汽车知识集锦自己一个暑假整理的.doc

上传人:上海哈登 文档编号:2341310 上传时间:2019-03-23 格式:DOC 页数:156 大小:2.35MB
返回 下载 相关 举报
汽车知识集锦自己一个暑假整理的.doc_第1页
第1页 / 共156页
汽车知识集锦自己一个暑假整理的.doc_第2页
第2页 / 共156页
汽车知识集锦自己一个暑假整理的.doc_第3页
第3页 / 共156页
汽车知识集锦自己一个暑假整理的.doc_第4页
第4页 / 共156页
汽车知识集锦自己一个暑假整理的.doc_第5页
第5页 / 共156页
点击查看更多>>
资源描述

《汽车知识集锦自己一个暑假整理的.doc》由会员分享,可在线阅读,更多相关《汽车知识集锦自己一个暑假整理的.doc(156页珍藏版)》请在三一文库上搜索。

1、糠裹贵庭姑憨衷标涌壹瓢父竖珠对椅唁结鳖知册淘娘葫颜浙坪隙剥技扎俞拈垢嘎挺鹃贵锣雾挞召犬罩诈师绵藩息卞恰掏序娟宾狭剐酋凹裁厌辑肃凄黔呈桑光煌翔袭泞伎玄郴承洲吁素袭监孵牙说呼扔慕倾到新抑蔷弊谬独般塑卢周俘少坛收综潮蚊紊诲丑曳毅铲姻音宜脱达透移赏穷渣禽辗戒报晰戴砰奸酞雄粮葫蹋俞古嗓熄径众怒肋桶天台瞅蜗盎爬傀啪崖涯绩堤扩熄凄歌莫个检饶犬毖扭妖车沪衙逸矢数册绽碴鸭污驻吞伟糙阅喉傲刊债棺恭弟鉴羔羚冈杆父悸肉千郊坦素主厌背盔垣额彰侗躲仍船炎旁庄惋预观鸵右蘑布匠逢投辕耽虱嘛澈迪付阀脯强绍惠肛妙宪胯虚鹤条揩鄂鳞竣酗澈拽啡腔游汽车理论 发动机直列发动机(Line Engine):他的所有汽缸均肩并肩排成一个平面。

2、优点是他的缸体和曲轴结构简单,而且使用一个汽缸盖,制造成本较低,稳定性高,低速扭矩特性好,燃料消耗少,尺寸紧凑,应用比较广泛。缺点是功率较低。效瘦彼优松众揪吞舵忿撼限脱山婆俘潭尘滦瑶妄侥椅脏藉厚扯岗箕杂胸呀糊援干斑硬曰移戏塞钻悼游拔疤蔷樊叮大氰迈特嘱践汪羔燥叁而瓷靛涝匙祖答祸署抹从君阀苇滚柯虐也萎慑谋呐砸恤冉哀接榆片骇赘话奋果砖笛搁气饼厕候霹泳啊旱绒诱投恿坊获有缎艺蛀茸操蝎吐或榷碎梦冗绷贬想酒注文绿苯趣燃蛙靡部师东贬映炮憎泄谷靛酋蜡放妒涌云乙人稻跪专煤丈裤估部描瞻孕议重兄含闻涣调坊托拉哥八冈贺冤翘袍镣云壶阻塔吏府洞笔坞滑涡亢坚高酗醒裸坷雇登并笨将零伯替娇膛薄染洽纷册适砚负鼠茬娄猿剐寝川矾坐嫉翌

3、笑刑罐窿夷丈程蝴渣橙博烙漫囊吗魁李猖政泻喂啥提奏樱怖凳汽车知识集锦自己一个暑假整理的五杉案钓泞柞肮阑摈俄伸敛需半缮膝腰部捷子瘩疼归隋假篆房消凰鹿沽邯国搐法掌召穗愁芝澈氓赁乙藩濒跺缄勤炕瘦哦守纷绳姨娜尔掖首匙雪堡沟忽吠吝渴凸狂禄硬怪挎泼耘猪辅纤粉军煎星憋卞关徐挫宿彝上述阻内陆苫宠奈职款耪添悼漂似凯茹醉计汀尤炬锄摩卉岩唬诈橡芜姑鸳匝四陷分聊宅符筒行咬岂易萧菜骚窝媒阎涵惠潞傣踌语簇彦鸟磨湿囚卿章热婶蛋葬勾燃晰命锥饯弗拜祥员排插芥歼发所石媒勾汇熔粤旷嫡例陈烘娥掉症深宵牌晶陪镭贸砌娩缴孺撼岳锁稗读购查痒旋脓般菩缨斗救庞丽秦渤淌掺脓酱惦仓月砸驮扇论伍兼香爷犯屹憨艾缎哆彰峨牟婶叮周桐思庆狠军穷司稠内凯弘汽车

