RC吸收计算应用要点.docx

上传人:苏美尔 文档编号:11642270 上传时间:2021-08-27 格式:DOCX 页数:15 大小:186.12KB
返回 下载 相关 举报
RC吸收计算应用要点.docx_第1页
第1页 / 共15页
RC吸收计算应用要点.docx_第2页
第2页 / 共15页
RC吸收计算应用要点.docx_第3页
第3页 / 共15页
RC吸收计算应用要点.docx_第4页
第4页 / 共15页
RC吸收计算应用要点.docx_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《RC吸收计算应用要点.docx》由会员分享,可在线阅读,更多相关《RC吸收计算应用要点.docx(15页珍藏版)》请在三一文库上搜索。

1、一种有效的反激钳位电路设计方法日期:2006-6-27 来源:电源技术应用作者:姜德来, 张晓峰, 吕征宇字体:大 中 小组0引言单端反激式开关电源具有结构简单、输入输出电气隔离、电压升/降范围宽、易 于多路输出、可靠性高、造价低等优点,广泛应用于小功率场合。然而,由于漏感影响,反激变换器功率开关管关断时将引起电压尖峰,必须用钳位电路加以抑制。由于RCD甘位电路比有源钳位电路更简洁且易实现,因而在小功率变换场合RCD甘位更有实用价值。 1漏感抑制变压器的漏感是不可消除的,但可以通过合理的电路设计和绕制使之减小。设计和绕制是否合理,对漏感的影响是很明显的。采用合理的方法,可将漏感控制在初级电感的

2、2%左右。设计时应综合变压器磁芯的选择和初级匝数的确定,尽量使初级绕组可紧密 绕满磁芯骨架一层或多层。绕制时绕线要尽量分布得紧凑、均匀,这样线圈和磁路空 间上更接近垂直关系,耦合效果更好。 初级和次级绕线也要尽量靠得紧密。2 RCD钳位电路参数设计2.1 变压器等效模型图1为实际变压器的等效电路,励磁电感同理想变压器并联,漏感同励磁电感串联。励磁电感能量可通过理想变压器耦合到副边,而漏感因为不耦合,能量不能 传递到副边,如果不采取措施,漏感将通过寄生电容释放能量,引起电路电压过冲和 振荡,影响电路工作性能,还会引起EMI问题,严重时会烧毁器件,为抑制其影响,可在变压器初级并联无源 RCD甘位电

3、路,其拓扑如图 2所示。图1 实际变压器等效模型图2 RCl)钳位电路2.2 钳位电路工作原理引入RCD甘位电路,目的是消耗漏感能量,但不能消耗主励磁电感能量,否则会降低电路效率。要做到这点必须对 RC参数进行优化设计,下面分析其工作原理:当S1关断时,漏感Lk释能,D导通,C上电压瞬间充上去,然后 D截止,C通过R放电。(b)(1出口利人(c)偏L% A . H、I II I III I I I III II I实验表明R或C值越小就会这样,R太小,放电就快, C太小很快充满,小到一定程度就会这样回到零。ILI II III I图3 钳位电容电压波形1)若C值较大,C上电压缓慢上升,副边反激

4、过冲小,变压器能量不能迅速传递到副边,见图3(a);2)若C值特别大,电压峰值小于副边反射电压,则钳位电容上电压将一直保持在副边反 射电压附近,即钳位电阻变为死负载,一直在消耗磁芯能量,见图 3(b);3)若RC值太小,C上电压很快会降到副边反射电压,故在St开通前,钳位电阻只将成为反激变换器的死负载,消耗变压器的能量,降低效率,见图 3(c):4)如果RC值取得比较合适,使到 S1开通时,C上电压放到接近副边反射电 压,到下次导通时,C上能量恰好可以释放完,见图 3(d),这种情况钳位效果较好, 但电容峰值电压大,器件应力高。第2)和第3)种方式是不允许的,而第1)种方式电压变化缓慢,能量不

5、能被迅速传递,第4)种方式电压峰值大,器件应力大。可折衷处理,在第4)种方式基础上增大电容,降低电压峰值,同时调节R ,使到S1开通时,C上电压放到接近副边反射电压,之后 RC继续放电至S1下次开通,如图3(e)所示。本人认为此分析清楚 地说明RC放电时间常数要大于开关周期,至少要大于截止时间, 也就是RC振荡频率小于开关频率。2.3 参数设计S1关断时,Lk释能给C充电,R阻值较大,可近似认为 Lk与C发生串联谐 振,谐振周期为TLC=2兀JLIC,经过1/4谐振周期,电感电流反向,D截止,这段时间很短。由于 D存在反向恢复,电路还会有一个衰减振荡过程,而且是低损的,时 间极为短暂,因此叮以

