[高二数学]放缩法证明.doc

上传人:音乐台 文档编号:1993850 上传时间:2019-01-29 格式:DOC 页数:47 大小:1.76MB
返回 下载 相关 举报
[高二数学]放缩法证明.doc_第1页
第1页 / 共47页
[高二数学]放缩法证明.doc_第2页
第2页 / 共47页
[高二数学]放缩法证明.doc_第3页
第3页 / 共47页
亲,该文档总共47页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《[高二数学]放缩法证明.doc》由会员分享,可在线阅读,更多相关《[高二数学]放缩法证明.doc(47页珍藏版)》请在三一文库上搜索。

1、放缩法证明“数列+不等式”问题的两条途径 数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。用放缩法解决“数列+不等式”问题通常有两条途径:一是先放缩再求和,二是先求和再放缩。1、 先放缩再求和例1 (05年湖北理)已知不等式其中为不大于2的整数,表示不超过的最大整数。设数列的各项为正且满足,证明:,分析:由条件得: 以上各式两边分别相加得: = 本题由题设条件直接进行放缩,然后求和,命题即得以证明。例2 (04全国三)已知数列的前项和满足:, (1)写出数列的前三项,;(2)求数列的通项公式;(3)证明:对任意的整数,有分析:由递推公式易求:a1=

2、1,a2=0,a3=2;由已知得:(n1)化简得:,故数列是以为首项, 公比为的等比数列.故 数列的通项公式为:.观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。而左边=,如果我们把上式中的分母中的去掉,就可利用等比数列的前n项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:,因此,可将保留,再将后面的项两两组合后放缩,即可求和。这里需要对进行分类讨论,(1)当为偶数时, (2)当是奇数时,为偶数,所以对任意整数,有。本题的关键是并项后进行适当的放缩。2、 先求和再放缩例3(武汉市模拟)定义数列如下:证明:(1)对于恒有成立。

3、 (2)当,有成立。 (3)。分析:(1)用数学归纳法易证。 (2)由得: 以上各式两边分别相乘得: ,又 (3)要证不等式,可先设法求和:,再进行适当的放缩。又原不等式得证。本题的关键是根据题设条件裂项求和。用放缩法证明数列求和中的不等式连云港市教育局教研室 寇恒清 (222100)近几年,高考试题常把数列与不等式的综合题作为压轴题,而压轴题的最后一问又重点考查用放缩法证明不等式,这类试题技巧性强,难度大,做题时要把握放缩度,并能自我调整,因此应加强此类题目的训练。高考题展示:(2006年全国卷I)设数列的前项的和,()求首项与通项;()设,证明:解:易求 (其中n为正整数)所以: (200

4、6年福建卷)已知数列满足(I)求数列的通项公式;(II)证明:解:(I)易求(II)证明:点评:两个高考题向我们说明了数列求和中不等关系证明的两种方法:1.每一项转化为两项差,求和后消去中间项(裂项法)与放缩法的结合;2.用放缩法转化为等比数列求和。题1. 已知数列中,证明:放缩一:点评:此种放缩为常规法,学生很容易想到,但需要保留前5项,从第6项开始放大,才能达到证题目的,这一点学生往往又想不到,或因意志力不坚强而放弃。需要保留前5项,说明放大的程度过大,能不能作一下调节?放缩二:点评:此种方法放大幅度较(一)小,更接近于原式,只需保留前2项,从第3项开始放大,能较容易想到,还能再进一步逼近

5、原式?放缩三: 本题点评:随着放缩程度的不同,前面需保留不动的项数也随着发生变化,放缩程度越小,精确度越高,保留不动的项数就越少,运算越简单,因此,用放缩法解题时,放缩后的式子要尽可能地接近原式,减小放缩度,以避免运算上的麻烦。题2.已知数列中,求证:方法一: 方法二:点评:方法一用的是放缩法后用裂项法求和;方法二是通过放缩转化为等比数列求和,从数值上看方法二较方法一最后结果的精确度高,但都没超过要证明的结果3。同类题训练:1.已知数列中,是数列的前项和,证明:2.点列到直线系中相应直线的距离为求证:不等式的证明(放缩法)1设,则的大小关系是( )A. B. C. D. 2已知三角形的三边长分

