化学经典文献汇总.docx

上传人:scccc 文档编号:13811173 上传时间:2022-01-24 格式:DOCX 页数:3 大小:11.78KB
返回 下载 相关 举报
化学经典文献汇总.docx_第1页
第1页 / 共3页
化学经典文献汇总.docx_第2页
第2页 / 共3页
化学经典文献汇总.docx_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

《化学经典文献汇总.docx》由会员分享,可在线阅读,更多相关《化学经典文献汇总.docx(3页珍藏版)》请在三一文库上搜索。

1、高分子1. T. Yokozawa and Y. Ohta. Transformation of Step-Growth Polymerization into Living Chain-Growth Polymerization. Chemical Review, 116: 1950 -1968, 20162. X. Q. Cheng, Z. X. Wang and X. Jiang et al. Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emergi

2、ng materials. Progress in Materials Science, 92: 258-283, 20183. Stephen Mann. Life as a Nanoscale Phenomenon. Angew. Chem. Int. Ed., 47: 5306- 5320,2008 (超标,但经典)4. A. Ciferri. Translation of Molecular Order to the Macroscopic Level. Chemical Review, 116: 1353 T374, 20165. A. Gandini, T. M. Lacerda

3、and A. J. F. Carvalho et al. Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides. Chemical Review, 116: 1637-1669, 20166. H. Abbasi, M. Antunes and J. I. Velasco. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding.

4、 Progress in Materials Science, 103: 319-373, 20197. Z. Li, L. Wang and Y. Li et al. Carbon-based functional nanomaterials: Preparation, properties and applications. Composites Science and Technology, 179: 10-40, 20198. C. Pramanik, D. Nepal and M. Nathanson et al. Molecular engineering of interphas

5、es in polymer/carbon nanotube composites to reach the limits of mechanical performance. Composites Science and Technology, 166: 84-96, 20189. L. Liu, C. Jia, J. He et al. Interfacial characterization, control and modification of carbon fiber reinforced polymer composites. Composites Science and Tech

6、nology, 121: 56-72, 201510. J. Karger-Kocsis, H. Mahmood and A. Pegoretti. Recent advances in fiber/matrix interphase engineering for polymer composites. Progress in Materials Science, 73: 1-43, 2015材料化学11. B. Kang , G. Ceder, Battery materials for ultrafast charging and discharging J, Nature, 2009,

7、 458: 190-193.12. H. G. Yang, C. H. Sun, S. Z. Qiao, Anatase TiO2 single crystals with a large percentage of reactive facetsJ. Nature, 2008, 453(7195): 638-641.13. 孙世刚,陈胜利,电化学丛书:电催化M,化学工业出版社,2013年11月1日.14. Y. Xie, Y. Qian, W. Wang, S. Zhang, Y. Zhang, A Benzene-thermal synthetic route to nanocrystal

8、line GaN. Science, 1996, 272 (5270):1926-1927.15. F. Caruso, R. A. Caruso, H. Mohwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating, Science, 1998, 282(5391):1111-4.化学16. “ ResearcPerspectives during 40 years of the Journal of Catalysis Journal of Catalysis, Volume2

9、16, Issues 1-2, May-June 2003, Page 2-11.17. “With Computers from Atoms to Macromolecular Systems ( 从原子到大分子体系的计算机 模拟),Enrico Clementi, Giorgina Corongiu, Progress in Chemistry (化学进展)2011, Vol.23, Issues 9,1795-1830.(第 23 卷第 9 期 1795-1830, 2011 年 9 月).18. “Theole of analytical chemistry in exposure s

10、cience: Focus on the aquatic environment ” Chemosphere, 2019, 222, 564-583.19. “Photoredox functionalization of C-H bonds adjacent to a nitrogen atom. Chem. Soc. Rev,Shi, L.; Xia, W., 2012, 41 (23), 7687-97.20. Decarboxylative sp3 C-N coupling via dual copper and photoredox catalysis,“ Liang, Y.; Zh

11、ang, X.; MacMillan, D. W. C., Nature 2018, 559 (7712), 83-88应用化学21. M. Saliba, T. Matsui, J.Y.Seo, K. Domanski, J.P Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibili

12、ty and high efficiency. Energy Environ Sci, 2016, 9(6):1989-199722. S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao, W. Sun, Y. Li, F. Gu, J. Wang, Z. Liu, Z. Bian, C. Huang, A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiour

13、ea)I. J Am Chem Soc, 2017, 139(22):7504-751223. Y. Tu, X. Yang, R. Su, D. Luo, Y. Cao, L. Zhao, T. Liu, W. Yang, Y. Zhang, Z. Xu, Q. Liu, J. Wu, Q. Gong, F. Mo, R. Zhu, Diboron-assisted interfacial defect control strategy for highly efficient planar perovskite solar cells. Adv Mater, 2018, 30 (49):1

14、80508524. H. Tan, A. Jain, O. Voznyy, X. Lan, F.GP. de Arquer, J.Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan,.FLi, L.N. Quan, Y. Zhao, Z.H. Lu, Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355 (6326):722-72625. J.

15、Liang, Z. Liang, R. Zou, Y. Zhao, Heterogeneous catalysis in zeolites, mesoporous silica, and metal-organic frameworks, Adv. Mater. 2017, 29(30): 1701139.26. M. Dong, M. Zhao, S. Ou, C. Zou, C.Wu, A Luminescent DyeMOF Platform: Emission Fingerprint Relationships of Volatile Organic Molecules. Angew.

16、 Chem. Int. Ed. 2014, 53, 1575 T579.27. X. Xu, B. Yan, Intelligent Molecular Searcher from Logic Computing Network Based on Eu(III) Functionalized UMOFs for Environmental Monitoring. Adv. Funct. Mater. 2017, 27, 1700247-1700258.28. N. Du, J. Song, S. Li, Y. Chi, F. Bai, Y. Xing, A Highly Stable 3D L

17、uminescent Indium-Polycarboxylic Framework for the Turn-off Detection of UO22+,Ru3+, and Biomolecule Thiamines. ACS Appl. Mater. Interfaces 2016, 8, 28718-28726.29. J. M. Slocik, C. A. Crouse, J. E. Spowart, R. R. Naik, Biologically tunable reactivity of energetic nanomaterials using protein cages .

18、 Nano Lett. 2013, 13:2535-2540.30. H. Wang, R. J. Jacob, J. B. DeLisio, M. R. Zachariah, Assembly and encapsulation of aluminum NP svithin AP/NC matrix and their reactive properties, Combustion and Flame, 2017, 180:175 T83.31. X. Jin, V. Balasubramanian, T. Selvan, et al. Highly ordered mesoporous c

19、arbon nitride nanoparticles with high nitrogen content: a metal - frebasic catalyst. Angewandte Chemie International Edition, 2009, 48(42): 7884-7887.32. A. Vinu, K Ariga, T. Mori, et al. Preparation and characterizatio n of well - ordered hexagonal mesoporous carbon nitride. Advanced materials, 200

20、5, 17(13): 1648-1652.33. J. Senker, K. Schwinghammer, B. Lostch, et al. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. Journal of the American Chemical Society, 2014, 136(5): 1730-1733.34. F. M. Zhang, J. L. Sheng, Z. D. Yang, X. J. Sun, H. L. Tang, M. Lu, H. Do

21、ng, F. C. Shen, J. Liu, and Y. Q. Lan, Rational Design of MOF/COF Hybrid Materials for Photocatalytic H2 Evolution in the Presence of Sacrificial Electron Donors. Angew. Chem. Int. Ed. 2018, 57, 12106 T211035. C. Lee, X. Wei, J. Kysar, J. Hone, Measurement of the elastic properties and intrinsic str

22、ength of monolayer graphene. Science, 2008, 321 (5887): 385-388.36. K. Kelly, E. Coronado, L. Zhao, G. Schatz, The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment, J. Phys. Chem. B, 2003, 107 (3): 668-677.37. M. Gratzel, Photoelectrochemical cells,

23、 Nature, 2001,414 (6861): 338-344.38. M. Stoller, S. Park, Y. Zhu, J. An, R. Ruoff, Graphene-Based Ultracapacitors, Nano Letters, 2008, 8 (10): 3498-350239. M. Moliner, C. Martinez, A. Corma, Multipore zeolites: synthesis and catalytic applications, Angew. Chem. Int. Ed. 2015, 54(12): 3560-3579.40.

