双容水箱液位串级控制系统的设计.doc

上传人:本田雅阁 文档编号:2739513 上传时间:2019-05-10 格式:DOC 页数:38 大小:14.33MB
返回 下载 相关 举报
双容水箱液位串级控制系统的设计.doc_第1页
第1页 / 共38页
双容水箱液位串级控制系统的设计.doc_第2页
第2页 / 共38页
双容水箱液位串级控制系统的设计.doc_第3页
第3页 / 共38页
双容水箱液位串级控制系统的设计.doc_第4页
第4页 / 共38页
双容水箱液位串级控制系统的设计.doc_第5页
第5页 / 共38页
点击查看更多>>
资源描述

《双容水箱液位串级控制系统的设计.doc》由会员分享,可在线阅读,更多相关《双容水箱液位串级控制系统的设计.doc(38页珍藏版)》请在三一文库上搜索。

1、目 录摘 要1Abstract:21 概述31.1 过程控制介绍31.2 液位串级控制系统介绍41.3 MATLAB软件介绍41.4 MCGS组态软件介绍52 被控对象建模72.1 水箱模型分析72.2 阶跃响应曲线法建立模型73 系统控制方案设计与仿真133.1 PID控制原理133.2 系统控制方案设计153.2 控制系统仿真164 建立仪表过程控制系统204.1 过程仪表介绍204.2 仪表过程控制系统的组建214.3 仪表过程控制系统调试运行245 建立计算机过程控制系统265.1 计算机过程控制系统硬件设计265.2 MCGS软件工程组态285.3 计算机过程控制系统调试运行386

2、结论40双容水箱液位串级控制系统的设计摘 要: 本论文的目的是设计双容水箱液位串级控制系统。在设计中充分利用自动化仪表技术,计算机技术,通讯技术和自动控制技术,以实现对水箱液位的串级控制。首先对被控对象的模型进行分析,并采用实验建模法求取模型的传递函数。其次,根据被控对象模型和被控过程特性设计串级控制系统,采用动态仿真技术对控制系统的性能进行分析。然后,设计并组建仪表过程控制系统,通过智能调节仪表实现对液位的串级PID控制。最后,借助数据采集模块MCGS组态软件和数字控制器,设计并组建远程计算机过程控制系统,完成控制系统实验和结果分析。关键词: 液位 模型 PID控制 仪表过程控制系统 计算机

3、过程控制系统1.2液位串级控制系统介绍在工业实际生产中,液位是过程控制系统的重要被控量,在石油化工环保水处理冶金等行业尤为重要。在工业生产过程自动化中,常常需要对某些设备和容器的液位进行测量和控制。通过液位的检测与控制,了解容器中的原料半成品或成品的数量,以便调节容器内的输入输出物料的平衡,保证生产过程中各环节的物料搭配得当。通过控制计算机可以不断监控生产的运行过程,即时地监视或控制容器液位,保证产品的质量和数量。如果控制系统设计欠妥,会造成生产中对液位控制的不合理,导致原料的浪费产品的不合格,甚至造成生产事故,所以设计一个良好的液位控制系统在工业生产中有着重要的实际意义。 在液位串级控制系统

4、的设计中将以THJ-2高级过程控制实验系统为基础,展开设计控制系统及工程实现的工作。虽然是采用传统的串级PID控制的方法,但是将利用智能调节仪表数据采集模块和计算机控制来实现控制系统的组建,努力使系统具有良好的静态性能,改善系统的动态性能。 2被控对象建模在控制系统设计工作中,需要针对被控过程中的合适对象建立数学模型。被控对象的数学模型是设计过程控制系统、确定控制方案、分析质量指标、整定调节器参数等的重要依据。被控对象的数学模型(动态特性)是指过程在各输入量(包括控制量和扰动量)作用下,其相应输出量(被控量)变化函数关系的数学表达式。在液位串级控制系统中,我们所关心的是如何控制好水箱的液位。上

5、水箱和下水箱是系统的被控对象,必须通过测定和计算他们模型,来分析系统的稳态性能、动态特性,为其他的设计工作提供依据。上水箱和下水箱为THJ-2高级过程控制实验装置中上下两个串接的有机玻璃圆筒形水箱,另有不锈钢储水箱负责供水与储水。上水箱尺寸为:d=25cm,h=20cm;下水箱尺寸为:d=35cm,h=20cm,每个水箱分为三个槽:缓冲槽、工作槽、出水槽。2.1水箱模型分析Q112Q2Ah 图2.1液位被控过程简明原理图系统中上水箱和下水箱液位变化过程各是一个具有自衡能力的单容过程。如图,水箱的流入量为Q1,流出量为Q2,通过改变阀1的开度改变Q1值,改变阀2的开度可以改变Q2值。液位h越高,