6、别为,设,则与的大小关系是 ( )A. B. C. D.3设不等的两个正数满足,则的取值范围是 ( )A. B. C. D. 4设,则与1的大小关系是 .5设,则的整数部分为 .6已知均为正数,且,求证:.7设,求证:.8设,求证:.9设,求证:.10设,求证:不等式对所有的正整数都成立.简答:1B 提示: 2D 提示:由,得 , 3B 提示:由条件得,所以,故 .又,可得,从而 ,所以 ,故.4A 2 时,求证:9. 求证:10. 已知a, b, c 0, 且a2 + b2 = c2,求证:an + bn n+.20. 已知an=n ,求证:321. 已知数列满足求证:22. 设求证:23.

7、 求证:24. 已知,证明:不等式对任何正整数都成立.25. 已知i,m、n是正整数,且1imn.(1)证明:niAmiA;(2)证明:(1+m)n(1+n)m答案:1. 证明:由不等式的对称性,不妨设,则 且0, 0 32. 证明:由不等式的对称性,不防设,则 左式右式 03. 证明:设.且 x、y、. 由题意得:。 0 同理:由对称性可得, 命题得证.4. 证明:不妨设 ,则1。又bc,即bc,也即。左边 5. 证明:不妨设0,于是 左边右边 如果0,那么0;如果0,那么0,故有 0,从而原不等式得证.6. 证明:设01,于是有,再证明以下简单不等式1,因为左边 ,再注意 1得证.7. 证

8、:记m = a, b, c, dR+ 1 m 2 n 2时, 9. 证: 10. ,又a, b, c 0, 11. 证明:由不等式的对称性,不防设,则 左式右式 012. 证明:不妨设 ,则1。又bc,即bc,也即。左边 13. 证明:不妨设0,于是 左边右边 如果0,那么0;如果0,那么0,故有 0,从而原不等式得证.14. 证明:设01,于是有,再证明以下简单不等式1,因为左边 ,再注意 1得证.15. 分析:由条件得: 以上各式两边分别相加得: = 本题由题设条件直接进行放缩,然后求和,命题即得以证明。16. 分析:由递推公式易求:a1=1,a2=0,a3=2;由已知得:(n1)化简得:

9、,故数列是以为首项, 公比为的等比数列.故 数列的通项公式为:.观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。而左边=,如果我们把上式中的分母中的去掉,就可利用等比数列的前n项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:,因此,可将保留,再将后面的项两两组合后放缩,即可求和。这里需要对进行分类讨论,(1)当为偶数时, (2)当是奇数时,为偶数,所以对任意整数,有。本题的关键是并项后进行适当的放缩。17. 证明:(1)用数学归纳法易证。 (2)由得: 以上各式两边分别相乘得: ,又 (3)要证不等式,可先设法求和:,再进行

10、适当的放缩。又原不等式得证。本题的关键是根据题设条件裂项求和。18. 证明: 19. 证明:由f(n)= =1-得f(1)+f(2)+f(n)20. 证明:=1 =1 () =1123本题先采用减小分母的两次放缩,再裂项,最后又放缩,有的放矢,直达目标.21. 证明 本题通过对因式放大,而得到一个容易求和的式子,最终得出证明.22. 证明: , 本题利用,对中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的。23. 证明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。24. 证明:要证,只

11、要证 .因为 ,故只要证 ,即只要证 .因为,所以命题得证.本题通过化简整理之后,再利用基本不等式由放大即可.25. 证明:(1)对于1im,且A =m(mi+1),由于mn,对于整数k=1,2,i1,有,所以(2)由二项式定理有:(1+m)n=1+Cm+Cm2+Cmn,(1+n)m=1+Cn+Cn2+Cnm,由(1)知miAniA (1imn ,而C=miCinniCim(1mnm0C=n0C=1,mC=nC=mn,m2Cn2C,mmCnmC,mm+1C0,mnC0,1+Cm+Cm2+Cmn1+Cn+C2mn2+Cnm,即(1+m)n(1+n)m成立.w.w.w.k.s.5.u.c.o.m用