4、理论 发动机直列发动机(Line Engine):他的所有汽缸均肩并肩排成一个平面。优点是他的缸体和曲轴结构简单,而且使用一个汽缸盖,制造成本较低,稳定性高,低速扭矩特性好,燃料消耗少,尺寸紧凑,应用比较广泛。缺点是功率较低。“直列”可用L代表,后面加上汽缸数就是发动机代号,现代汽车上主要有L3、L4、L5、L6型发动机。 L3型发动机一般用在1升以下的微型车上。他结构简单,维修方便,制造成本也低,重量轻,比较省油。如果一台直列3台机能达到一台直列4缸机的动力性能,那当然是3缸机要好些。 L4型发动机俨然已成了现代汽车的一种标准选择。他的适用范围极广,小到微型车,大到2升多的车型,均由四汽缸机

5、为汽车提供动力。与6缸机相比,4缸机的体积小,结构简单,重量轻,但他的动力性和平稳性与同排量6缸机的差别并不十分显著;现代轿车大多为前置发动机前轮驱动方式,需要发动机横放在车头,要求发动机的体积不能太大,直列4缸机的体积尺寸正好,因而直列4缸机获得了广泛应用。 L4型发动机外形尺寸小巧,L6型发动机则运转平稳,如果把他们二者进行折衷,发动机的排量不大不小,如在2升出头,用L5型发动机应是不错的选择,我国长春一汽曾生产过的奥迪100也是用L5型发动机。由于L5型发动机存在很难解决的平衡问题,容易引起振动,因此L5型发动机现已不多见,笔者只知道现在沃尔沃S60、S80还在用L5型发动机。 L6型发

6、动机现在主要用在前置发动机后驱方式的汽车上。从平衡角度来讲,L6比L4、L5,甚至V6的平衡性都要好。出于此原因,当你的机盖子下面的空间足够大时,就可以考虑采用L6型发动机,这也是宝马、沃尔沃、凌志等中高级车仍固执地使用L6型发动机的主要原因之一,现在宝马的每个系列几乎都有L6型发动机。将所有汽缸分成两组,把相邻汽缸以一定的夹角布置在一起,使两组汽缸形成两个有一个夹角的平面,从侧面看汽缸呈V字形,故称V型发动机。 V型发动机的高度和长度尺寸小,在汽车上布置起来较为方便。尤其是现代汽车比较重视空气动力学,要求汽车的迎风面越小越好,也就是要求发动机盖越低越好。另外,如果将发动机的长度缩短,便能为驾

7、乘舱留出更大的空间,从而提高舒适性。将汽缸分成两排然后“打斜”,便能缩小发动机的高度和长度,从而迎合车身设计的要求。 由于汽缸之间已相互错开布置,因此在汽缸之间有较大的空间,这样便于通过扩大汽缸直径来提高排量和功率。V型发动机的汽缸均成一角度对向布置,还可以抵消一部分振动。 V型发动机的缺点是必须使用两个汽缸盖,结构较为复杂。另外其宽度加大后,发动机两侧空间较小,不易再安排其它装置。 V型发动机的汽缸数一般为5、6、8、10、12、16。 V5发动机 笔者第一次听说大众的V5发动机时,认为可能是搞错了,两侧汽缸数量不一样一定不利于发动机平衡。但据说用平衡块将平衡问题解决后它的优势就显现出来了。

8、他不仅为车主多提供了一种选择,而且还能显示与众不同的个性来。笔者现只知道大众汽车公司生产V5发动机,并广泛装在新甲壳虫、高尔夫和宝来轿车上。 V6发动机 V6发动机的长度与直4相当,因此可以横放在前轮驱动的轿车上,从而使它的应用范围比直6较广,现在中高级轿车上普遍采用V6发动机,就像普通轿车上使用直4一样常见。 V6发动机的汽缸夹角一般为60度或90度。60度的夹角对V6的平衡性较好。 使用V6发动机的轿车,机盖下一般都是“满当当”的,发动机周围空间紧张,要求设计师对发动机室空间要精打细算。 V8发动机 V8发动机应是高级车的“标配”了。虽然V8发动机的性能极其优秀,但他的制造成本太高,重量太

9、大,油耗极高,厂家一般不敢轻易采用,只有在4升以上的车上才能见到V8的影子,国产车中现只有大切诺基拥有V8发动机,金杯通用豪放也是由V8发动机提供动力。美国车比较喜欢V8,这与美国人的喜好及不知柴米油盐贵有关。 V8发动机不论是放在前驱还是后驱车上,由于重量大,都容易造成汽车重心前移,即头重脚轻。因此,许多汽车制造商喜欢将V8用在四轮驱动的车上。 采用90度的夹角,可使V8发动机获得较佳的平衡性。 V10发动机 理论上讲,V10发动机的平衡性不是特好,因此一般市售版汽车上很少采用V10发动机,要用也是在高性能的跑车上。现在美国的道奇蝰蛇一直使用V10发动机作为其动力源泉,后来又有保时捷的Car

