第十章函数项级数.ppt

上传人:本田雅阁 文档编号:2629545 上传时间:2019-04-24 格式:PPT 页数:164 大小:7.09MB
返回 下载 相关 举报
第十章函数项级数.ppt_第1页
第1页 / 共164页
第十章函数项级数.ppt_第2页
第2页 / 共164页
第十章函数项级数.ppt_第3页
第3页 / 共164页
亲,该文档总共164页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《第十章函数项级数.ppt》由会员分享,可在线阅读,更多相关《第十章函数项级数.ppt(164页珍藏版)》请在三一文库上搜索。

1、第十章 函数项级数,第一节 函数项级数的一致收敛性 第二节 一致收敛级数的判别与性质 第三节 幂级数 第四节 函数的幂级数展开,第一节 函数项级数的一致收敛性,一、点态收敛 二、函数项级数(或函数序列)的基本问题 三、函数项级数(或函数序列)的一致收敛,一、点态收敛 考虑(含有参数的数项)级数及其收敛性。,下面的例子说明,在点态收敛的情况下,上述性质不一定成立。,第二节 一致收敛级数的判别与性质,一致收敛的判别 一致收敛级数的性质 处处连续但处处不可导的例子,下图显示不同参数所对应的Weierstrass函数的图像,第三节,一、幂级数的收敛半径,二、幂级数的性质,幂级数,机动 目录 上页 下页

2、 返回 结束,一、幂级数及收敛半径,形如,的函数项级数称为幂级数,其中数列,下面着重讨论,例如, 幂级数,为幂级数的系数 .,即是此种情形.,的情形, 即,称,机动 目录 上页 下页 返回 结束,收敛,发散,Abel第一定理:,若幂级数,则对满足不等式,的一切 x 幂级数都绝对收敛.,反之, 若当,的一切 x , 该幂级数也发散 .,时该幂级数发散 ,则对满足不等式,证: 设,收敛,则必有,于是存在,常数 M 0, 使,阿贝尔 目录 上页 下页 返回 结束,当 时,收敛,故原幂级数绝对收敛 .,也收敛,反之, 若当,时该幂级数发散 ,下面用反证法证之.,假设有一点,满足不等式,所以若当,满足,

3、且使级数收敛 ,面的证明可知,级数在点,故假设不真.,的 x , 原幂级数也发散 .,时幂级数发散 ,则对一切,则由前,也应收敛,与所设矛盾,证毕,机动 目录 上页 下页 返回 结束,幂级数在 (, +) 收敛 ;,由Abel 定理可以看出,中心的区间.,用R 表示幂级数收敛与发散的分界点,的收敛域是以原点为,则,R = 0 时,幂级数仅在 x = 0 收敛 ;,R = 时,幂级数在 (R , R ) 收敛 ;,(R , R ) 加上收敛的端点称为收敛域.,R 称为收敛半径 ,,在R , R ,可能收敛也可能发散 .,外发散;,在,(R , R ) 称为收敛区间.,机动 目录 上页 下页 返回

4、 结束,定理10.3.2. 若,的系数满足,证:,1) 若 0,则根据比值判别法可知:,当,原级数收敛;,当,原级数发散.,即,时,1) 当 0 时,2) 当 0 时,3) 当 时,即,时,则,机动 目录 上页 下页 返回 结束,2) 若,则根据比值判别法可知,绝对收敛 ,3) 若,则对除 x = 0 以外的一切 x 原级发散 ,对任意 x 原级数,因此,因此,的收敛半径为,说明:据此定理,因此级数的收敛半径,机动 目录 上页 下页 返回 结束,对端点 x =1,的收敛半径及收敛域.,解:,对端点 x = 1, 级数为交错级数,收敛;,级数为,发散 .,故收敛域为,例1.求幂级数,机动 目录

5、上页 下页 返回 结束,例2. 求下列幂级数的收敛域 :,解: (1),所以收敛域为,(2),所以级数仅在 x = 0 处收敛 .,机动 目录 上页 下页 返回 结束,例3.,的收敛半径 .,解: 级数缺少奇次幂项,不能直接应用定理2,比值判别法求收敛半径.,时级数收敛,时级数发散,故收敛半径为,故直接由,机动 目录 上页 下页 返回 结束,例4.,的收敛域.,解: 令,级数变为,当 t = 2 时, 级数为,此级数发散;,当 t = 2 时, 级数为,此级数条件收敛;,因此级数的收敛域为,故原级数的收敛域为,即,机动 目录 上页 下页 返回 结束,二、幂级数的性质,定理. 设幂级数,及,的收