12、放缩法证明不等式所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。下面举例谈谈运用放缩法证题的常见题型。一. “添舍”放缩通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。例1. 设a,b为不相等的两正数,且a3b3a2b2,求证。证明:由题设得a2abb2ab,于是(ab)2a2abb2ab,又ab0,得ab1,又ab(ab)2,而(ab)2ababab(ab)2,即(ab)2ab,所以ab,故有1ab。例2. 已知a、b、

13、c不全为零,求证:证明:因为,同理,。所以二. 分式放缩一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。例3. 已知a、b、c为三角形的三边,求证:。证明:由于a、b、c为正数,所以,所以,又a,b,c为三角形的边,故b+ca,则为真分数,则,同理,故.综合得。三. 裂项放缩若欲证不等式含有与自然数n有关的n项和,可采用数列中裂项求和等方法来解题。 例4. 已知nN*,求。证明:因为,则,证毕。例5. 已知且,求证:对所有正整数n都成立。证明:因为,所以,又,所以,综合知结论成立。四. 公式放缩利用已知

14、的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。例6. 已知函数,证明:对于且都有。证明:由题意知又因为且,所以只须证,又因为所以。例7. 已知,求证:当时。证明:证毕。五. 换元放缩对于不等式的某个部分进行换元,可显露问题的本质,然后随机进行放缩,可达解题目的。例8. 已知,求证。证明:因为,所以可设,所以则,即。例9. 已知a,b,c为ABC的三条边,且有,当且时,求证:。 证明:由于,可设a=csina,b=ccosa(a为锐角),因为,则当时,所以。六. 单调函数放缩根据题目特征,通过构造特殊的单调函数,利用其单调性质进行放缩求解。例10. 已知a,bR,求证。证明:构造函数,首

15、先判断其单调性,设,因为,所以,所以在上是增函数,取,显然满足,所以,即。证毕。高考专题复习放缩法缩法是不等式证明中一种常用的方法,也是一种非常重要的方法。在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。但放缩的范围较难把握,常常出现放缩之后得不出结论或得出相反结论的现象。因此,使用放缩法时,如何确定放缩目标尤为重要。要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点。掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法,才能把题解活,从而培养和提高自己的思维和逻辑推理能力,分析问题和解决问题的能力。数列与不等式的综合问题常常出现在

16、高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和一先求和后放缩例1正数数列的前项的和,满足,试求:(1)数列的通项公式;(2)设,数列的前项的和为,求证:解:(1)由已知得,时,作差得:,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以(2),所以注:一般先分析数列的通项公式如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式求和的方式一般要用到等差、等比、差比数列(这里所

17、谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和二先放缩再求和1放缩后成等差数列,再求和例2已知各项均为正数的数列的前项和为,且.(1) 求证:;(2) 求证:解:(1)在条件中,令,得, ,又由条件有,上述两式相减,注意到得 所以, , 所以(2)因为,所以,所以;2放缩后成等比数列,再求和例3(1)设a,nN*,a2,证明:;(2)等比数列an中,前n项的和为An,且A7,A9,A8成等差数列设,数列bn前n项的和为Bn,证明:Bn解:(1)当n为奇数时,ana,于是, 当n为偶数时,a11,且ana2,于是 (2),公比 3放缩后为差比数列,再求和例4已知数列

18、满足:,求证:证明:因为,所以与同号,又因为,所以,即,即所以数列为递增数列,所以,即,累加得:令,所以,两式相减得:,所以,所以,故得4放缩后为裂项相消,再求和例5在m(m2)个不同数的排列P1P2Pn中,若1ijm时PiPj(即前面某数大于后面某数),则称Pi与Pj构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为an,如排列21的逆序数,排列321的逆序数(1)求a4、a5,并写出an的表达式;(2)令,证明,n=1,2,.解(1)由已知得,.(2)因为,所以.又因为,所以 =. 综上,.注:常用放缩的结论:(1)(2)练习1已知数列a满足:a=1且.求数列a

