vP2m2g 1 cos53R22可得: vM20.3375 ,这显然是不可能的,所以物块不能到达M 点(3)由题意知x 4t - 2t2,物块在桌面上过B 点后初速度vB 4m/s ,加速度为:a4m/s2则物块和桌面的摩擦力:m2 gm2 a可得物块和桌面的摩擦系数 :0.4质量 m1 0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:Epm1gxBC 0质量为 m20.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:Epm2 gxBC1 m2vB 22可得, xBC2m在这过程中摩擦力做

9、功:W1m2gx BC1.6J由动能定理, B 到 D 的过程中摩擦力做的功:W 21 m2vD21 m2v0222代入数据可得:W2 - 1.1J质量为 m20.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功WW1W22.7J即克服摩擦力做功为2.7 J.4 如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高质量为m 的小球从离B 点高度为h 处(3Rh3R )的A 点由静止开始下落,从B 点进入圆轨道,2重力加速度为g )( 1)小球能否到达 D 点?试通过计算说明;( 2)求小球在最高点

10、对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离 d 的范围【答案】(1)小球能到达D 点;( 2) 0F3mg ;( 3)2 1 Rd2 21 R【解析】【分析】【详解】(1)当小球刚好通过最高点时应有:mvD2mgR由机械能守恒可得:mg h RmvD22联立解得 h3 R ,因为 h 的取值范围为3 R h3R,小球能到达D 点;22(2)设小球在 D 点受到的压力为F ,则F mgmvD2Rmg h RmvD22联立并结合 h 的取值范围3 R h3R 解得: 0F3mg2据牛顿第三定律得小球在最高点对轨道的压力范围为:0 F

11、3mg(3)由( 1)知在最高点 D 速度至少为 vD mingR此时小球飞离 D 后平抛,有: R1 gt 22xminvD min t联立解得 xmin2RR ,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有: mg3mgm vD2maxR解得 vD max 2gR小球飞离 D 后平抛 R1 gt 2,2xmaxvD max t联立解得 xmax2 2R故落点与 B 点水平距离 d 的范围为:21 R d22 1 R5 一宇航员登上某星球表面,在高为 2m 处,以水平初速度 5m/s 抛出一物体,物体水平射程为 5m ,且物体只受该星球引力作用 求:( 1 )该星球表面

12、重力加速度( 2 )已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍【答案】( 1 ) 4m/s 2 ;( 2) 1 ;10【解析】(1)根据平抛运动的规律:xv0t得 t x 5 s1s v0 5由 h 1gt22得: g 22h 22 2 m / s24m / s2t1G M 星 m(2)根据星球表面物体重力等于万有引力:mgR星2G M 地 m地球表面物体重力等于万有引力:mgR地2M 星gR星241 21则 M 地g R地2= 10( 2 )10点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力

13、等于万有引力6 如图所示,半径R=0.40m 的光滑半圆环轨道处于竖起平面内,半圆环与粗糙的水平地面相切于圆环的端点A一质量 m=0.10kg 的小球,以初速度 V0=7.0m/s 在水平地面上向左做加速度 a=3.0m/s 2 的匀减速直线运动,运动4.0m 后,冲上竖直半圆环,最后小球落在C点求( 1)小球到 A 点的速度( 2)小球到 B 点时对轨道是压力( 3) A、 C 间的距离(取重力加速度 g=10m/s 2)【答案】 (1)VA5/s( 2) FN1.25 N (ACm3) S =1.2m【解析】【详解】(1)匀减速运动过程中,有:vA2v022as解得: vA 5m / s(

14、2)恰好做圆周运动时物体在最高点B 满足: mg=m vB21 ,解得 vB 1 =2m/sR假设物体能到达圆环的最高点112BB,由机械能守恒:mv2A=2mgR+ mv22联立可得 :vB=3 m/s因为 vBvB1,所以小球能通过最高点B此时满足 FN mgm v2R解得 FN1.25 N(3)小球从B 点做平抛运动,有:2R= 1 gt22SAC=vBt得: SAC=1.2m【点睛】解决多过程问题首先要理清物理过程,然后根据物体受力情况确定物体运动过程中所遵循的物理规律进行求解;小球能否到达最高点,这是我们必须要进行判定的,因为只有如此才能确定小球在返回地面过程中所遵循的物理规律7 如

15、图所示,光滑的水平平台上放有一质量M=2kg,厚度d=0.2m的木板,木板的左端放有一质量m=1kg 的滑块(视为质点),现给滑块以水平向右、的初速度,木板,不计空气阻力和碰撞时间,求:在滑块的带动下向右运动,木板滑到平台边缘时平台边缘的固定挡板发生弹性碰撞,当木板与挡板发生第二次碰撞时,滑块恰好滑到木板的右端,然后水平飞出,落到水平地面上的 A 点,已知木板的长度l=10m, A 点到平台边缘的水平距离s=1.6m,平台距水平地面的高度 h=3m ,重力加速度(1)滑块飞离木板时的速度大小;(2)第一次与挡板碰撞时,木板的速度大小;(结果保留两位有效数字)(3)开始时木板右端到平台边缘的距离