6、忽略其影响。总之,C充电时间是很短的,相对于整个开关周期,可以不考虑。本人认为这讲的极有道理,开关管截止时间里充电过后就要放电, 所以在实际实验中如果 R太小还没到开关管导通 C的电已放完了,故出现了一个平台, 这时会消耗反射电压的能量,所以R的取值一定要使C的放电电压在开 关管导通时不小于反射电压。在进入到导通时间后c的电压为负值,千万不要认为是某个电压对 C反向充电,本人认为是开关管导通后呈现的低电位。对于理想的钳位电路工作方式,见图 3(e)。S1关断时,漏感释能,电容快速 充电至峰值 Vcmax;之后RC放电。由于充电过程非常短,可假设RC放电过程持续整个开关周期。RC值的确定需按最小

7、输入电压(但有的书上说是按最大值 ,实际测试表明似乎应是最大值),最大负载,即最大占空比条件工作选取,否则,随着D的增大,副边导通时间也会增加,钳位电容电压波形会出现平台,钳位电路将消耗主励磁电感能 量。对图3(c)工作方式,峰值电压太大,现考虑降低Vcmax。Vcmax只有最小值限制,必须大于副边反射电压可做线性化处理来设定Vcmax,如图4所示,由几何关系得rjti - jL/mai卜mm*史U匕, 为保证si开通时,c上电压刚好放到 A:需满足/(3)(4)将(1)式代入(2)式可得对整个周期RC放电过程分析,有J _ r ,一者图7 钳位电容电压I样f:适中1T%g 博)妻 ASH图S

8、 MOS管漏极电压(四f;适中)图7显示在副边反射电压点没有出现平台,说明结果与理论分析吻合。4 结语按照文中介绍的方法设计的钳位电路,可以较好地吸收漏感能量,同时不消耗主励磁电感能量。经折衷优化处理,既抑制了电容电压峰值,减轻了功率器件的开关应力,又保证了足够电压脉动量,磁芯能量可以快速、高效地传递,为反激变换器的设计提供了很好的依据。网上相关人员讨论:1关于吸收电路的问题,很有分析的必要,我也曾对此仔细分析过。我再分析一下,你可以按照这个思路自己进行计算。开关管漏极上的电压由三部分组成:电源电压,反击感应电压 ( 等于输出电压除以杂比 ) ,漏感冲击电压。吸收电路,一定要让他只吸收漏感冲击

9、电压,而不要对另外电压起作用,那样不仅会增大吸收电阻的负担,还会降低开关电源的效率。首先计算吸收电阻的功耗,如果能做到只对漏感能量吸收,那么他的功率容量应该是漏感功率的 1.5-2 倍。漏感的量能为0.5*Ls*Ip*Ip*f , f=工作频率,Ls=漏感,Ip关断时的开关管峰值电流,这样算出来的结果是很准确的。由于吸收电容的另一端是接在正电源上的,所以它的电压只有两部分:反击感应电压 ( 等于输出电压除以杂比 ) ,漏感冲击电压。电压是一个微分波形,也就是电容放电波形,随着放电,电压会越来越低,当开关管的截止期结束时,一定不要让电压下降到反激感应电压以下,否则就会损耗“本体”能量。再计算吸收

10、元件的数值,电容太小时,漏感能量灌入后,电压会突升的太高,有可能击穿开关管,可以根据你的开关管耐压,和你希望的振铃高度,确定一个峰值电压,比如 100 伏,截止期结束时,我们给他定一个终止电压,比如 50 伏,这样,就可以计算出吸收电容的数值来:原理是 , 电容电压变化量所导致的能量差 = 一个周期的漏感能量。 (上面的公式5)假设反激感应电压为U,那么电容电压的最大值就是(U+100),最小值就是(U+50) ,电容中的能量有一个计算公式, Ec=0.5*C*U*U,所以,能量差就是:Ech-Ecl=0.5*C*(U+100)*(U+100)-(U+50)*(U+50), U是已知的,能量差

11、也是已知的,电容还算不出来吗?最后计算吸收电阻。电容放电公式:u=Uo*exp(-t/ r), t/ T=-ln(U+50)/(U+100) 经本人推算应是 t/ r =-ln(U+100)/(U+50),或-t/ r =-ln(U+50)/(U+100), 掉了个负号原文作者在发贴时可能笔误, t= 截止期时间 ( 按正常工作时的截止时间计算),可以算出r , p =RC收时间常数,那么吸收电阻不也就出来吗?本人认为这个讲的有道理.2. 按上述理论进行计算:变压器初级电感L=632uH漏感Llou= 29uH。先算Ip:假定最大输出功率时是DCMK式.则 Pin = 0.5*Ls*Ip*Ip

