本工程梁板墙点加固的角钢与钢板焊接.doc

上传人:本田雅阁 文档编号:2106901 上传时间:2019-02-14 格式:DOC 页数:23 大小:76.02KB
返回 下载 相关 举报
本工程梁板墙点加固的角钢与钢板焊接.doc_第1页
第1页 / 共23页
本工程梁板墙点加固的角钢与钢板焊接.doc_第2页
第2页 / 共23页
本工程梁板墙点加固的角钢与钢板焊接.doc_第3页
第3页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《本工程梁板墙点加固的角钢与钢板焊接.doc》由会员分享,可在线阅读,更多相关《本工程梁板墙点加固的角钢与钢板焊接.doc(23页珍藏版)》请在三一文库上搜索。

1、本工程梁板墙加固的角钢与钢板焊接、墙面钢筋网片焊接,是钢结构焊接作业的重点。(1)施工前准备(一)电焊条:其型号按设计要求选用,必须有质量证明书。按要求施焊前经过烘焙。严禁使用药皮脱落、焊芯生锈的焊条。本工程设计规定,焊接HPB235钢时宜选用和E4300系列碳钢结构焊条;焊接HRB335钢时宜选用 E5001系列低合金结构钢焊条。按说明书的要求烘焙后,放入保温桶内,随用随取。酸性焊条与碱性焊条不准混杂使用。(二) 引弧板:用坡口连接时需用弧板,弧板材质和坡口型式应与焊件相同。(三) 主要机具:电焊机(交、直流)、焊把线、焊钳、面罩、小锤、焊条烘箱、焊条保温桶、钢丝刷、石棉布、测温计等。(2)

2、作业条件(一) 熟悉图纸,做焊接工艺技术交底。(二) 施焊前应检查焊工合格证有效期限,应证明焊工所能承担的焊接工作。(三) 现场供电应符合焊接用电要求。(3)施工工艺作业准备 电弧焊接 (平焊、立焊、横焊、仰焊) 焊缝检查(一) 平焊A选择合适的焊接工艺,焊条直径,焊接电流,焊接速度,焊接电弧长度等,通过焊接工艺试验验证。B清理焊口:焊前检查坡口、组装间隙是否符合要求,定位焊是否牢固,焊缝周围不得有油污、锈物。C焊接电流:根据焊件厚度、焊接层次、焊条型号、直径、焊工熟练程度等因素,选择适宜的焊接电流。D引弧:角焊缝起落弧点应在焊缝端部,宜大于10mm,不应随便打弧,打火引弧后应立即将焊条从焊缝

3、区拉开,使焊条与构件间保持24mm间隙产生电弧。对接焊缝及对接和角接组合焊缝,在焊缝两端设引弧板和引出板,必须在引弧板上引弧后再焊到焊缝区,中途接头则应在焊缝接头前方1520mm处打火引弧,将焊件预热后再将焊条退回到焊缝起始处,把熔池填满到要求的厚度后,方可向前施焊。E焊接速度:要求等速焊接,保证焊缝厚度、宽度均匀一致,从面罩内看熔池中铁水与熔渣保持等距离(23mm)为宜。F焊接电弧长度:根据焊条型号不同而确定,一般要求电弧长度稳定不变,酸性焊条一般为34mm,碱性焊条一般为23mm为宜。G焊接角度:根据两焊件的厚度确定,焊接角度有两个万面,一是焊条与焊接前进方向的夹角为6075;二是焊条与焊

4、接左右夹角有两种情况,当焊件厚度相等时,焊条与焊件夹角均为 45;当焊件厚度不等时,焊条与较厚焊件一侧夹角应大于焊条与较薄焊件一侧夹角。M收弧:每条焊缝焊到末尾,应将弧坑填满后,往焊接方向相反的方向带弧,使弧坑甩在焊道里边,以防弧坑咬肉。焊接完毕,应采用气割切除弧板,并修磨平整,不许用锤击落。N清渣:整条焊缝焊完后清除熔渣,经焊工自检(包括外观及焊缝尺寸等)确无问题后,方可转移地点继续焊接。(二) 立焊:A 在相同条件下,焊接电源比平焊电流小10%15%。B采用短弧焊接,弧长一般为23mm。C焊条角度根据焊件厚度确定。两焊件厚度相等,焊条与焊条左右方向夹角均为45;两焊件厚度不等时,焊条与较厚

5、焊件一侧的夹角应大于较薄一侧的夹角。焊条应与垂直面形成6080角,使电弧略向上,吹向熔池中心。D收弧:当焊到末尾,采用排弧法将弧坑填满,把电弧移至熔池中央停弧。严禁使弧坑甩在一边。为了防止咬肉,应压低电弧变换焊条角度,使焊条与焊件垂直或由弧稍向下吹。E横焊:基本与平焊相同,焊接电流比同条件平焊的电流小10%15%,电弧长24mm。焊条的角度,横焊时焊条应向下倾斜,其角度为7080,防止铁水下坠。根据两焊件的厚度不同,可适当调整焊条角度,焊条与焊接前进方向为7090。(三)仰焊:基本与立焊、横焊相同,其焊条与焊件的夹角和焊件厚度有关,焊条与焊接方向成7080角,宜用小电流、短弧焊接。(4)质量标