6、敛半径分别为,令,则有 :,其中,以上结论可用部分和的极限证明 .,机动 目录 上页 下页 返回 结束,说明:,两个幂级数相除所得幂级数的收敛半径可能比,原来两个幂级数的收敛半径小得多.,例如, 设,它们的收敛半径均为,但是,其收敛半径只是,机动 目录 上页 下页 返回 结束,定理 若幂级数,的收敛半径,(证明见第六节),则其和函,在收敛域上连续,且在收敛区间内可逐项求导与,逐项求积分,运算前后收敛半径相同:,注: 逐项积分时, 运算前后端点处的敛散性不变.,机动 目录 上页 下页 返回 结束,解: 由例2可知级数的收敛半径 R+.,例5.,则,故有,故得,的和函数 .,因此得,设,机动 目录

7、 上页 下页 返回 结束,例6.,的和函数,解: 易求出幂级数的收敛半径为 1 ,x1 时级数发,散,机动 目录 上页 下页 返回 结束,例7. 求级数,的和函数,解: 易求出幂级数的收敛半径为 1 ,及,收敛 ,机动 目录 上页 下页 返回 结束,因此由和函数的连续性得:,而,及,机动 目录 上页 下页 返回 结束,例8.,解: 设,则,机动 目录 上页 下页 返回 结束,而,故,机动 目录 上页 下页 返回 结束,内容小结,1. 求幂级数收敛域的方法,1) 对标准型幂级数,先求收敛半径 , 再讨论端点的收敛性 .,2) 对非标准型幂级数(缺项或通项为复合式),求收敛半径时直接用比值法或根值

8、法,2. 幂级数的性质,两个幂级数在公共收敛区间内可进行加、减与,也可通过换元化为标准型再求 .,乘法运算.,机动 目录 上页 下页 返回 结束,2) 在收敛区间内幂级数的和函数连续;,3) 幂级数在收敛区间内可逐项求导和求积分.,思考与练习,1. 已知,处条件收敛 , 问该级数收敛,半径是多少 ?,答:,根据Abel 定理可知, 级数在,收敛 ,时发散 .,故收敛半径为,机动 目录 上页 下页 返回 结束,2. 在幂级数,中,n 为奇数,n 为偶数,能否确定它的收敛半径不存在 ?,答: 不能.,因为,当,时级数收敛 ,时级数发散 ,说明: 可以证明,比值判别法成立,根值判别法成立,机动 目录

9、 上页 下页 返回 结束,备用题 求极限,其中,解: 令,作幂级数,设其和为,易知其收敛半径为 1,则,机动 目录 上页 下页 返回 结束,第四节,两类问题:,在收敛域内,和函数,本节内容:,一、泰勒 ( Taylor ) 级数,二、函数展开成幂级数,函数的幂级数展开,机动 目录 上页 下页 返回 结束,一、泰勒 ( Taylor ) 级数,其中,( 在 x 与 x0 之间),称为拉格朗日余项 .,则在,若函数,的某邻域内具有 n + 1 阶导数,此式称为 f (x) 的 n 阶泰勒公式 ,该邻域内有 :,机动 目录 上页 下页 返回 结束,为f (x) 的泰勒级数 .,则称,当x0 = 0

10、时, 泰勒级数又称为麦克劳林级数 .,1) 对此级数, 它的收敛域是什么 ?,2) 在收敛域上 , 和函数是否为 f (x) ?,待解决的问题 :,若函数,的某邻域内具有任意阶导数,机动 目录 上页 下页 返回 结束,定理1 .,各阶导数,则 f (x) 在该邻域内能展开成泰勒级数的充要,条件是,f (x) 的泰勒公式中的余项满足:,证明:,令,设函数 f (x) 在点 x0 的某一邻域,内具有,机动 目录 上页 下页 返回 结束,定理2.,若 f (x) 能展成 x 的幂级数, 则这种展开式是,唯一的 , 且与它的麦克劳林级数相同.,证: 设 f (x) 所展成的幂级数为,则,显然结论成立