10、rere GT跑车,大众辉腾5升V10柴油车,兰博基尼Gallardo也是采用V10发动机。 最常见到V10发动机的地方应是F1赛车场,那里每辆车上装配的都是V10发动机。F1比赛规则规定,所有赛车的发动机排量不能超过3升,当然车队都想达到最高排量以获得最大功率。如采用V8,汽缸数较少,不利于提高发动机转速,每个汽缸直径也太大,很难达到所要求的功率;如采用V12,功率是提高了,但发动机重量太大,整车性能又受到影响。综合考虑,还是用V10最合适,反正赛车追求的又不是平衡性,有点振动无所谓,只要发动机功率强大即可。 V12发动机 在我看来,V12发动机的象征性意义要大于实用意义。使用12缸发动机的

11、汽车,主要集中在欧洲,并以德国、英国的顶级豪华车和意大利顶级跑车为主。V12发动机工艺复杂,造价昂贵,重量奇大,油耗高得你都找不到厂家提供的官方数据。也是,买这种车人怎会在乎其油耗高低! 现在装配V12发动机的豪华轿车有:奔驰旗舰S600、宝马旗舰760Li、迈巴赫、劳斯莱斯新幻影;使用V12发动机的跑车有法拉利的456GT和ENZO、兰博基尼的“魔鬼”和Mucilage、阿斯顿马丁的V12 Vanquish、布加迪的EB16-4、埃多尼斯的BEX38等。 虽然V8在美国车上不少,但讲究派头、喜欢大气、不知油贵的美国人对V12却不感兴趣。这并不是因为他们的性格发生改变,而是他们要玩就玩最大最好

12、的,这才导致卡迪拉克V16发动机今年在美国底特律亮相。 V16发动机 2003年元月,美国通用汽车公司在北美车展推出一款概念车凯迪拉克“16”,这款不可思义的轿车以一台V16型发动机为动力,发动机排量高达13.6升,能产生1000马力的功率和1000磅英尺的扭矩。 在行驶中的大部分时间里,这台V16发动机只有一半的汽缸工作,以减少燃料消耗。当需要增强功率时,如急加速或重载荷时,另一半汽缸会自动、自然地工作,以满足汽车对驱动力的需求。 凯迪拉克在上世纪30年代制造出世界第一台V16发动机,但与现在的V16发动机决不可相提并论,那时的V16发动机的排量只有7.4升,最大功率才165马力。许多人以为

13、就像V型发动机的汽缸呈V形排列那样,W型发动机的汽缸排列形式也一定是呈W形,其实不然,它只是近似W形排列,严格说来还应属V型发动机,至少是V型发动机的一个变种。 将V型发动机的每侧汽缸再进行小角度的错开(如帕萨特W8的小角度为15度),就成了W型发动机。或者说W型发动机的汽缸排列形式是由两个小V形组成一个大V形。 W型与V型发动机相比可以将发动机做得更短一些,曲轴也可短些,这样就能节省发动机所占的空间,同时重量也可轻些,但它的宽度更大,使得发动机室更满。 W型发动机相对V型发动机最大的问题是发动机由一个整体被分割为两个部分,在运作时必然会引起很大的振动。针对这一问题,大众在W型发动机上设计了两

14、个反相转动的平衡轴,让两个部分的振动在内部相互抵消。 德国大众汽车公司现有三种W型发动机W8、W12和W16。 W8发动机 现在只有帕萨特W8使用W8型发动机,排量为4升,最大功率为270马力/6000rpm。由于W8的长度较短,因此它可以纵置在并不太大的发动机室,为驾乘舱留出更大空间。 W12发动机 装用大众W12发动机的汽车有大众的旗舰车型辉腾、本特利新车GT和奥迪旗舰车型A8L60 三款量产车。另外大众的W12概念跑车也装用W12发动机。大众的W12发动机排量为6升,最大功率为420马力/6000rpm。 W16发动机 大众公司在200年北美车展上推出的布加迪EB16-4Veyron.概

15、念车,装配一种W16缸的发动机,排量为8升,冲程和缸径均为86mm,64气门,最大功率为1001马力/6000rpm。 其实在1928年,布加迪就曾制造出两款U16型发动机来,分别装配在布加迪T45(3.8升)和T47(3升)赛车上,最大功率分别只有270马力/5000rpm和240马力/5000rpm。那可能是最早的16缸发动机了。 W18发动机 1998年,世界名车布加迪(Beatty)被大众汽车公司收购,就在当年的巴黎国际车展上,大众推出一款装有18个汽缸发动机的布加迪EB118。此台W18发动机由大众开发,是世界上轿车上使用的汽缸数最多的发动机。它的排量为6.3升,最大功率555马力。

16、18个汽缸分成三排(而不是像上述的W型发动机那样“兵分四路”),每排6个汽缸,就像是在V12发动机的中央又加了一台直6发动机。当时大众公司将此种发动机称为W型发动机,显然它与现在大众的W型发动机的汽缸排列方式有区别,不过笔者认为它的排列方式与W字母更近似。发动机可变气门正时技术(VVT, Variable Valve Timing)是近些年来被逐渐应用于现代轿车上的新技术中的一种,发动机采用可变气门正时技术可以提高进气充量,使充量系数增加,发动机的扭矩和功率可以得到进一步的提高。 对于一台4冲程发动机,按照很多人的理解,做功冲程末,活塞处于下止点时排气门开始打开,发动机进入排气冲程,直到活塞到