6、准保证项目(一) 焊接材料应符合设计要求和有关标准的规定,应检查质量证明书及烘焙记录。(二) 焊工必须经考试合格,检查焊工相应施焊条件的合格证及考核日期。(三) 级焊缝必须经探伤检验,并应符合设计要求和施工及验收规范的规定,检查焊缝探伤报告。(四) 焊缝表面、级焊缝不得有裂纹、焊瘤、烧穿、弧坑等缺陷。级焊缝不得有表面气孔、夹渣、弧坑、裂纹、电弧擦伤等缺陷,且级焊缝不得有咬边、未焊满等缺陷。(五) 焊缝外观:焊缝外形均匀,焊道与焊道、焊道与基本金属之间过渡平滑,焊渣和飞溅物清除干净。(5)成品保护:(一) 焊后不准撞砸接头,不准往刚焊完的钢材上浇水。低温下应采取缓冷措施。(二) 不准随意在焊缝外

7、母材上引弧。(三) 各种构件校正好之后方可施焊,并不得随意移动垫铁和卡具,以防造成构件尺寸偏差。隐蔽部位的焊缝必须办理完隐蔽验收手续后,方可进行下道隐蔽工(四) 低温焊接不准立即清渣,应等焊缝降温后进行。(6)应注意的质量问题:(一) 尺寸超出允许偏差:对焊缝长宽、宽度、厚度不足,中心线偏移,弯折等偏差,应严格控制焊接部位的相对位置尺寸,合格后方准焊接,焊接时精心操作(二) 焊缝裂纹:为防止裂纹产生,应选择适合的焊接工艺参数和施焊程序,避免用大电流,不要突然熄火,焊缝接头应搭1015mm,焊接中不允许搬动、敲击焊件。(三) 表面气孔:焊条按规定的温度和时间进行烘焙,焊接区域必须清理干净,焊接过

8、程中选择适当的焊接电流,降低焊接速度,使熔池中的气体完全逸出。(四) 焊缝夹渣:多层施焊应层层将焊渣清除干净,操作中应运条正确,弧长适当。注意熔渣的流动方向,采用碱性焊条时,上须使熔渣留在熔渣后面。18、植筋工程 原砖混结构墙体进行钢筋混凝土加固是重点工程,植筋钢筋焊接作业量较大。(1)工艺流程 钢筋下料定位放线钻孔孔洞清理灌胶植筋固化养护验收(2)钢筋下料根据设计要求,本工程钢筋材质确认为HPB235和HRB335。钢筋下料,下料时需先考虑钢筋截断、搭接问题,满足有关结构工程施工质量验收规范。(3)定位放线根据设计要求,确定锚固钢筋的位置呈梅花状,间距900 mm。钢筋栽埋位置必须避让原结构

9、主筋。(4)钻孔用冲击钻在原结构上钻孔。开孔深度按设计要求应植钢筋的15d或结构胶说明确定,并大于要求深度1cm。(5)孔洞清理用压缩空气清理孔壁上的浮灰,以免影响结构胶与混凝土的有效粘结。(6)灌胶植筋施工工艺:确定位置钻孔清孔灌胶植筋。将结构胶由专人配制按比例进行配制,搅拌均匀,将胶体灌入栽埋孔内,灌入孔内的胶量约占孔洞体积的2/3,并在钢筋栽埋段均匀涂以结构胶,而后将钢筋缓慢地旋转插入预埋孔,将孔内气体导出,并将钢筋紧贴植筋孔壁上下摩擦数次,然后将钢筋固定。溢出孔外的胶体应及时进行清理,一次配胶不要过多,需随配随用。(7)固化养护植筋后24小时内不受扰动(各胶种固化时间参见说明书),长钢

10、筋必须临时固定,并尽量不在此工作面施工。(8)清理结构胶固化后,清理钢筋外露部分的残胶。(9)工程质量及验收(一)植筋锚固段长度不得有负误差(二)植筋孔内不得有灰及其它杂物。(三)植筋时孔壁必须干燥。(四)所留钢筋接头位置符合设计要求。植筋施工过程检验选择在现场抽检:植筋前,抽检植筋孔,要求孔壁指触无尘且干燥;植筋后,将刚植入的钢筋拔出,检查钢筋锚固长度及结构胶饱满度。植筋效果检验:,根据植筋规格、部位、数量等情况综合考虑,随机抽检不少于3根。拉拔结果以钢筋达到屈服强度(或设计强度)时,混凝土与胶的结合面和钢筋与胶的结合面不破坏为合格。在锚筋检查合格后,可以进行下道工序。(10)注意事项(一)