11、.,机动 目录 上页 下页 返回 结束,二、函数展开成幂级数,1. 直接展开法,由泰勒级数理论可知,第一步 求函数及其各阶导数在 x = 0 处的值 ;,第二步 写出麦克劳林级数 , 并求出其收敛半径 R ;,第三步 判别在收敛区间(R, R) 内,是否为,骤如下 :,展开方法,直接展开法, 利用泰勒公式,间接展开法, 利用已知其级数展开式,0.,的函数展开,机动 目录 上页 下页 返回 结束,例1. 将函数,展开成 x 的幂级数.,解:,其收敛半径为,对任何有限数 x , 其余项满足,故,( 在0与x 之间),故得级数,机动 目录 上页 下页 返回 结束,例2. 将,展开成 x 的幂级数.,

12、解:,得级数:,其收敛半径为,对任何有限数 x , 其余项满足,机动 目录 上页 下页 返回 结束,类似可推出:,机动 目录 上页 下页 返回 结束,例3. 将函数,展开成 x 的幂级数, 其中m,为任意常数 .,解: 易求出,于是得 级数,由于,级数在开区间 (1, 1) 内收敛.,因此对任意常数 m,机动 目录 上页 下页 返回 结束,推导,则,推导 目录 上页 下页 返回 结束,为避免研究余项 , 设此级数的和函数为,称为二项展开式 .,说明:,(1) 在 x1 处的收敛性与 m 有关 .,(2) 当 m 为正整数时, 级数为 x 的 m 次多项式, 上式 就是代数学中的二项式定理.,机

13、动 目录 上页 下页 返回 结束,由此得,对应,的二项展开式分别为,机动 目录 上页 下页 返回 结束,2. 间接展开法,利用一些已知的函数展开式及幂级数的运算性质,例4. 将函数,展开成 x 的幂级数.,解: 因为,把 x 换成, 得,将所给函数展开成 幂级数.,机动 目录 上页 下页 返回 结束,例5. 将函数,展开成 x 的幂级数.,解:,从 0 到 x 积分, 得,定义且连续,区间为,利用此题可得,上式右端的幂级数在 x 1 收敛 ,所以展开式对 x 1 也是成立的,于是收敛,机动 目录 上页 下页 返回 结束,例6. 将,展成,解:,的幂级数.,机动 目录 上页 下页 返回 结束,例

14、7. 将,展成 x1 的幂级数.,解:,机动 目录 上页 下页 返回 结束,内容小结,1. 函数的幂级数展开法,(1) 直接展开法, 利用泰勒公式 ;,(2) 间接展开法, 利用幂级数的性质及已知展开,2. 常用函数的幂级数展开式,式的函数 .,机动 目录 上页 下页 返回 结束,当 m = 1 时,机动 目录 上页 下页 返回 结束,思考与练习,1. 函数,处 “有泰勒级数” 与 “能展成泰勒级,数” 有何不同 ?,提示: 后者必需证明,前者无此要求.,2. 如何求,的幂级数 ?,提示:,机动 目录 上页 下页 返回 结束,作业 P223 2 (2) , (3) , (5) , (6) ;

15、3 (2) ; 4 ; 6,第五节 目录 上页 下页 返回 结束,例3 附注,备用题 1.,将下列函数展开成 x 的幂级数,解:,x1 时, 此级数条件收敛,因此,机动 目录 上页 下页 返回 结束,2. 将,在x = 0处展为幂级数.,解:,因此,机动 目录 上页 下页 返回 结束,第五节,一、近似计算,二、欧拉公式,函数幂级数展开式的应用,机动 目录 上页 下页 返回 结束,第十一章,一、近似计算,例1. 计算,的近似值, 精确到,解:,机动 目录 上页 下页 返回 结束,例2. 计算,的近似值 ,使准确到,解: 已知,故,令,得,于是有,机动 目录 上页 下页 返回 结束,在上述展开式中

16、取前四项,机动 目录 上页 下页 返回 结束,说明: 在展开式,中,令,得,具此递推公式可求出任意正整数的对数 . 如,( n为自然数) ,机动 目录 上页 下页 返回 结束,例3. 利用,求,误差.,解: 先把角度化为弧度,(弧度),误差不超过,的近似值 , 并估计,机动 目录 上页 下页 返回 结束,( 取,例4. 计算积分,的近似值, 精确到,解:,机动 目录 上页 下页 返回 结束,则 n 应满足,则所求积分近似值为,欲使截断误差,机动 目录 上页 下页 返回 结束,例5. 计算积分,的近似值, 精确到,解: 由于,故所给积分不是广义积分.,若定义被积函数在 x = 0 处的值为 1,