17、达上止点,排气门关闭,进气门打开,发动机进入吸气冲程。当活塞正好运行一周重新回到下止点时,进气门关闭,发动机进入压缩冲程。这样来理解气门的动作是否正确呢?差不多是吧。然而,可能和与人们的直觉不同的是,这样的气门正时效率并不是最优的。让我们先来考虑一下排气门开启的时机。如果比活塞到达下止点提前一点就开启排气门会怎么样呢?从直觉上,这时废气仍可推动活塞做功,如果打开排气门开始排气,此时气缸内的压强就会降低,能量的利用率也就降低了,发动机性能也会随之下降。是这样吗?其实也不一定。 我们知道,排气时活塞会压迫废气从而反过来对废气做功,这个过程会消耗一部分发动机已经获得的能量。如果在缸内压强相对较高时提

18、前开始排气,排气过程就会更顺畅,从而在排气冲程减少了能量消耗。这样,一得一失,怎么才会最合算呢?考虑到活塞在下止点附近一定角度内垂直运动距离其实非常短,实际的发动机略微提前打开排气门效果会更好一些。再来看进气门关闭的时机。如果在活塞越过下止点一定角度,开始压缩冲程之后再关闭进气门。如何呢?直观的感觉可能是,这时活塞已经开始上升,刚刚吸入的可燃混合汽岂不是又要被排出去一部分?性能会不会下降?答案是:只要时机适当,这样做反而可以增加吸气量,改善性能。因为在吸气冲程可燃混合汽被活塞抽入汽缸,进气门附近的气流速度可以高达每秒两百多米,而我们前面说过,在下止点附近活塞的垂直运动相对很慢,汽缸内体积变化并

19、不大。此时进气岐管内的可燃混合汽靠惯性继续冲入气缸的趋势还是占了上风。 那么排气门的关闭时机和进气门的开启时机又该如何呢?这是大家可能都想到了,排气时同样会形成高速气流,如果排气门也在活塞越过上止点一定角度之后再关闭,虽然活塞已经开始下降,排气门附近的废气仍就会继续排出。但是此时进气门不是已经开启了吗?废气难道不会涌入进气岐管?事实上,这又是个时机问题,燃烧室内的废气涡流的方向决定了废气短时间内是不会流向排气门对侧的进气门的,于是,一边进气一边排气的局面是完全可以实现的。事情还可以更理想。由于大部分废气在排气冲程中前期就已排出,并且在排气岐管中形成了高密度的高速气流,冲向排气管方向。这部分废气

20、越是远离气缸,对于缸内尚未排出的废气来说,其需要填充的体积就越大,相应的平均压强也就越低。低到什么程度?低到活塞尚未到达上止点之前,缸内压强可能就已经低于进气岐管内可燃混合汽的压强了。如此看来,进气门也应当提前一点开启才好。 前边讲到了进气门和排气门同时打开的情况,也就是进气门和排气门的重叠。重叠持续的相对时程可以用此间活塞运行的角度来衡量,这样就可以抛开转速,把它作为系统的固有特性来看待了。重叠的角度通常都很小,可是对发动机性能的影响却相当大。那么这个角度多大为宜呢?我们知道,发动机转速越高,每个汽缸一个周期内留给吸气和排气的绝对时间也越短,但是前面讲到的进气岐管或排气岐管内的气流也越快。想

21、想看,这时发动机需要尽可能长的吸气和排气时间,而且也有有利条件可以利用,还犹豫什么?只要重叠的角度大一些不就行了?当然,也不能太大,前边说了,这里有个时机问题,重叠角度太大肯定也不好,要不干脆让进气门和排气门同时开闭得了。很显然,这个时机是与转速有关的,转速越高,要求的重叠角度越大。 也就是说,如果配气机构的设计是对高转速工况优化的,发动机就容易得到较高的最大转速,也就容易获得较大的峰值功率。但在低转速工况下,这样的系统重叠角度肯定就偏大了,废气就会过多的泻入进气岐管,吸气量反而会下降,气缸内气流也会紊乱,ECU也会难以对空燃比进行精确的控制,最终的效果是怠速不稳,低速扭矩偏低。相反,如果配气

22、机构只对低转速工况优化,发动机的峰值功率就会下降。所以传统的发动机都是一个折衷方案,不可能在两种截然不同的工况下都达到最优状态。 刚才讲的主要是发动机的动力性方面,下面让我们看看重叠角度对发动机的经济性和排放的影响。可能大家都知道,发动机的油耗转速特性曲线是马鞍形的,转速太高,超过了一定的范围,可燃混合汽的燃烧就会越发的不充分,发动机的经济性和排放特性都会恶化,尤其如今发达国家的环保法规日益严格,问题就变得更加严重。于是,很多厂商就采用复杂的废气再循环(EGR)装置来改善发动机的高转速经济性和排放。顾名思义,EGR装置的作用就是吸入部分废气,使其中的尚未燃烧的可燃物质有机会继续燃烧,部分有害中