11、当原结构钢筋较密,造成栽埋钢筋位置偏差较大时,及时通报工程技术人员进行处理。 (二)插筋时应确保栽埋孔壁与钢筋表面间的胶体密实,不应有夹气及其它杂物。在孔内有明水的情况下,一定要先清除明水,用电热丝烘干孔壁,孔壁冷却后方可植筋。(三)在结构胶完全固化后再进行下道工序。19、梁板墙角钢连接本工程墙面钢丝网、梁板墙加固的角钢与扁钢焊接完成后,需进行螺栓连接施工接头处后灌环氧树脂。(1)作业条件(一)上道焊接工序确认合格后。(二)使用环境:温度低于+600C,无强腐蚀介质。(三)原结构砼强度高于C20。 (2)材料:(一)结构胶力学性能应满足设计要求。(二)本工程设计角钢为Q235-A.F。角钢的切

12、割下料必须平齐,不得出现负公差。(3)角钢加固工艺流程:加固方案设计角钢加工砼和角钢表面处理梁板墙钻孔连接螺栓安装固定加压接缝处灌环氧树脂表面防护(4)现场复核:(一)核对结构图纸与实际结构是否有出入,有无影响正常加固的特殊情况等,若有,会同设计、监理进行处理。(二)对角钢加固部位进行检查,确认有无砼及其它质量缺陷。(三)角钢下料,按照图纸结构要求和现场尺寸提出准确角钢下料单。(四)放线复核按图纸要求尺寸确定角钢位置。(5)角钢表面处理:除锈、粗糙处理:用角磨机打磨角钢表面至露出金属光泽,刷红丹防锈漆两遍。(6)角钢开孔:在角钢上标出锚固螺栓孔位,使用台钻开孔,严格控制孔径及孔圆度。角钢孔径不

13、得大于螺栓孔径2mm。(7)注意事项:(一)混凝土表面如有狗洞、蜂窝等缺陷时,可用手锤和钢钎剔除松散浮碴,用有压冷水冲洗,待干后,用高强水泥砂浆修补。(二)角钢切割采用等离子切割机,以保证切割面平滑、整齐。(8)工程质量及验收:(一)接缝处环氧树脂要饱满。(二)角钢连接螺栓孔位要水平。(三)防锈漆喷涂均匀、不得漏刷。20、钢筋网片安装:本工程梁板墙加固的角钢与扁钢安装完成后,需进行钢筋网片安装(1)作业条件上道角钢连接工序确认合格后。(2)材料:(一)原材料性能应满足设计与有关规范要求。(二)本工程设计钢筋为HPB235 6 冷拔钢筋。钢筋的切割下料不得出现负公差。(3)墙面钢筋网加固工艺流程

14、:加固方案设计钢筋网加工墙面和钢筋表面处理钢筋网与锚固钢筋焊接表面防护(4)现场复核:(一)核对结构图纸与实际结构是否有出入,有无影响正常加固的特殊情况等,若有,会同设计、监理进行处理。(二)对加固墙体进行检查,确认有无砌筑砂浆松动及其它质量缺陷。(三)钢筋下料,按照图纸结构要求和现场尺寸提出准确钢筋下料单,根据房屋开间尺寸分层安装固定。(四)放线复核按图纸要求尺寸确定钢筋位置。(五)钢筋网片竖向钢筋靠近墙面。钢筋网片拉结筋连接固定;钢筋网片与锚固筋焊接固定。电厂分散控制系统故障分析与处理作者:单位:摘要:归纳、分析了电厂DCS系统出现的故障原因,对故障处理的过程及注意事项进行了说明。为提高分

15、散控制系统可靠性,从管理角度提出了一些预防措施建议,供参考。关键词:DCS故障统计分析预防措施随着机组增多、容量增加和老机组自动化化改造的完成,分散控制系统以其系统和网络结构的先进性、控制软件功能的灵活性、人机接口系统的直观性、工程设计和维护的方便性以及通讯系统的开放性等特点,在电力生产过程中得到了广泛应用,其功能在DAS、MCS、BMS、SCS、DEH系统成功应用的基础上,正逐步向MEH、BPC、ETS和ECS方向扩展。但与此同时,分散控制系统对机组安全经济运行的影响也在逐渐增加;因此如何提高分散控制系统的可靠性和故障后迅速判断原因的能力,对机组的安全经济运行至关重要。本文通过对浙江电网机组

16、分散控制系统运行中发生的几个比较典型故障案例的分析处理,归纳出提高分散系统的可靠性的几点建议,供同行参考。1考核故障统计浙江省电力行业所属机组,目前在线运行的分散控制系统,有TELEPERM-ME、MOD300,INFI-90,NETWORK-6000, MACS和MACS-,XDPS-400,A/I。DEH有TOSAMAP-GS/C800, DEH-IIIA等系统。笔者根据各电厂安全简报记载,将近几年因分散控制系统异常而引起的机组故障次数及定性统计于表1表1热工考核故障定性统计2热工考核故障原因分析与处理根据表1统计,结合笔者参加现场事故原因分析查找过程了解到的情况,下面将分散控制系统异常(

17、浙江省电力行业范围内)而引起上述机组设备二类及以上故障中的典型案例分类浅析如下:2.1测量模件故障典型案例分析 测量模件“异常”引起的机组跳炉、跳机故障占故障比例较高,但相对来讲故障原因的分析查找和处理比较容易,根据故障现象、故障首出信号和SOE记录,通过分析判断和试验,通常能较快的查出“异常”模件。这种“异常”模件有硬性故障和软性故障二种,硬性故障只能通过更换有问题模件,才能恢复该系统正常运行;而软性故障通过对模件复位或初始化,系统一般能恢复正常。比较典型的案例有三种:(1)未冗余配置的输入/输出信号模件异常引起机组故障。如有台130MW机组正常运行中突然跳机,故障首出信号为“轴向位移大”,