19、的通项公式;设mN,mn2,证明(a+)(m-n+1) 分析:这是06年河北省高中数学竞赛的一道解答题(1)大家都知道数列的递推公式往往比通项公式还重要.这就引导我们要重视数列的递推公式由已知有a=,学生对形如, A,B是常数)形式的一次线性递推关系的数列通过构造新数列求通项公式的方法已不陌生,本题中的递推关系显然不是此类型.那么我们能否也可通过待定系数法构造新数列呢?不妨设即与比较系数得c=1.即又,故是首项为公比为的等比数列,故这一问是数列、二项式定理及不等式证明的综合问题.综合性较强.即证,当m=n时显然成立。易验证当且仅当m=n=2时,等号成立。设下面先研究其单调性。当n时,即数列是递

20、减数列.因为n2,故只须证即证。事实上,故上不等式成立。综上,原不等式成立。2设数列满足求的通项公式;若求证:数列的前n项和分析:(1)此时我们不妨设即与已知条件式比较系数得又是首项为2,公比为2的等比数列。.由(1)知. 当时,当n=1时,=1也适合上式,所以,故方法一:,(这步难度较大,也较关键,后一式缩至常数不易想到.必须要有执果索因的分析才可推测出.) .方法二 :在数列中,简单尝试的方法也相当重要.很多学生做此题时想用裂项相消法但是发现此种处理达不到目的.但是当n3时,我们看:易验证当n=1,2时 . 综上下面我们再举一个数列中利用放缩法证明不等式的问题.3已知正项数列满足判断数列的

21、单调性;求证:分析:(1),即 故数列为递增数列.(2) 不妨先证再证:原解答中放缩技巧太强,下面给出另一种证法.当时,.易验证当n=1时,上式也成立.综上,故有成立.4求证:证明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。5已知求证:证明:6 已知数列an的前n项和Sn满足:Sn=2an +(-1)n,n1()写出求数列an的前3项a1,a2,a3;()求数列an的通项公式;()证明:对任意的整数m4,有.解;数列的通项公式为:.由已知得:.故( m4).w.w.w. 构造新数列与数列中的放

22、缩法河北望都中学 汤敏军数列问题中的构造新数列与放缩法证明不等式在近几年高考题中经常出现。这类题目的难度及区分度往往很大,考生不容易掌握,有时甚至无从下手。现通过几个具体问题的分析谈谈常用的构造数列的方法与放缩手段,希望对众考生的备考有所帮助.例1已知数列a满足:a=1且.(1) 求数列a的通项公式;(2) 设mN,mn2,证明(a+)(m-n+1) 分析:这是06年河北省高中数学竞赛的一道解答题(1)大家都知道数列的递推公式往往比通项公式还重要.这就引导我们要重视数列的递推公式由已知有a=,学生对形如, A,B是常数)形式的一次线性递推关系的数列通过构造新数列求通项公式的方法已不陌生,本题中

23、的递推关系显然不是此类型.那么我们能否也可通过待定系数法构造新数列呢?不妨设即与比较系数得c=1.即又,故是首项为公比为的等比数列,故(2) 这一问是数列、二项式定理及不等式证明的综合问题.综合性较强.即证,当m=n时显然成立。易验证当且仅当m=n=2时,等号成立。设下面先研究其单调性。当n时,即数列是递减数列.因为n2,故只须证即证。事实上,故上不等式成立。综上,原不等式成立。无独有偶,在不到1个月的06年全国一卷高考题22中恰出现了本例中构造数列求通项公式的模型。有兴趣的同学可找做一做。例2设数列满足(1) 求的通项公式;(2) 若求证:数列的前n项和分析:(1)此时我们不妨设即与已知条件