16、;(结果保留两位有效数字)【答案】 (1)(2)v=0.67m/s (3)x=0.29m【解析】【分析】【详解】(1)滑块飞离木板后做平抛运动,则有:解得(2)木板第一次与挡板碰撞后,速度方向反向,速度大小不变,先向左做匀减速运动,再向右做匀加速运动,与挡板发生第二次碰撞,由匀变速直线运动的规律可知木板两次与挡板碰撞前瞬间速度相等设木板第一次与挡板碰撞前瞬间,滑块的速度大小为,木板的速度大小为v由动量守恒定律有:,木板第一与挡板碰后:解得 :v=0.67m/s(3)由匀变速直线运动的规律:,由牛顿第二定律:解得 :x=0.29m【点睛】对于滑块在木板上滑动的类型,常常根据动量守恒定律和能量守恒

17、定律结合进行研究也可以根据牛顿第二定律和位移公式结合求出运动时间,再求木板的位移8 如图所示,轻绳绕过定滑轮,一端连接物块A,另一端连接在滑环C 上,物块A 的下端用弹簧与放在地面上的物块B 连接, A、B 两物块的质量均为m,滑环 C的质量为M,开始时绳连接滑环C 部分处于水平,绳刚好拉直且无弹力,滑轮到杆的距离为L,控制滑块4C,使其沿杆缓慢下滑,当C 下滑L 时,释放滑环C,结果滑环C 刚好处于静止,此时B3刚好要离开地面,不计一切摩擦,重力加速度为g(1)求弹簧的劲度系数;(2)若由静止释放滑环C,求当物块 B 刚好要离开地面时,滑环C 的速度大小【答案】( 1) 3mg( 2) 10

18、(2 Mm) gLL48m75M【解析】【详解】(1)设开始时弹簧的压缩量为x,则 kx=mg设 B 物块刚好要离开地面,弹簧的伸长量为x,则 kx=mg因此 x x mgk由几何关系得 2xL216 L2- L2 L93求得 x= L3得 k= 3mgL(2)弹簧的劲度系数为k,开始时弹簧的压缩量为mgLx13k当 B 刚好要离开地面时,弹簧的伸长量mgLx23k因此 A 上升的距离为h x1+x22L3C 下滑的距离 H(Lh)2L2 4L3根据机械能守恒1vH212MgH - mgh 2m(H 2L2 )2Mv(2 Mm)gL求得 v109 如图所示,一个质量为m=0.2kg 的小物体

19、(P 可视为质点 ),从半径为R=0.8m 的光滑圆强轨道的 A 端由静止释放,A 与圆心等高,滑到B 后水平滑上与圆弧轨道平滑连接的水平桌面,小物体与桌面间的动摩擦因数为=0.6,小物体滑行L=1m 后与静置于桌边的另一相同的小物体Q 正碰,并粘在一起飞出桌面,桌面距水平地面高为h=0.8m 不计空气阻力,g=10m/s2.求:(1)滑至 B 点时的速度大小;(2)P 在 B 点受到的支持力的大小;(3)两物体飞出桌面的水平距离;(4)两小物体落地前损失的机械能.【答案】 (1) v14m/s (2) FN6N(3)s=0.4m (4) E=1.4J【解析】【详解】(1)物体 P 从 A 滑

20、到 B 的过程,设滑块滑到B 的速度为v1 ,由动能定理有:12mgRmv1解得: v14m/s(2)物体 P 做匀速圆周运动,在B 点由牛顿第二定律有:FNmgmv12R解得物体 P 在 B 点受到的支持力FN6N(3) P 滑行至碰到物体 Q 前,由动能定理有 :mgL1 mv221 mv1222解得物体 P 与 Q 碰撞前的速度 v22m/sP 与 Q 正碰并粘在一起,取向右为正方向,由动量守恒定律有:mv2mm v3解得 P 与 Q 一起从桌边飞出的速度v31m/s由平碰后 P、 Q 一起做平抛运动,有:h1 gt 22sv3t解得两物体飞出桌面的水平距离s=0.4m(4)物体 P 在

21、桌面上滑行克服阻力做功损失一部分机械能:E1mgL1.2J物体P 和 Q 碰撞过程中损失的机械能 :E21mv221(m m) v320.2J22两小物体落地前损失的机械能EE1E2解得: E=1.4J10 如图所示, A、 B 两球质量均为m,用一长为l 的轻绳相连, A 球中间有孔套在光滑的足够长的水平横杆上,两球处于静止状态现给B 球水平向右的初速度v0,经一段时间后B 球第一次到达最高点,此时小球位于水平横杆下方l/2 处(忽略轻绳形变)求:(1)B 球刚开始运动时,绳子对小球B 的拉力大小T;(2)B 球第一次到达最高点时,A 球的速度大小v1;(3)从开始到 B 球第一次到达最高点

22、的过程中,轻绳对B 球做的功W【答案】( 1) mg+mv02v02gl( 3)mgl mv02( 2) v124l【解析】【详解】(1) B 球刚开始运动时,A 球静止,所以B 球做圆周运动对 B 球: T-mg=m v02l得: T=mg+m v02l(2) B 球第一次到达最高点时,A、 B 速度大小、方向均相同,均为v1以 A、B 系统为研究对象,以水平横杆为零势能参考平面,从开始到B 球第一次到达最高点,根据机械能守恒定律,1mv02mgl1mv12 1mv12mg l2222得: v1v02gl2(3)从开始到 B 球第一次到达最高点的过程,对B 球应用动能定理W-mg l1 mv121 mv02222得: W= mglmv024

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 科普知识


经营许可证编号:宁ICP备18001539号-1