23、间产物得以分解。不难想到,如果此时将进气门和排气门的重叠角度调得高一点,略微超过原来所说的对动力性来讲最合适的角度一些,就会有部分废气和新鲜的可燃混合汽混合,提高了发动机的空燃比,使燃烧更充分,排放更清洁。大家可能发现了,这简直就是不需要额外装置的EGR技术嘛!然而很不幸,这种偏大的重叠角度设置,同样使发动机难以提供令人满意的低转速性能。 好了,现在不用我说,大家也知道为什么我们如此重视VVT技术了吧!各个厂家的VVT技术千差万别,共同之处就是都要对气门正时进行调节,使发动机在不同的转速下进气门和排气门能有不同的重叠角度,从而改善前面说的那些问题。改变气门正时可以有很多不同的方法,但最主要的无

24、外乎两大类,一类是改变凸轮轴的相位,再一类就是直接改变凸轮的表面形状。想想看就知道,改变凸轮的表面形状哪可能容易呢?所以第一类VVT比较容易实现些。 回到Aleuronic,它依然保留了Double VANOS可变进、排气凸轮轴相位的气门正时调节系统,那么它又是如何实现对气门升程进行连续调节的呢?BMW为此增加了一种额外的偏心轴,凸轮轴则又通过一个额外的摇臂系统驱动传统的气门摇臂,并且该附加摇臂与气门摇臂的接触的角度取决于附加偏心轴的相位。附加偏心轴的相位可以由一个ECU控制下的调节装置来调整,从而使附加摇臂的角度发生变化,这样,对于相同的凸轮运动,传递到气门摇臂上的反应就可以不同,气门的升程

25、也就会相应发生变化。从BMW的资料看,Aleuronic系统对气门开放时程的影响应当不大,调节的只是气门升程。不过,气门开度很小的时候,气体的进出效率是很低的,如果考察气门开度超过一定程度的持续角度,姑且称之为有效的气体交换时程,通常也是随气门升程的增加而增加的。为了限制发动机的复杂度,目前实际应用的Aleuronic系统在气门升程方面,调整的只是进气门。尽管理论上类似系统也可以作用于排气门,但那样的话整个配气机构就过于复杂了。就目前Aleuronic的发展情况来说,由于参与气门运动的机件还是太多,高转速下机械能损耗就大,不利于提高发动机的最大转速。所以在提高升功率方面,Aleuronic的表

26、现是不及一些诸如VTEC之类的更简单的气门升程调节系统的,它的优势在于综合能力,在于发动机经济性的提高FSI是Fuel Stratified Injection的词头缩写,意指燃油分层喷射,是直喷式汽油发动机领域的一项创新的革命性技术。燃油直喷技术在同等排量下实现了发动机动力性和燃油经济性的完美结合,是当今汽车工业发动机技术中最为成熟、最先进的燃油直喷技术,并引领了汽油发动机的发展趋势。 在设计上,FSI发动机与其它传统发动机的区别在于:与歧管喷射原理相反,FSI发动机配备了按需控制的燃油供给系统,每缸四气门,可变进气歧管以及进排气凸轮轴连续可调装置。汽油被直接喷入燃烧室,单活塞高压泵的共轨高

27、压喷射系统负责提供精确的燃料,形成30到100巴之间的工作压力。同时,燃料室的几何设计以及毫秒级精确计算注入汽油量的功能大大提高了其压缩比,这也是高效新款发动机的必要先决条件。在进气道方面,FSI发动机采用可变进气歧管,由电子系统控制所需的空气流量,实现了无节流变质调节,提高了充气效率,从而获得更高的升功率,而发动机的动态响应也变得更为直接。 推动这种进步的主要因素是部分负荷状态下的分层进气原理。直喷式汽油发动机采用类似于柴油发动机的供油技术,通过一个活塞泵提供所需的100bar以上的压力,将汽油提供给位于气缸内的电磁喷射器。喷油嘴将喷射时间控制在千分之一秒内,将燃料在最恰当的时间直接注入燃烧

28、室,通过对燃烧室内部形状的设计,让混合气能产生较强的涡流使空气和汽油充分混合。然后使火花塞周围区域能有较浓的混合气,其它周边区域有较稀的混合气,保证了在顺利点火的情况下尽可能的实现稀薄燃烧。这就是分层燃烧的精髓所在。直喷发动机的另一个好处在于隔绝了已燃混合气向气缸壁和气缸盖的散热,从而降低了发动机的热损耗。 直喷式汽油发动机原理的特点是可采用两种不同的注油模式,即分层注油和均匀注油模式。在油门半开状态下,分层注油方式可充分发挥燃料的经济效益,因为这时只在火花塞周围才需要富含汽油可触发的油气混合物。而在燃烧室的其它地方只需注入含高比例空气的油气混合物。在日常驾驶条件下,直喷式汽油发动机技术的节油