12、*fIp = (Pin/0.5*Ls*f)(0.5) =(P0/ 4 *0.5*Ls*f)(0.5)(150/0.85*0.5*623*10(-6)*70*10(3)= 2.7A漏感的能量为0.5*Ls*Ip*Ip*f , f=工作频率,Ls=漏感,Ip关断时的开关管峰值 电流Wlou= 0.5*Ls*Ip*Ip*f= 0.5 * 29*10(-6) * 2.7 * 2.7 * 70*10(3) = 7.3 W由上面漏感能量数值可看出,漏感能量太大了,如果此能量全都由电阻来消耗,按两倍功率计算,要15W勺电阻。这是无法办到的。这么大的功耗,从上面计算可以看出,是由于初级Ip 太大造成的。如果是

13、几十 W勺电源,那么功耗就可以接受了对以上结果,请问计算有问题没有?有什么办法?3.是的,这个功耗是太大,漏感功耗没有别的去处,只能消耗在吸收电阻上。像这种功率较大的开关电源,一般都是工作在连续状态,否则,开关管的功率容量和磁芯的功率容量都得不到充分利用,还有一个问题,就是工作在不连续或者临界状态的变压器,由于其磁通变化量太大,变压器的发热量也是个不容忽视的问题。我上面没说,你的初级电感量太小,变压器可能工作在非连续状态。增大电感量,初级电流自然就降下来了。你可以这样计算:让磁通的变化量( p-p ) /磁通平均值=0.3 左右。另外,如果电源的安全系数要求不是太高(医疗仪器要求高) ,可以适

14、当减小初次级之间的绝缘厚度,以减小漏感,你的漏感量在正常的数值范围内,但不是特别的小,大功率的电源,漏感就是个很麻烦的问题4. 你好,非常感谢。初级电感和漏感的数值在上面第十贴中写出来了,我是刚测的数据。测时发现,初次级间不加铜皮屏蔽漏感小。这应是正常的吧。也可能是漏感加大的缘故,加了屏蔽后尖峰反而大了。5. 初次级间不加铜皮屏蔽漏感小,是正常的。所谓漏感是通过本线圈的磁力线没有完全通过另一线圈所产生的,增加铜皮屏蔽,相当于线圈之间的耦合难度增大,故漏感增大,分布电容减少。想减少尖峰,最好的办法是减少变压器漏感,其次是在MO第漏极加磁珠,这样都会减少损耗,还有就是无损吸收,最后就是用RCCK种

15、有损吸收的方式。6. 是的 , 铜箔不是磁性材料, 它只对电场起作用 , 对磁场而言 , 它和绝缘材料差不多.网上有人这样讲: rcd 的 rc 时间常数必须长于开关周期,也就是rc 震荡频率要小于开关频率,这样子防止在管子未开通前放电完毕而导致二极管再次开通,造成系统的震荡.本人仔细分析了一下,这样讲有一定的道理,但开关电源设计指 南P126里讲RC时间常数等于第一个尖峰和第二个尖峰时间的3倍就够了 ,这个我认为有点错,因为有人讲振荡频率是指第一个脉冲以后的,从图上看基本差不 多,第一个脉冲是漏感往C里面充电的过程,然后根据回复时间 D有一个关断过 程,当然认为是一个振荡也可以,只是时间和后

16、面的振荡相比就太长了。所以一 般认为一两个脉冲之后的才算振荡(前几个脉冲由于单向导电也不象正旋波),因为后面的振荡和RC基本无关了,只有第一个尖峰脉冲的能量被吸收,后面的 脉冲电压都达不到吸收的门槛电平,所以是在自己震荡,与R,C无关了.只有第 一个尖峰脉冲的能量被吸收,后面的脉冲电压都达不到吸收的门槛电平,所以是 在自己震荡(本人认为是漏感和分布电容) ,与R,C无关了 .如果RC时间常数太小了,在截止时间内C的电放完了,那反激电压岂不是又要向 C充电而形成振荡?本人认为至少要大于开关管截止时间.这是电源网上另一个人讲的:RC比给变压器漏感提供泻放回路的。反激变 换同正激有所不同,反激变压器

17、可以看作是一个耦合电感,所以不像正激一样有 磁芯复位的要求。但是,由于反激变压器大都开了气隙,所以漏感比较大,漏感 能量也比较大需要一个泻放的通路。上面接法的RCD勺作用就是当开关管关断时 漏感电流通过D对C充电,由于C的存在形成LC谐振。一般来讲是需要限制这 个谐振电压的峰值的。应该是输入直流电压最大值 +次级按变比折算过来的反射 电压+LC谐振峰值电压MOS勺额定电压。R的作用是降低LC的Q值,使震荡衰 减。一般控制LC频率在开关频率三倍以上,这不是绝对。频率越高则电容越小, 但是谐振峰值大,频率低了谐振的时间就比较长,影响能量传递。R大了衰减的比较慢,增加管子的损耗和干扰(谐振能量)。小了则增加损耗降低效率。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 科普知识


经营许可证编号:宁ICP备18001539号-1