[最新]论文 范文【 精品】高炉低碳炼铁分析.doc

上传人:土8路 文档编号:10096004 上传时间:2021-04-18 格式:DOC 页数:5 大小:19KB
返回 下载 相关 举报
[最新]论文 范文【 精品】高炉低碳炼铁分析.doc_第1页
第1页 / 共5页
[最新]论文 范文【 精品】高炉低碳炼铁分析.doc_第2页
第2页 / 共5页
[最新]论文 范文【 精品】高炉低碳炼铁分析.doc_第3页
第3页 / 共5页
[最新]论文 范文【 精品】高炉低碳炼铁分析.doc_第4页
第4页 / 共5页
[最新]论文 范文【 精品】高炉低碳炼铁分析.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《[最新]论文 范文【 精品】高炉低碳炼铁分析.doc》由会员分享,可在线阅读,更多相关《[最新]论文 范文【 精品】高炉低碳炼铁分析.doc(5页珍藏版)》请在三一文库上搜索。

1、高炉低碳炼铁分析高炉低碳炼铁分析 摘要:低碳经济是以低能耗、低污染、低排放为基础的经济发展模式,是对现行大量消耗化石能源、大量排放CO2的生产生活方式的根本变革。本文中笔者集合相关经验,首先概述了高炉炼铁碳的利用现状和未来CO2减排方向,深入分析了高炉低碳炼铁问题。 关键词:高炉炼铁、低碳、现状 中图分类号: TF54 文献标识码: A 一、前言 据统计,我国、工业能源消耗总量每年约为亿标准煤,其中15以上是钢铁工业消耗,能源消耗高达亿标准煤(含矿山、铁合金、焦化、耐材等),是能耗最高的行业。此外,钢铁冶金是基于碳的高温冶金过程,因此,钢铁工业每年产生大量的温室气体CO2以及多种大气污染物,如

2、硫氧化物、氮氧化物、各种烟尘和粉尘等,温室气体排放占全国工业总排放量的10.5,因此钢铁工业的节能减排意义重大。 二、高炉炼铁碳的利用现状和未来CO2减排方向 1. 高炉炼铁碳利用现状 钢铁生产工艺主要是将碳作为热源和还原材,因所需碳量与钢铁生产成本和效率有关,故业界长时间对碳的削减和有效利用进行了研究。向炼铁厂输送的碳最终作为CO2排放,高炉的还原材比与产生的CO2密切相关,故将高炉还原材比作为指标,可以把握最近数十年炼铁厂排放CO2的大致动向。最新统计表明,在主要产钢国家和地区,日、韩、德、EU15、南美等地的还原材比为500kg/t铁左右,中、印、俄等国甚至达到600kg/t铁以上,世界

3、平均水平约为500kg/t铁。 在资源和能源都短缺的日本,在减少钢铁生产所需碳材的同时,还引进了多种节能技术,如CDQ,高炉顶压发电等的普及率都达世界顶级水平,使钢铁生产能源利用效率达到世界最高水平。因此,促进日本向海外转移CO2减排技术,并构建有实效性的CO 2减排规则是很有必要的。 2.钢铁联合企业CO2排放结构 钢铁联合企业将大量的煤等化石燃料作为还原材和热源而用于炼铁工序,同时又将产生的煤气作为供给下游工序的能源。因此,输入碳X=Y+Z+P+Q,其中Y为炼铁工序的碳排量,Z为焦油类副产品中的碳量,P和Q分别为电站和下游工序的碳排量。高炉采用低还原材比操作的目的是通过减少碳输入量减少CO

4、2排放。 高炉中矿石还原直接产生的CO2大约20%,其他的则是由炼铁工序所供能源的消耗而产生的CO2。为减排CO2,必须考虑炼铁厂功能与能量平衡的匹配性,及CO2的整体排放状况。 3.未来减排方向 在定性分析钢铁生产CO2排放结构的基础上,提出减排CO2的大方向:一是提高能源利用率以节省能源;二是开发并采用新的低碳技术,从而削减所需碳量。同时采用清洁能源脱碳,并强化能源的再循环利用,以及采用生物能量等。另外一个重点是继续开发并完善CO2的分离、输送和贮藏技术。 三、高炉低碳炼铁分析 所谓低碳高炉就是减低还原材比的高炉。因高炉的物料平衡与热平衡与焦炉、热风炉等相关,故降低高炉还原材比即减少炼铁整

5、体碳量。降低高炉还原材的措施有利用还原平衡控制炉内气体组成,或改善热平衡等。但这些措施已接近操作极限,改善余地少,而控制还原平衡本身则是未来开展的方向。 使用高反应性焦炭可激活从低温开始的焦炭气化反应,利用其吸热效果而使炉内温度移向低温侧。但反应性上升会使焦炭强度下降的问题需要解决。 另外,还须考虑废塑料的再循环及生物能量的再利用。废塑料氢含量高,是有效减排CO2的喷吹还原材,已分别在JFE和新日铁的高炉实用化,及新日铁焦炉上使用。 日本国内的废弃物系生物质能贮存量若以碳换算可达3050万t,约相当于其年产塑料全碳量的3倍。然而这类物质的纤维素和木质素中氧含量高而能量密度低,作为热源和还原材的