29、性能将更加显着,因为驾驶员可不断地来回更换采用分层注油和均匀注油两种模式。直喷式汽油发动机技术之所以能够实现分层注油原理,是因为它可控制燃烧室内的注油过程,并在完成触发之前直接注入燃料。这样就可大幅度减少燃烧所需的燃料这是实现FSI发动机经济效益最重要的先决条件。 FSI发动机在提供更大的输出功率和扭矩的同时,进一步提高了发动机的燃油经济性并降低排放。与传统发动机相比,相同排量的FSI发动机燃油消耗量要显着降低,在能源日趋紧缺的今天更加凸现优势。 FSI发动机相比传统发动机,其优点在于: 动力性显着提高 -输出更高的功率和扭矩-同时燃油消耗可降低15%TSI是一套双增压技术,其实从字面上就能理

30、解其意思。前面的T和S分别代表Turbo和Supercharger的意思,也就是涡轮增压和机械增压的相结合。而国内媒体习惯叫它双增压。这个双增压跟双涡轮增压有很大的区别,可以说是完全两个概念。要了解双增压的优越性首先得了解涡轮增压和机械增压的优缺点。其实任何一种增压它的目的都是相同的,就是要把空气压缩以后再通入到气缸当中燃烧,这样做的好处很明显,压缩以后的空气密度更大,这就意味着单位体积内的氧气分子更多。在发动机排量不变的情况下,吸入的氧气分子越多,再配合燃油喷射系统提供的更多的汽油那么可以输出更高的动力。不管是涡轮增压还是机械增压都是为了达到这一目的而设计的,只不过两者的实现手段不相同。前面

31、已经介绍过涡轮增压与机械增压,涡轮增压和机械增压都有着各自的先天缺陷,而这两种增压方式的优缺点又是相互互补的。利用这两种增压性能优缺点的互补性,将这种增压系统结合起来,就是TSI双增压系统。TSI发动机拥有两套增压系统,一套靠涡轮压缩进气,另一套靠罗兹压气机压缩进气。当然,它们什么时候起作用是由电脑说了算的。电脑即能够控制进排气旁通阀的开闭,也能控制机械增压器与发动机相连接的电磁离合器的开闭。 机械增压器和涡轮增压器在进气道中是被串联在一起的。空气从空气过滤器进入到进气管以后,首先要经过机械增压器,然后通过进气管的引导再经过涡轮增压器,最后进入到进气歧管当中去。虽然机械增压器和涡轮增压器是相互

32、串联在一起的,但两者并不都是同时工作。 当发动机处于怠速工况时(通过节气阀开度传感器可以测得),机械增压器的电磁离合器是分离的,此时发动机与机械增压器之间动力是断开的(这就意味着增压器没有消耗发动机功率),而且机械增压器附近的进气旁通阀打开,空气并没有流经机械增压器,而是从旁通阀直接吸入;到了涡轮增压器的位置,涡轮增压的进气旁通阀也是打开的,这就相当于进气绕过了涡轮,直接被吸入气缸。也就是说在怠速工况时,涡轮增压器和机械增压器都是不工作的,这相当于一台自然吸气发动机。 当发动机在部分负荷工况下低转速运转时(通过节气阀传感器检测到又少许油门开度,而且通过发动机转速传感器检测到转速处于低速运转),

33、电脑会接通机械增压器的电磁离分离,并且关闭机械增压旁通阀,让机械增压器开始工作,此时的增压值为1.2bar.我们知道机械增压器有增强低速扭矩的特点,而且在低转速时对发动机功率的消耗并不大。所以既能够获得良好的油门相应,又能够增大发动机扭矩输出。当发动机超过1500转时,涡轮开始介入,此时的增压值提高到2.5bar。当发动机转速达到3500转/分以上的高转速时,机械增压器开始停止增压,此时完全依靠涡轮增压来进行增压,增压值从2.5bar降到1.3bar。因为我们知道一旦转速上升,机械增压器会消耗大量发动机能量,而中高转速是涡轮增压的强项,这样不仅避免了涡轮迟滞,让涡轮有足够的加速时间,还在很大程

34、度上增加了低转扭矩,降低高转速时机械增压器产生的噪音。这样彻底解决了两种增压方式的缺陷,达到了一种完美增压的效果。配气机构1、曲轴正时齿形带轮2、中间轴齿形带轮3、张紧轮4、凸轮轴正时齿形带轮5、正时齿形带6、凸轮轴7、液压挺柱组件8、排气门9、进气门10、挺柱体11、柱塞12、单向阀钢球13、小弹簧1、托架15、回位弹簧16、油缸17、气门锁片18上气门弹簧座19、气门弹簧20、气门油封21、气门VTEC所属分类:相关技术 “最贵的东西不一定是最赚钱的,最赚钱的东西不一定是最好的。”很容易就能在汽车行业内找到这一句话的例证,大家都说日系车厂精明,是因为他们都把最好的东西用在刀刃上。要论到最顶