24、B. Lebeau, A. Galarneau, M. Linden, Introduction for 20 years of research on ordered mesoporous materials, Chem. Soc. Rev., 2013, 42, 3661-3662.实验中心41. Dong-Kwon Lim, Ki-Seok Jeon, Jae-Ho Hwang, et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticle

25、s with 1-nm interior gap.Natrue nanotechnolygy, 2011,6, 452-460.42. Jian Feng Li, Yi Fan Huang, Yong Ding, et al, Shell-isolated nanoparticle-enhanced Raman Spectroscopy.Natrue Letters, 2010, 464, 392-395.43. Ronit Freeman,Xiaoqing Liu,and Itamar Willner. Chemiluminescent and Chemiluminescence Reson

26、ance Energy Transfer (CRET) Detection of DNA, Metal Ions, and Aptamer_Substrate Complexes Using Hemin/G-Quadruplexesand CdSe/ZnS Quantum Dots. J. Am. Chem. Soc. 2011, 133, 11597 -11604.44. Anne M. Evans, CoreyD.DeHaven, Tom Barrett et al. Integrated, Nontargeted Ultrahigh Performance Liquid Chromato

27、graphy/Electrospray IonizationTandem Mass Spectrometry Platform for the Identification and Relative Quantification of the Small-Molecule Complement of Biological Systems. Anal. Chem. 2009, 81,6656 -6667.45. Min Zhang, Xihao Zhang, Xiwen He,et al. A self-assembled polydopamine film on the surface of

28、magnetic nanoparticles for specific capture of protein. Nanoscale, 2012, 4, 3141 43147.46. Pengzuo Chen, Tianpei Zhou, Sibo Wang, et al. Dynamic Migration of Surface Fluorine-anions on Cobalt-based Materials Realizing Enhanced Oxygen Evolution Catalysis. Angew. Chem. 201809220.47. Bo Zhang, Xueli Zh

29、eng, Oleksandr Voznyy, et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 352 (6283), 333-337.48. Eric J. Popczun, James R. McKone, Carlos G. Read, et al. Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2013, 135

30、, 9267-9270.49. Yanguang Li, Hailiang Wang, Liming Xie,et al. MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2011, 133, 7296 7299.50. Camillo Spoeri, Jason Tai Hong Kwan, Arman Bonakdarpour,et al. The Stability Challenges of Oxygen E

31、volving Electrocatalysts: Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation. Angew. Chem. 201608601.51. Xinchuan Du, Jianwen Huang, Junjun Zhang, et al. Modulating Electronic Structures of Inorganic Nanomaterials for Efficient Electrocatalytic Water Splitting. Angew.

32、Chem. 201810104.52. E. L. Unger, E. T. Hoke, C. D. Bailie,et al. Hysteresis and transient behavior in current - voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci., 2014, 7, 3690 3698.53. Julian Burschka, Norman Pellet, Soo-Jin Moon,et al. Sequential deposition as a

33、route to high-performance perovskite-sensitized solar cells. Nature, 499, 2013, 316-320.54. Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 60506051.55. Nam-Gyu Park, Michael Gr? tz

34、el, Tsutomu Miyasaka,et al. Towards stable and commercially available perovskite solar cells. Nature Energy, 2016, 1 , 1-8.56. Michael M. Lee, Jo? l Teuscher, Tsutomu Miyasaka, et al. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338(6107), 643-6

35、47.57. Tomas Leijtens , Giles E. Eperon , Nakita K. Noel ,et al. Stability of Metal Halide Perovskite Solar Cells. Adv. Energy Mater. 2015, 5,1-23.58. Jingbi You, LeiMeng, Tze-Bin Song,et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology, 2016, 11, 75-82.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 社会民生


经营许可证编号:宁ICP备18001539号-1