24、式比较系数得又是首项为2,公比为2的等比数列。.(3) 由(1)知. 当时,当n=1时,=1也适合上式,所以,故方法一:,(这步难度较大,也较关键,后一式缩至常数不易想到.必须要有执果索因的分析才可推测出.) .方法二 :在数列中,简单尝试的方法也相当重要.很多学生做此题时想用裂项相消法但是发现此种处理达不到目的.但是当n3时,我们看:易验证当n=1,2时 . 综上下面我们再举一个数列中利用放缩法证明不等式的问题.例3已知正项数列满足(1) 判断数列的单调性;(2) 求证:分析:(1),即 故数列为递增数列.(2) 不妨先证再证:原解答中放缩技巧太强,下面给出另一种证法.当时,.易验证当n=1

25、时,上式也成立.综上,故有成立.通过以上三例,我们发现通过递推公式,有的数列可以通过构造新数列的方法,构造出一个我们一个较熟悉的数列,从而求出通项公式,这也是一种化归能力的体现.有的数列题目虽不能求出通项公式,但我们可以研究其隐含的性质如单调性等来解决问题.放缩法虽然技巧性较强,但多数均是一些常用的放缩手段.此类问题考查了学生的灵活性与分析问题及运用知识解决问题的能力.也正为此,这种类型的题目越来越受到高考命题者的青睐.w.w.w.k.s.5.u.c.o.mk.s.5.u.c.o.m不等式证明一(比较法)比较法是证明不等式的一种最重要最基本的方法。比较法分为:作差法和作商法作差法w.w.w.k

26、.s.5.u.c.o.m若a,bR,则: ab0ab;ab0ab;ab0ab它的三个步骤:作差变形判断符号(与零的大小)结论. 作差法是当要证的不等式两边为代数和形式时,通过作差把定量比较左右的大小转化为定性判定左右的符号,从而降低了问题的难度。作差是化归,变形是手段,变形的过程是因式分解(和差化积)或配方,把差式变形为若干因子的乘积或若干个完全平方的和,进而判定其符号,得出结论.例1、求证:x2 + 3 3x 证:(x2 + 3) - 3x = x2 + 3 3x(课本P22例2)已知a, b, m都是正数,并且a b,求证: 证:a,b,m都是正数,并且a 0 , b - a 0 即: 变

27、式:若a b,结果会怎样?若没有“a a2b3 + a3b2 证:(a5 + b5 ) - (a2b3 + a3b2) = ( a5 - a3b2) + (b5 - a2b3 ) = a3 (a2 - b2 ) - b3 (a2 - b2) = (a2 - b2 ) (a3 - b3)= (a + b)(a - b)2(a2 + ab + b2)a, b都是正数,a + b, a2 + ab + b2 0又a b,(a - b)2 0 (a + b)(a - b)2(a2 + ab + b2) 0即:a5 + b5 a2b3 + a3b2甲乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速

28、度m行走,另一半时间以速度n行走;有一半路程乙以速度m行走,另一半路程以速度n行走,如果m n,问:甲乙两人谁先到达指定地点?解:设从出发地到指定地点的路程为S,甲乙两人走完全程所需时间分别是t1, t2,则: 可得:S, m, n都是正数,且m n,t1 - t2 0 即:t1 0,b0,则:1ab;1ab;1ab它的三个步骤:作商变形判断与1的大小结论.作商法是当不等式两边为正的乘积形式时,通过作商把其转化为证明左/右与1的大小。例5、设a, b R+,求证:(左右为课本P22例3)证:先证不等式左中:由于要比较的两式呈幂的结构,故结合函数的单调性,故可采用作商比较法证明.作商: ,由指数

29、函数的性质当a = b时, 当a b 0时,当b a 0时, 即 (中右请自己证明,题可改为a, b R+,求证:)作业补充题:1.已知,求证:2求证:3.已知求证:4.已知cab0,求证.5.已知a、b、c、d都是正数,且bcad,求证.不等式证明二(综合法)综合法:从已知条件出发,利用定义、公理、定理、某些已经证明过的不等式及不等式的性质经过一系列的推理、论证等而推导出所要证明的不等式,这个证明方法叫综合法。(也叫顺推证法或由因导果法)例1、已知a, b, c是不全相等的正数,求证:a(b2 + c2) + b(c2 + a2) + c(a2 + b2) 6abc分析:不等式左边含有“a2