18、经现场检查,跳机前后有关参数均无异常,轴向位移实际运行中未达到报警值保护动作值,本特利装置也未发讯,但LPC模件却有报警且发出了跳机指令。因此分析判断跳机原因为DEH主保护中的LPC模件故障引起,更换LPC模件后没有再发生类似故障。另一台600MW机组,运行中汽机备用盘上“汽机轴承振动高”、“汽机跳闸”报警,同时汽机高、中压主汽门和调门关闭,发电机逆功率保护动作跳闸;随即高低压旁路快开,磨煤机B跳闸,锅炉因“汽包水位低低”MFT。经查原因系1高压调门因阀位变送器和控制模件异常,使调门出现大幅度晃动直至故障全关,过程中引起1轴承振动高高保护动作跳机。更换1高压调门阀位控制卡和阀位变送器后,机组启

19、动并网,恢复正常运行。(2)冗余输入信号未分模件配置,当模件故障时引起机组跳闸:如有一台600MW机组运行中汽机跳闸,随即高低压旁路快开,磨煤机B和D相继跳闸,锅炉因“炉膛压力低低”MFT。当时因系统负荷紧张,根据SOE及DEH内部故障记录,初步判断的跳闸原因而强制汽机应力保护后恢复机组运行。二日后机组再次跳闸,全面查找分析后,确认2次机组跳闸原因均系DEH系统三路“安全油压力低”信号共用一模件,当该模件异常时导致汽轮机跳闸,更换故障模件后机组并网恢复运行。另一台200MW机组运行中,汽包水位高值,值相继报警后MFT保护动作停炉。查看CRT上汽包水位,2点显示300MM,另1点与电接点水位计显

20、示都正常。进一步检查显示300MM 的2点汽包水位信号共用的模件故障,更换模件后系统恢复正常。针对此类故障,事后热工所采取的主要反事故措施,是在检修中有针对性地对冗余的输入信号的布置进行检查,尽可能地进行分模件处理。(3)一块I/O模件损坏,引起其它I/O模件及对应的主模件故障:如有台机组 “CCS控制模件故障及“一次风压高低”报警的同时, CRT上所有磨煤机出口温度、电流、给煤机煤量反馈显示和总煤量百分比、氧量反馈,燃料主控BTU输出消失,F磨跳闸(首出信号为“一次风量低”)。4分钟后 CRT上磨煤机其它相关参数也失去且状态变白色,运行人员手动MFT(当时负荷410MW)。经检查电子室制粉系

21、统过程控制站(PCU01柜MOD4)的电源电压及处理模件底板正常,二块MFP模件死机且相关的一块CSI模件(模位1-5-3,有关F磨CCS参数)故障报警,拔出检查发现其5VDC逻辑电源输入回路、第4输出通道、连接MFP的I/O扩展总线电路有元件烧坏(由于输出通道至BCS(24VDC),因此不存在外电串入损坏元件的可能)。经复位二块死机的MFP模件,更换故障的CSI模件后系统恢复正常。根据软报警记录和检查分析,故障原因是CSI模件先故障,在该模件故障过程中引起电压波动或I/O扩展总线故障,导致其它I/O模件无法与主模件MFP03通讯而故障,信号保持原值,最终导致主模件MFP03故障(所带A-F磨

22、煤机CCS参数),CRT上相关的监视参数全部失去且呈白色。 2.2主控制器故障案例分析 由于重要系统的主控制器冗余配置,大大减少了主控制器“异常”引发机组跳闸的次数。主控制器“异常”多数为软故障,通过复位或初始化能恢复其正常工作,但也有少数引起机组跳闸,多发生在双机切换不成功时,如:(1)有台机组运行人员发现电接点水位计显示下降,调整给泵转速无效,而CRT上汽包水位保持不变。当电接点水位计分别下降至甲-300mm,乙-250mm,并继续下降且汽包水位低信号未发,MFT未动作情况下,值长令手动停炉停机,此时CRT上调节给水调整门无效,就地关闭调整门;停运给泵无效,汽包水位急剧上升,开启事故放水门

23、,甲、丙给泵开关室就地分闸,油泵不能投运。故障原因是给水操作站运行DPU死机,备用DPU不能自启动引起。事后热工对给泵、引风、送风进行了分站控制,并增设故障软手操。(2)有台机组运行中空预器甲、乙挡板突然关闭,炉膛压力高MFT动作停炉;经查原因是风烟系统I/O站DPU发生异常,工作机向备份机自动切换不成功引起。事后电厂人员将空预器烟气挡板甲1、乙1和甲2、乙2两组控制指令分离,分别接至不同的控制站进行控制,防止类似故障再次发生。2.3DAS系统异常案例分析DAS系统是构成自动和保护系统的基础,但由于受到自身及接地系统的可靠性、现场磁场干扰和安装调试质量的影响,DAS信号值瞬间较大幅度变化而导致