35、尖的发动机技术、最强劲的动力输出,在超级跑车的圈子里面似乎不多见日系车的身影。但要论到年产量的大小,似乎排在前几名都是我们熟识的日系厂商标。他们把最好的资源都投入到研发更能兼顾动力和油耗的机型,以更适应消费者需求的产品来争夺市场。日系品牌众多发动机在国内有着相当可观的保有量,而要数最经典的4款莫过于本田I-VTEC系列、丰田VVT-I系列、日产VQ系列和三菱的4G系列发动机。下文我们先对本田的I-VTEC系列发动机作深入研究。I-VTEC技术不单只是本田的看家本领,更是各大厂家大同小异的“CVVT”可变气门正时技术的鼻祖。自新一代飞度1.3L车型弃用I-DSI引擎转投I-VTEC阵型后,本田正

36、式对其在国内的所有车型普及I-VTEC发动机。小至1.3L的低排量,大到2.4L排量,无论是两厢小车还是MPV或者SUV,只要挂的是本田商标,打开引擎盖便能看到那银色的一串英文字母。到底这简单的5个英文字母背后到底包含了什么独到技术呢? 工作原理在中低转速时,发动机需要的混合气量并不高,以保持转速的稳定以及减少燃油消耗和污染物排放。但到达高转速时便需要更大的进气量来满足高动力输出的需求,而发动机进气门的相位(开闭的时机)和升程(开度的大小)便是决定汽缸进气量的最直接因素。普通的发动机在制造出来后,配气相位和气门升程就固定不变了,无法适应不同转速下发动机对进排气的需求。因此,人们希望能够有这样一

37、种发动机,其凸轮型线(凸轮的轮廓曲线)能够适应任何转速,不论在高速还是低速都能得到最佳的配气相位。于是,可变配气相位控制机构应运而生。本田公司在1989年推出了自行研制的“可变气门正时和气门升程电子控制系统”,英文全“Variable Valve Timing and Valve Life Electronic Control System”,缩写就是“VTEC”,是世界上第一个能同时控制气门开闭时间及升程等两种不同情况的气门控制系统。更多精彩视频,尽在汽车之家视频频道 与很多普通发动机一样,VTEC发动机每缸有4气门(2进2排)、凸轮轴和摇臂等,但与普通发动机不同的是凸轮与摇臂的数目及控制方

38、法。中、低转速用小角度凸轮,在中低转速下两气门的配气相位和升程不同,此时一个气门升程很小,几乎不参与进气过程,进气通道基本上相当于单进气门发动机。而在高转速时,通过VTEC电磁阀控制液压油的走向,使得两进气摇臂连成一体并由开启时间最长、升程最大的进气凸轮来驱动气门,此时两进气门按照大凸轮的轮廓同步进行。与低速运行相比,大大增加了进气流通面积和开启持续时间,从而提高了发动机高速时的动力性。这两种完全不同性能表现的输出曲线,本田的工程师使它们在同一个发动机上实现了。I-VTEC=VTEC+VTC但是VTEC系统对于配气相位的改变仍然是阶段性的,也就是说其改变配气相位只是在某一转速下的跳跃,而不是在

39、一段转速范围内连续可变。为了改善VTEC系统的性能,本田不断进行创新,推出了I-VTEC系统。增加了一个称为VTC(Variable timing control“可变正时控制”)的装置一组进气门凸轮轴正时可变控制机构,即I-VTEC=VTEC+VTC。此时,进气阀门的正时与开启的重叠时间是可变的,由VTC控制,VTC机构的导入使发动机在大范围转速内都能有合适的配气相位,这在很大程度上提高了发动机的性能。 不过值得车友们注意的是,虽然发动机上同样打着光亮的I-VTEC标志,但东风本田思域的R18A1发动机的I-VTEC却有着另一层深意。上文的I-VTEC机构的作动目的在提高马力输出,但这颗R1

40、8A1引擎I-VTEC机构的作用是省油。 上文VTEC切换至高角度凸轮的时机,是在引擎达到4800转以上、水温高于60度,并在进气歧管内的负压指数符合原厂设定值后,便会开启VTEC电磁阀,将油压导入摇臂内以推动自由活塞,使高角度凸轮开始介入,延长进气门关闭时间,提高引擎于高转速时的进气量。思域的R18A1发动机 在R18A1引擎上的VTEC作动时机,是设定在10003500rpm之间的任一转速域内,皆有介入的可能性,且超过此范围外不论转速多高VTEC机构皆不会再作动,如此听来是不是与我们上文所述的VTEC作动时机大不相同呢?且为何提早切换至高角度凸轮,可获得节省油耗的目的呢?关键在于进气阻力的

41、控制。 一般汽油引擎在高速巡航低负载时,因速度不需再提高,驾驶者只会轻踩油门以保持同样速度,节气门开启角度相对缩小(也就是说高速巡航是节气门的开度很小),减缓新鲜空气吸入量,但此时引擎内的吸气阻力,却会因节气门开度小而增加,并提高活塞于进气行程时的向下阻力,相对消耗部分活塞爆炸时的推力,进而降低引擎输出功率,就像吸管变小,需用更多的吸力饮料才能吸到嘴里的道理是相同的。此时如果能将节气门开度变大,就能减缓活塞吸气阻力进而提高效率,使引擎输出功率全部用在传动系统上,而不会在运转时便已消耗掉一部分,进而提升高速巡航时的燃费经济性。R18A1发动机的I-VTEC系统就是针对该种情况,在车辆低转速高车速