17、则它在积分区间,上连续, 且有幂级数展开式 :,机动 目录 上页 下页 返回 结束,二、欧拉(Euler)公式,则称 收敛 , 且其和为,绝对收敛,收敛 .,若,收敛,若,对复数项级数,绝对收敛,则称 绝对收敛.,由于, 故知,欧拉 目录 上页 下页 返回 结束,定义: 复变量,的指数函数为,易证它在整个复平面上绝对收敛 .,当 y = 0 时, 它与实指数函数,当 x = 0 时,的幂级数展式一致.,机动 目录 上页 下页 返回 结束,(欧拉公式),(也称欧拉公式),利用欧拉公式可得复数的指数形式,则,机动 目录 上页 下页 返回 结束,据此可得,(德莫弗公式),利用幂级数的乘法, 不难验证

18、,特别有,作业 P229 1(2) , (4) ; 2 (2),第六节 目录 上页 下页 返回 结束,欧拉 (1707 1783),瑞士数学家.,他写了大量数学经典,著作,如无穷小分析引论 , 微,还,写了大量力学, 几何学, 变分法教材.,他在工作期间几乎每年都完成 800 页创造性的论文.,他的最大贡献是扩展了微积分的领域,要分支 (如无穷级数, 微分方程) 与微分几何的产生和,发展奠定了基础.,分学原理 , 积分学原理等,为分析学的重,在数学的许多分支中都有以他的名,字命名的重要常数, 公式和定理.,机动 目录 上页 下页 返回 结束,二、求幂级数收敛域的方法, 标准形式幂级数: 先求收

19、敛半径 R ,再讨论, 非标准形式幂级数,通过换元转化为标准形式,直接用比值法或根值法,处的敛散性 .,P257 题7. 求下列级数的敛散区间:,练习:,机动 目录 上页 下页 返回 结束,解:,当,因此级数在端点发散 ,时,时原级数收敛 .,故收敛区间为,机动 目录 上页 下页 返回 结束,解: 因,故收敛区间为,级数收敛;,一般项,不趋于0,级数发散;,机动 目录 上页 下页 返回 结束,例2.,解: 分别考虑偶次幂与奇次幂组成的级数,极限不存在, 原级数 =, 其收敛半径,注意:,机动 目录 上页 下页 返回 结束, 求部分和式极限,三、幂级数和函数的求法,求和, 映射变换法,逐项求导或

20、求积分,对和式积分或求导,直接求和: 直接变换,间接求和: 转化成幂级数求和, 再代值,求部分和等, 初等变换法: 分解、套用公式,(在收敛区间内), 数项级数 求和,机动 目录 上页 下页 返回 结束,例3. 求幂级数,法1 易求出级数的收敛域为,机动 目录 上页 下页 返回 结束,法2,先求出收敛区间,则,设和函数为,机动 目录 上页 下页 返回 结束,练习:,解: (1),显然 x = 0 时上式也正确,故和函数为,而在,x0,求下列幂级数的和函数:,级数发散,机动 目录 上页 下页 返回 结束,(4),机动 目录 上页 下页 返回 结束,显然 x = 0 时, 和为 0 ;,根据和函数

21、的连续性 , 有,x = 1 时,级数也收敛 .,即得,机动 目录 上页 下页 返回 结束,练习:,解: 原式=,的和 .,P258 题9(2). 求级数,机动 目录 上页 下页 返回 结束,四、函数的幂级数和付式级数展开法, 直接展开法, 间接展开法,练习:,1. 将函数,展开成 x 的幂级数., 利用已知展式的函数及幂级数性质, 利用泰勒公式,解:,机动 目录 上页 下页 返回 结束,1. 函数的幂级数展开法,2. 设, 将 f (x)展开成,x 的幂级数 ,的和. ( 01考研 ),解:,于是,并求级数,机动 目录 上页 下页 返回 结束,机动 目录 上页 下页 返回 结束,机动 目录 上页 下页 返回 结束,思考: 如何利用本题结果求级数,根据付式级数收敛定理 , 当 x = 0 时, 有,提示:,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1