24、保护系统误动,甚至机组误跳闸故障在我省也有多次发生,比较典型的这类故障有: (1)模拟量信号漂移:为了消除DCS系统抗无线电干扰能力差的缺陷,有的DCS厂家对所有的模拟量输入通道加装了隔离器,但由此带来部分热电偶和热电阻通道易电荷积累,引起信号无规律的漂移,当漂移越限时则导致保护系统误动作。我省曾有三台机组发生此类情况(二次引起送风机一侧马达线圈温度信号向上漂移跳闸送风机,联跳引风机对应侧),但往往只要松一下端子板接线(或拆下接线与地碰一下)再重新接上,信号就恢复了正常。开始热工人员认为是端子柜接地不好或者I/O屏蔽接线不好引起,但处理后问题依旧。厂家多次派专家到现场处理也未能解决问题。后在机

25、组检修期间对系统的接地进行了彻底改造,拆除原来连接到电缆桥架的AC、DC接地电缆;柜内的所有备用电缆全部通过导线接地;UPS至DCS电源间增加1台20kVA的隔离变压器,专门用于系统供电,且隔离变压器的输出端N线与接地线相连,接地线直接连接机柜作为系统的接地。同时紧固每个端子的接线;更换部份模件并将模件的软件版本升级等。使漂移现象基本消除。(2)DCS故障诊断功能设置不全或未设置。信号线接触不良、断线、受干扰,使信号值瞬间变化超过设定值或超量程的情况,现场难以避免,通过DCS模拟量信号变化速率保护功能的正确设置,可以避免或减少这类故障引起的保护系统误动。但实际应用中往往由于此功能未设置或设置不

26、全,使此类故障屡次发生。如一次风机B跳闸引起机组RB动作,首出信号为轴承温度高。经查原因是由于测温热电阻引线是细的多股线,而信号电缆是较粗的单股线,两线采用绞接方式,在震动或外力影响下连接处松动引起轴承温度中有点信号从正常值突变至无穷大引起(事后对连接处进行锡焊处理)。类似的故障有:民工打扫现场时造成送风机轴承温度热电阻接线松动引起送风机跳闸;轴承温度热电阻本身损坏引起一次风机跳闸;因现场干扰造成推力瓦温瞬间从99突升至117,1秒钟左右回到99,由于相邻第八点已达85,满足推力瓦温度任一点105同时相邻点达85跳机条件而导致机组跳闸等等。预防此类故障的办法,除机组检修时紧固电缆和电缆接线,并

27、采用手松拉接线方式确认无接线松动外,是完善DCS的故障诊断功能,对参与保护连锁的模拟量信号,增加信号变化速率保护功能尤显重要(一当信号变化速率超过设定值,自动将该信号退出相应保护并报警。当信号低于设定值时,自动或手动恢复该信号的保护连锁功能)。(3)DCS故障诊断功能设置错误:我省有台机组因为电气直流接地,保安1A段工作进线开关因跳闸,引起挂在该段上的汽泵A的工作油泵A连跳,油泵B连锁启动过程中由于油压下降而跳汽泵A,汽泵B升速的同时电泵连锁启动成功。但由于运行操作速度过度,电泵出口流量超过量程,超量程保护连锁开再循环门,使得电泵实际出水小,B泵转速上升到5760转时突然下降1000转左右(事

28、后查明是抽汽逆止阀问题),最终导致汽包水位低低保护动作停炉。此次故障是信号超量程保护设置不合理引起。一般来说,DAS的模拟量信号超量程、变化速率大等保护动作后,应自动撤出相应保护,待信号正常后再自动或手动恢复保护投运。2.4软件故障案例分析分散控制系统软件原因引起的故障,多数发生在投运不久的新软件上,运行的老系统发生的概率相对较少,但一当发生,此类故障原因的查找比较困难,需要对控制系统软件有较全面的了解和掌握,才能通过分析、试验,判断可能的故障原因,因此通常都需要厂家人员到现场一起进行。这类故障的典型案例有三种: (1)软件不成熟引起系统故障:此类故障多发生在新系统软件上,如有台机组80%额定

29、负荷时,除DEH画面外所有DCS的CRT画面均死机(包括两台服务器),参数显示为零,无法操作,但投入的自动系统运行正常。当时采取的措施是:运行人员就地监视水位,保持负荷稳定运行,热工人员赶到现场进行系统重启等紧急处理,经过30分钟的处理系统恢复正常运行。故障原因经与厂家人员一起分析后,确认为DCS上层网络崩溃导致死机,其过程是服务器向操作员站发送数据时网络阻塞,引起服务器与各操作员站的连接中断,造成操作员站读不到数据而不停地超时等待,导致操作员站图形切换的速度十分缓慢(网络任务未死)。针对管理网络数据阻塞情况,厂家修改程序考机测试后进行了更换。另一台机组曾同时出现4台主控单元“白灯”现象,现场