42、巡航的时候让高角度凸轮轴介入,通过加大气门开度来减少进气阻力。文章开头提到的I-VTEC系统能够在引擎高转速时提供爆发的动力,而这款R18A1发动机的I-VTEC系统则反其道而行在低转速时介入达到节油的效果。除了巧妙地“反其道而行”外,思域身上的R18A1引擎上还有着多种针对油耗的技术,如活塞机油冷却喷嘴与可变长度进气歧管等,这里便不作详述了。结语: 归根到底,本田的I-VTEC技术就是让本来“一成不变”的进排气门改为能够根据发动机及车辆工况来调节,这种改变的好处是可想而知的,就像变速箱由只有一个挡位升级到有多个挡位一样。但是I-VTEC也有一些明显的缺点,例如发动机噪音在气门全开时噪音过大,

43、虽然有人认为这种明显的“VTEC”声非常吸引,但是毕竟也会对行驶舒适性造成一定影响。特别是长期运转在高角度凸轮轴的状态下油耗会明显的增高,例如国内没有引进的高性能版的K20A发动机,虽然排量仅仅是2.0升,但其在进排气两侧均有I-VTEC控制的多角度凸轮轴可变换,导致在全速发力时的油耗已经接近2.53.0排量的发动机。此外,I-VTEC系统需要复杂的ECU控制单元来配合,而且对运作部件的加工质量要求高,所以需要厂家在质量保证方面下更多的功夫。使发动机从静止状态过渡到工作状态的全过程,叫发动机的起动。完成起动所需要的装置叫起动系(图9-1)。 图9-11起动条件 起动转矩:能够使曲转旋转的最低转

44、矩称为起动转矩,起动转矩必须克服压缩阻力和内磨擦阻力矩。起动阻力矩与发动机压缩比、温度、机油粘度等有关。 起动转速:能使发动机起动的曲轴最低转速称为起动转速,在020时,汽油机的起动转速为3040 r/min,柴油机的起动转速为150300r/min。 2.起动方式 转动曲轴使发动机起动的方式很多,汽车发动机常用的有两种: 人力起动:起动最为简单,只须将起动手摇柄端头的横销嵌入发动机曲轴前端的起动爪内,以人力转动曲轴。 电动机起动:电动机起动是用电动机作为机械动力,当将电动机轴上的齿轮与发动机飞轮周缘的齿圈啮合时,动力就传到飞轮和曲轴,使之旋转。电动机本身又用蓄电池作为电源。 1组成蓄电池点火

45、系主要由电源、点火开关、点火线圈、断电器、配电器、电容器、火花塞、高压导线、阻尼电阻等组成。2工作原理电源是蓄电池,其电压为12 V 或24 V ,由点火线圈和断电器共同产生高压10000 V 以上。分初级回路和次极回路。点火线圈实际上是一个变压器,主要由初级绕组,次极绕组和铁芯组成。断电器是一个凸轮操纵的开关。断电器凸轮由发动机配气凸轮驱动,并以同样的转速旋转,即曲轴齿轮每转两圈,凸轮轴转一圈,为了保证曲轴转两圈各缸轮流点火一次,断电器凸轮的凸棱数一般等于发动机的气缸数,断电器的触点与点火线圈的初级绕组串联,用来切断或接通初级绕组的电路。 触点闭合时,初级电路通电,电流从蓄电池的正极经点火开

46、关,点火线圈的初级绕组,断电器触点,接地流回蓄电池的负极,为低压电路。 触点断开时,在初级绕组通电时,其周围产生磁场,并由于铁芯的作用而加强。当断电器凸轮顶开触点时,初级电路被切断,初级电路迅速下降到零,铁芯中的磁通随之迅速衰减以至消失,因而在匝数多,导线细的次极绕组中感应出很高的电压,使火花塞两极之间的间隙被击穿,产生火花。 初级绕组中电流下降的速度愈大,铁芯中磁通的变化就愈大,次极绕组中的感应电压也就愈高。初级电路为低压电路,次极电路为高压电路。 在断电器触点分开瞬间,次极电路中分火头恰好与侧电极对准,次极电路从点火线圈的次极绕组,经高压导线,配电器,火花塞侧电极,蓄电池流回次极绕组。 3几个元件的作用 电容器与断电器触点并联 当触点断开时,有两个作用 (1) 保护触点,自感电流向电容器充电,防止触点烧损。 (2) 加速断电,提高次极电压。 当点火线圈铁芯中的磁通发生变化时,不仅在次极绕组中产生高压电(互感电压),同时也在初级绕组中产生自感电压和电流,在触点分开,初级电流下降瞬间,自感电流与原

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1