30、+b2”的形式,我们可以运用基本不等式:a2+b22ab;还可以这样思考:不等式左边出现有三次因式:a2b,b2c,c2a,ab2,bc2,ca2的“和”,右边有三正数a,b,c的“积”,我们可以运用重要不等式:a3+b3+c33abc. 证:b2 + c2 2bc , a 0 , a(b2 + c2) 2abc 同理:b(c2 + a2) 2abc , c(a2 + b2) 2abc a(b2 + c2) + b(c2 + a2) + c(a2 + b2) 6abc 当且仅当b=c,c=a,a=b时取等号,而a, b, c是不全相等的正数 三式不同时取等号,三式相加得 a(b2 + c2)

31、+ b(c2 + a2) + c(a2 + b2) 6abc本例证法可称为三合一法,当要证的不等式关于字母具有对称形式时,我们常可把其看成是由若干个结构相同但所含字母较少的不等式相加或相乘而得,我们只要先把减了元的较简单的不等式证出,即可完成原不等式的证明。例2、a , b, cR, 求证:123证:1、法一:, , 两式相乘即得。 法二:左边 3 + 2 + 2 + 2 = 92、 两式相乘即得3、由上题:即:例3、已知a,b,c都是正数,且a,b,c成等比数列,求证:证明:左右=2(ab+bcac),a,b,c成等比数列,又a,b,c都是正数,所以,说明:此题在证明过程中运用了比较法、基本

32、不等式、等比中项性质,体现了综合法证明不等式的特点例4、制造一个容积为V(定值)的圆柱形容器,试分别就容器有盖及无盖两种情况,求:怎样选取底半径与高的比,使用料最省?分析:根据1题中不等式左右的结构特征,考虑运用“基本不等式”来证明.对于2题,抓住容积为定值,建立面积目标函数,求解最值,是本题的思路.解:设容器底半径为r,高为h,则V=r2h,h=.(1)当容器有盖时,所需用料的面积:S=2r2+2rh=2r2+=2r2+3当且仅当2r2=,即r=,h=2r,取“=”号.故时用料最省.(2)当容器无盖时,所需用料面积:S=r2+2rh=r2+=r2+3当且仅当r2=,r=,h=r.即r=h时用

33、料最省.作业补充题:1、设a, b, c R,1求证:2求证:3若a + b = 1, 求证:2、设a0,b0,c0且a+b+c=1,求证:8abc(1-a)(1-b)(1-c).3、设a,b,c为一个不等边三角形的三边,求证:abc(b+c-a)(a+b-c)(c+a-b).4、已知a, bR+,求证:5、设a0, b0,且a + b = 1,求证:不等式证明三(分析法)当用综合法不易发现解题途径时,我们可以从求证的不等式出发,逐步分析寻求使这个不等式成立的充分条件,直至所需条件为已知条件或一个明显成立的事实,从而得出要证的不等式成立,这种执果所因的思考和证明方法叫做分析法。使用分析法证明时

34、,要注意表述的规范性,当问题比较复杂时,通常把分析法和综合法结合使用,以分析法寻求证明的思路,而用综合法进行表述,完成证明过程。例1、求证:证:分析法: 综合表述: 21 25 只需证明: 展开得: 即: 即: 21 0,y 0,证明不等式:证一:(分析法)所证不等式即: 即: 即: 只需证: 成立 证二:(综合法) x 0,y 0, 例3、已知:a + b + c = 0,求证:ab + bc + ca 0证一:(综合法)a + b + c = 0 (a + b + c)2 = 0 展开得: ab + bc + ca 0证二:(分析法)要证ab + bc + ca 0 a + b + c = 0 故只需证 ab + bc + ca (a + b + c)2 即证: 即: (显然) 原式成立证三:a + b + c = 0 - c = a + b ab + bc + ca = ab + (a + b)c = ab - (a + b)2 = -a2 -b2 -ab = 例4、已知,求证:,并求等号成立的条件。分析:不等式右边是常数,能否用平均值定理?应当可以。(找条件一正、二定、三相等) 如何把左边变形为和的形式?多项式的除法或配凑!左=(

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1