30、检查其中2台是因为A机备份网停止发送,1台是A机备份网不能接收,1台是A机备份网收、发数据变慢(比正常的站慢几倍)。这类故障的原因是主控工作机的网络发送出现中断丢失,导致工作机发往备份机的数据全部丢失,而双机的诊断是由工作机向备份机发诊断申请,由备份机响应诊断请求,工作机获得备份机的工作状态,上报给服务器。由于工作机的发送数据丢失,所以工作机发不出申请,也就收不到备份机的响应数据,认为备份机故障。临时的解决方法是当长时间没有正确发送数据后,重新初始化硬件和软件,使硬件和软件从一个初始的状态开始运行,最终通过更新现场控制站网络诊断程序予以解决。(2)通信阻塞引发故障:使用TELEPERM-ME系

31、统的有台机组,负荷300MW时,运行人员发现煤量突减,汽机调门速关且CRT上所有火检、油枪、燃油系统均无信号显示。热工人员检查发现机组EHF系统一柜内的I/O BUS接口模件ZT报警灯红闪,操作员站与EHF系统失去偶合,当试着从工作站耦合机进入OS250PC软件包调用EHF系统时,提示不能访问该系统。通过查阅DCS手册以及与SIEMENS专家间的电话分析讨论,判断故障原因最大的可能是在三层CPU切换时,系统处理信息过多造成中央CPU与近程总线之间的通信阻塞引起。根据商量的处理方案于当晚11点多在线处理,分别按三层中央柜的同步模件的SYNC键,对三层CPU进行软件复位:先按CPU1的SYNC键,

32、相应的红灯亮后再按CPU2的SYNC键。第二层的同步红灯亮后再按CPU3的同步模件的SYNC键,按3秒后所有的SYNC的同步红灯都熄灭,系统恢复正常。(3)软件安装或操作不当引起:有两台30万机组均使用Conductor NT 5.0作为其操作员站,每套机组配置3个SERVER和3个CLIENT,三个CLIENT分别配置为大屏、值长站和操作员站,机组投运后大屏和操作员站多次死机。经对全部操作员站的SERVER和CLIENT进行全面诊断和多次分析后,发现死机的原因是:1)一台SERVER因趋势数据文件错误引起它和挂在它上的CLIENT在当调用趋势画面时画面响应特别缓慢(俗称死机)。在删除该趋势数

33、据文件后恢复正常。2)一台SERVER因文件类型打印设备出错引起该SERVER的内存全部耗尽,引起它和挂在它上的CLIENT的任何操作均特别缓慢,这可通过任务管理器看到DEV.EXE进程消耗掉大量内存。该问题通过删除文件类型打印设备和重新组态后恢复正常。3)两台大屏和工程师室的CLIENT因声音程序没有正确安装,当有报警时会引起进程CHANGE.EXE调用后不能自动退出,大量的CHANGE.EXE堆积消耗直至耗尽内存,当内存耗尽后,其操作极其缓慢(俗称死机)。重新安装声音程序后恢复正常。此外操作员站在运行中出现的死机现象还有二种:一种是鼠标能正常工作,但控制指令发不出,全部或部分控制画面不会刷

34、新或无法切换到另外的控制画面。这种现象往往是由于CRT上控制画面打开过多,操作过于频繁引起,处理方法为用鼠标打开VMS系统下拉式菜单,RESET应用程序,10分钟后系统一般就能恢复正常。另一种是全部控制画面都不会刷新,键盘和鼠标均不能正常工作。这种现象往往是由操作员站的VMS操作系统故障引起。此时关掉OIS电源,检查各部分连接情况后再重新上电。如果不能正常启动,则需要重装VMS操作系统;如果故障诊断为硬件故障,则需更换相应的硬件。 (4)总线通讯故障:有台机组的DEH系统在准备做安全通道试验时,发现通道选择按钮无法进入,且系统自动从“高级”切到“基本级”运行,热控人员检查发现GSE柜内的所有输

35、入/输出卡(CSEA/CSEL)的故障灯亮, 经复归GSE柜的REG卡后,CSEA/CSEL的故障灯灭,但系统在重启“高级” 时,维护屏不能进入到正常的操作画面呈死机状态。根据报警信息分析,故障原因是系统存在总线通讯故障及节点故障引起。由于阿尔斯通DEH系统无冗余配置,当时无法处理,后在机组调停时,通过对基本级上的REG卡复位,系统恢复了正常。(5)软件组态错误引起:有台机组进行#1中压调门试验时,强制关闭中间变量IV1RCO信号,引起#1-#4中压调门关闭,负荷从198MW降到34MW,再热器压力从2.04MP升到4.0Mpa,再热器安全门动作。故障原因是厂家的DEH组态,未按运行方式进行,

36、流量变量本应分别赋给IV1RCO-IV4RCO,实际组态是先赋给IV1RCO,再通过IV1RCO分别赋给IV2RCO-IV4RCO。因此当强制IV1RCO=0时,所有调门都关闭,修改组态文件后故障消除。2.5电源系统故障案例分析DCS的电源系统,通常采用1:1冗余方式(一路由机组的大UPS供电,另一路由电厂的保安电源供电),任何一路电源的故障不会影响相应过程控制单元内模件及现场I/O模件的正常工作。但在实际运行中,子系统及过程控制单元柜内电源系统出现的故障仍为数不少,其典型主要有:(1)电源模件故障:电源模件有电源监视模件、系统电源模件和现场电源模件3种。现场电源模件通常在端子板上配有熔丝作为