6、置换效果差,使高炉操作范围变窄;同时这类物质粉碎困难也是个问题。对此,有研究报告提出利用气氛和温度控制干馏操作,可选择性地脱除生物质中的氧;且模型计算表明,吹入40k沙的干馏炭,可以使高炉减排5%的CO2。 由于在短期内我国钢铁行业还很难改变以煤为主的能源结构和废钢资源不足的现状。当前CO2的减排主要依赖于在淘汰落后装备和技术的前提下,采用技术改造和不断优化生产流程,以提高对副产煤气和余热、余能的回收利用率,从而进一步降低能源消耗,实现节能减排 1. 降低高炉燃料比的技术 炼铁系统减少CO2排放的研究方向主要有: (1)减少所用碳量,在现有高炉生产的基础上进一步降低燃料比。 (2)减少对碳的依

7、赖,开辟不含碳或者含碳少的还原剂,如天然气和废塑料等。因为煤炭是CO2排放量高的燃料,消耗每吨煤炭的碳排放量为0.7t,而天然气和塑料排放的CO2较少,消耗每吨天然气的碳排放量为0.39t。我国炼铁燃料比与国际先进水平的差距在40kg/t以上,主要原因是我国高炉风温比国际先进水平低100150;喷煤比与国际领先水平的差距在40kg/t左右;高炉入炉矿品位比国际先进水平低3%左右;焦炭灰分比工业发达国家高3%,含硫量高约1.5%,同时炉料成分波动大是我国燃料比高的重要原因。 2. 淘汰落后,实现装备大型化和合理化 高炉大型化具有生产效率高、降低消耗、节约人力资源、提高铁水质量、减少环境污染等突出

8、优点。据统计,落后的小高炉燃料比一般要比大高炉高3050kg/t。落后和低水平工业装备能耗高,二次能源回收低,污染处理难度大。如果钢铁企业开征碳税,将对炼铁生产装备、运行成本、生产规模和产品竞争力等产生深远的影响。因此钢铁工业尤其是炼铁企业要密切关注国家碳税政策制定的进展,及早编制低碳经济规划,研究和制定碳减排的实施方案。 3. 低碳炼铁共性和关键技术的集成 低碳炼铁共性和关键技术的集成主要有干法熄焦技术(CDQ)、煤调湿技术(CMC)、高炉喷吹废塑料、废塑料与煤共焦化、烧结余热回收蒸气或余热发电、高炉干式布袋除尘、煤气余压透平发电(TRT)、热风炉双预热和烟气余热利用技术、高炉富氧喷煤技术、

9、高炉煤气回收及综合利用、燃气-蒸气联合循环发电机组(CCPP)等技术,可降低生产过程的单位产品能耗并提高资源的综合利用率。 4. 重视低碳炼铁技术细节的改进 (1)降低烧结机漏风率 改善烧结机和冷却机及相关的风流系统的密封装置,减少烧结机漏风率(国际先进水平为10%20%;国内为30%50%)。采取低负压、低风量(烧结风量配备:日本为80%85%;我国为100105m3/m2有效抽风面积)的“慢风烧结”工艺。烧透烧好,不追求产量,力求低能耗。另外,提高风机效率(国外平均为85%;国内平均为78%)和工艺风机调速,以降低电能量消耗。 (2)合理的烧结返矿率 合理减少返矿(合理的返矿率在25%左右

10、,但我国烧结机返矿率一般在40%60%),重复烧结率高会大幅增加能耗。同时建立高水平的专家系统,精确烧结终点控制,实现自动化操作和管理,提高产品质量。 (3)降低高炉吨铁风耗 高炉利用系数冶炼强度/燃料比。提高利用系数有两个办法:一是高冶炼强度作业;二是降低燃料比。我国的一些中小高炉目前是通过采用大风量、高冶炼强度的方法达到提高利用系数的目的,在高炉设计时就采用大风机,风机出力与高炉容积比大于2,甚至达到2.5。由于风机处于“大马拉小车”的状态,风耗在13001500m3/t铁,因而造成了炼铁工序能耗高。因为燃烧1kg标煤,要2.5m3风,动力消耗0.85kg标煤。宝钢高炉的燃料比为484kg

11、/t左右,风耗在950m3/t铁左右。鼓风机与高炉炉容的比例应控制在1.61.7。 (4)脱湿鼓风 随着我国钢铁工业布局的调整,大型高炉转向沿海、沿江等地区建设,大气湿度波动对大型高炉的影响不容忽视。高炉鼓风含湿量每降低1g/m³,综合焦比降低1kg/t,增加喷煤2.23kg/t,置换焦炭1.78kg/t,因而脱湿鼓风减少炉腹煤气量,有利于高炉顺行而增加产能0.1%0.5%。同时还可节约鼓风机电耗,降低煤气消耗。 四、结语 在宿舍,在高炉低碳炼铁的实施过程中,我们不仅要推广低碳炼铁技术,降低高炉炼铁的能耗水平,还要积极探求新的生产流程,做好技术储备,进一步降低CO2排放量。 参考文献: 刘文权:低碳炼铁技术研究,冶金环境保护, 2011年04期 左海滨 张建良 王筱留:高炉低碳炼铁分析,钢铁, 2012年12期-分享文档,传播知识,赠人以花,手自留香。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 社会民生


经营许可证编号:宁ICP备18001539号-1