37、保护,因此故障率较低。而前二种模件的故障情况相对较多:1)系统电源模件主要提供各不同等级的直流系统电压和I/O模件电压。该模件因现场信号瞬间接地导致电源过流而引起损坏的因素较大。因此故障主要检查和处理相应现场I/O信号的接地问题,更换损坏模件。如有台机组负荷520MW正常运行时MFT,首出原因“汽机跳闸。CRT画面显示二台循泵跳闸,备用盘上循泵出口阀86信号报警。5分钟后运行巡检人员就地告知循泵A、B实际在运行,开关室循泵电流指示大幅晃动且A大于B。进一步检查机组PLC诊断画面,发现控制循泵A、B的二路冗余通讯均显示“出错”。43分钟后巡检人员发现出口阀开度小就地紧急停运循泵A、B。事后查明A

38、、B两路冗余通讯中断失去的原因,是为通讯卡提供电源支持的电源模件故障而使该系统失电,中断了与PLC主机的通讯,导致运行循泵A、B状态失去,凝汽器保护动作,机组MFT。更换电源模件后通讯恢复正常。事故后热工制定的主要反事故措施,是将两台循泵的电流信号由PLC改至DCS的CRT显示,消除通信失去时循泵运行状态无法判断的缺陷;增加运行泵跳闸关其出口阀硬逻辑(一台泵运行,一台泵跳闸且其出口阀开度30度,延时15秒跳运行泵硬逻辑;一台泵运行,一台泵跳闸且其出口阀开度0度,逆转速动作延时30秒跳运行泵硬逻辑);修改凝汽器保护实现方式。2)电源监视模件故障引起:电源监视模件插在冗余电源的中间,用于监视整个控

39、制站电源系统的各种状态,当系统供电电压低于规定值时,它具有切断电源的功能,以免损坏模件。另外它还提供报警输出触点,用于接入硬报警系统。在实际使用中,电源监视模件因监视机箱温度的2个热敏电阻可靠性差和模件与机架之间接触不良等原因而故障率较高。此外其低电压切断电源的功能也会导致机组误跳闸,如有台机组满负荷运行,BTG盘出现“CCS控制模件故障”报警,运行人员发现部分CCS操作框显示白色,部分参数失去,且对应过程控制站的所有模件显示白色,6s后机组MFT,首出原因为“引风机跳闸”。约2分钟后CRT画面显示恢复正常。当时检查系统未发现任何异常(模件无任何故障痕迹,过程控制站的通讯卡切换试验正常)。机组

40、重新启动并网运行也未发现任何问题。事后与厂家技术人员一起专题分析讨论,并利用其它机组小修机会对控制系统模拟试验验证后,认为事件原因是由于该过程控制站的系统供电电压瞬间低于规定值时,其电源监视模件设置的低电压保护功能作用切断了电源,引起控制站的系统电源和24VDC、5VDC或15VDC的瞬间失去,导致该控制站的所有模件停止工作(现象与曾发生过的24VDC接地造成机组停机事件相似),使送、引风机调节机构的控制信号为0,送风机动叶关闭(气动执行机构),引风机的电动执行机构开度保持不变(保位功能),导致炉膛压力低,机组MFT。(2)电源系统连接处接触不良:此类故障比较典型的有:1)电源系统底板上5VD

41、C电压通常测量值在5.105.20VDC之间,但运行中测量各柜内进模件的电压很多在5V以下,少数跌至4.76VDC左右,引起部分I/O卡不能正常工作。经查原因是电源底板至电源母线间连接电缆的多芯铜线与线鼻子之间,表面上接触比较紧,实际上因铜线表面氧化接触电阻增加,引起电缆温度升高,压降增加。在机组检修中通过对所有5VDC电缆铜线与线鼻子之间的焊锡处理,问题得到解决。2)MACS-DCS运行中曾在两个月的运行中发生2M801工作状态显示故障而更换了13台主控单元,但其中的多数离线上电测试时却能正常启动到工作状态,经查原因是原主控5V电源,因线损和插头耗损而导致电压偏低;通过更换主控间的冗余电缆为

42、预制电缆;现场主控单元更换为2M801E-D01,提升主控工作电源单元电压至5.25V后基本恢复正常。3)有台机组负荷135MW时,给水调门和给水旁路门关小,汽包水位急速下降引发MFT。事后查明原因是给水调门、给水旁路门的端子板件电源插件因接触不良,指令回路的24V电源时断时续,导致给水调门及给水旁路门在短时内关下,汽包水位急速下降导致MFT。4)有台机组停炉前,运行将汽机控制从滑压切至定压后,发现DCS上汽机调门仍全开,主汽压力4260kpa,SIP上显示汽机压力下降为1800kpa,汽机主保护未动作,手动拍机。故障原因系汽机系统与DCS、汽机显示屏通讯卡件BOX1电源接触点虚焊、接触不好,

43、引起通讯故障,使DCS与汽机显示屏重要数据显示不正常,运行因汽机重要参数失准手动拍机。经对BOX1电源接触点重新焊接后通讯恢复。5)循泵正常运行中曾发出#2UPS失电报警,20分钟后对应的#3、#4循泵跳闸。由于运行人员处理及时,未造成严重后果。热工人员对就地进行检查发现#2UPS输入电源插头松动,导致#2UPS失电报警。进行专门试验结果表明,循泵跳闸原因是UPS输入电源失去后又恢复的过程中,引起PLC输入信号抖动误发跳闸信号。(3)UPS功能失效:有台机组呼叫系统的喇叭有杂音,通信班人员关掉该系统的主机电源查原因并处理。重新开启该主机电源时,呼叫系统杂音消失,但集控室右侧CRT画面显示全部失

44、去,同时MFT信号发出。经查原因是由于呼叫系统主机电源接至该机组主UPS,通讯人员在带载合开关后,给该机组主UPS电源造成一定扰动,使其电压瞬间低于195V,导致DCS各子系统后备UPS启动,但由于BCS系统、历史数据库等子系统的后备UPS失去带负荷能力(事故后试验确定),造成这些系统失电,所有制粉系统跳闸,机组由于“失燃料”而MFT 。(4)电源开关质量引起:电源开关故障也曾引起机组多次MFT,如有台机组的发电机定冷水和给水系统离线,汽泵自行从“自动”跳到“手动”状态;在MEH上重新投入锅炉自动后,汽泵无法增加流量。1分钟后锅炉因汽包水位低MFT动作。故障原因经查是DCS 给水过程控制站二只

45、电源开关均烧毁,造成该站失电,导致给水系统离线,无法正常向汽泵发控制信号,最终锅炉因汽包水位低MFT动作。2.6SOE信号准确性问题处理一旦机组发生MFT或跳机时,运行人员首先凭着SOE信号发生的先后顺序来进行设备故障的判断。因此SOE记录信号的准确性,对快速分析查找出机组设备故障原因有着很重要的作用。这方面曾碰到过的问题有:(1)SOE信号失准:由于设计等原因,基建接受过来的机组,SOE信号往往存在着一些问题(如SOE系统的信号分辨力达不到指标要求却因无测试仪器测试而无法证实,信号源不是直接取自现场,描述与实际不符,有些信号未组态等等),导致SOE信号不能精确反映设备的实际动作情况。有台机组

46、MFT时,光字牌报警“全炉膛灭火”,检查DCS中每层的3/4火检无火条件瞬间成立,但SOE却未捉捕到“全炉膛灭火”信号。另一台机组MFT故障,根据运行反映,首次故障信号显示“全炉膛灭火”,同时有“DCS电源故障”报警,但SOE中却未记录到DCS电源故障信号。这使得SOE系统在事故分析中的作用下降,增加了查明事故原因的难度。为此我省各电厂组织对SOE系统进行全面核对、整理和完善,尽量做到SOE信号都取自现场,消除SOE系统存在的问题。同时我们专门开发了SOE信号分辨力测试仪,经浙江省计量测试院测试合格后,对全省所属机组SOE系统分辨力进行全部测试,掌握了我省DCS的SOE系统分辨力指标不大于1m

47、s的有四家,接近1ms的有二家,4ms的有一家。(2)SOE报告内容凌乱:某电厂两台30万机组的INFI-90分散控制系统,每次机组跳闸时生成的多份SOE报告内容凌乱,启动前总是生成不必要的SOE报告。经过1)调整SEM执行块参数, 把触发事件后最大事件数及触发事件后时间周期均适当增大。2)调整DSOE Point 清单,把每个通道的Simple Trigger由原来的BOTH改为0TO1,Recordable Event。3)重新下装SEM组态后,问题得到了解决。 (3)SOE报表上出现多个点具有相同的时间标志:对于INFI-90分散控制系统,可能的原因与处理方法是:1)某个SET或SED模

48、件被拔出后在插入或更换,导致该子模件上的所有点被重新扫描并且把所有状态为1的点(此时这些点均有相同的跳闸时间)上报给SEM。2)某个MFP主模件的SOE缓冲区设置太小产生溢出,这种情况下,MFP将会执行内部处理而复位SOE,导致其下属的所有SET或SED子模件中,所有状态为1的点(这些点均有相同跳闸时间)上报给了SEM模件。处理方法是调整缓冲区的大小(其值由FC241的S2决定,一般情况下调整为100)。3)SEM收到某个MFP的事件的时间与事件发生的时间之差大于设定的最大等待时间(由FC243的S5决定),则SEM将会发一个指令让对应的MFP执行SOE复位,MFP重新扫描其下属的所有SOE点,且将所有状态为1 的点(这些点均有相同的跳闸时间)上报给SEM,。在环路负荷比较重的情况下(比如两套机组通过中央环公用一套SEM模件),可适当加大S5值,但最好不要超过60秒。2.7控制系统接线原因控制系统接线松动、错误而引起机组故障的案例较多,有时此类故障原因很难查明。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1