6、水箱内的静压力增大,Q2也越大。液位h的变化反映了Q1和Q2不等而导致水箱蓄水或泻水的过程。若Q1作为被控过程的输入量,h为其输出量,则该被控过程的数学模型就是h与Q1之间的数学表达式。 根据动态物料平衡, Q1-Q2=A(dh/dt) ;Q1-Q2=A(dh/dt) 在静态时,Q1=Q2,dh/dt=0;当Q1发生变化后,液位h随之变化,水箱出口处的静压也随之变化,Q2也发生变化。由流体力学可知,液位h与流量之间为非线性关系。但为了简便起见,做线性化处理得 Q2=h/R2,经拉氏变换得单容液位过程的传递函数为W0(s)=H(s)/Q1(s)=R2/(R2Cs+1)=K/(Ts+1)注:Q1

7、Q2h:分别为偏离某一个平衡状态Q10Q20h0的增量。R2:阀2的阻力 A:水箱截面积 T:液位过程的时间常数(T=R2C) K:液位过程的放大系数(K=R2) C:液位过程容量系数 图2.2 水箱模型测定原理图 3求取上水箱模型传递函数在MATLAB的命令窗口输入曲线拟合指令: x=0:30:420; y=0 6.88 11.63 15.07 17.7 19.69 21.15 21.94 22.55 23.44 23.63 23.84 24.14 24.25 24.27 ; p=polyfit(x,y,4); xi=0:3:420; yi=polyval(p,xi); plot(x,y,b

8、:oxi,yi,r)。 在MATLAB中绘出曲线如下:图2.5上水箱拟合曲线注:图中曲线为拟合曲线,圆点为原数据点。数据点与曲线基本拟合。如图所示,利用四阶多项式近似拟合上水箱的响应曲线,得到多项式的表达式:P(t)-1.8753e(-009)t4+2.2734e(-006)t3-0.0010761t2+0.24707t+0.13991。根据曲线采用切线作图法计算上水箱特性参数,当阶跃响应曲线在输入量x(t)产生阶跃的瞬间,即t=0时,其曲线斜率为最大,然后逐渐上升到稳态值,该响应曲线可用一阶惯性环节近似描述,需确定K和T。而斜率K为P(t)在t=0的导数P(0)= 0.24707,以此做切线

9、交稳态值于A点,A点映射在t轴上的B点的值为T。图2.6上水箱模型计算曲线阶跃响应扰动值为10,静态放大系数为阶跃响应曲线的稳态值与阶跃扰动值之比,所以上水箱传递函数为 4.下水箱模型建立在MATLAB的命令窗口输入曲线拟合指令:x=0: 30:1650;y=0 3.17 6.26 9.51 12.54 15.5 18.4 20.77 22.98 25.05 26.85 28.86 30.59 32.32 33.69 35.16 36.42 37.74 39.02 40.09 41.16 42.02 42.94 43.47 44.43 45.17 45.81 46.4146.99 47.4 4

10、7.79 48.24 48.77 49.17 49.34 49.65 49.91 50.37 50.82 51.04 51.51 51.78 52.06 52.31 52.39 52.59 52.63 52.92 53.18 53.26 53.3 53.36 53.54 53.64 53.8 53.8;p=polyfit(x,y,4); xi=0:3:1650; yi=polyval(p,xi); plot(x,y,b:oxi,yi,r)。在MATLAB中绘出曲线如下:图2.7下水箱拟合曲线注:图中曲线为拟合曲线,圆点为原数据点。数据点与曲线基本拟合。如图所示,利用四阶多项式近似拟合下水箱的响

11、应曲线,得到多项式的表达式P(t)= -1.1061e(-011)t4+5.7384(e-008)t3 -0.00011849t2 +0.12175t-0.31385.根据曲线采用切线作图法计算下水箱特性参数,当阶跃响应曲线在输入量x(t)产生阶跃的瞬间,即t=0时,其曲线斜率为最大,然后逐渐上升到稳态值,该响应曲线可用一阶惯性环节近似描述,需确定K和T.而斜率K为P(t)在t=0的导数P(0)=0.12175,以此做切线交稳态值于A点,A点映射在t轴上的B点的值为T。图2.8下水箱模型计算曲线阶跃响应扰动值为10,静态放大系数为阶跃响应曲线的稳态值与阶跃扰动值之比,所以下水箱传递函数为。在实

12、验建模的过程中,实验测取的被控对象为广义的被控对象,其动态特性包括了调节阀和测量变送器,即广义被控对象的传递函数为,为调节阀的传递函数,Gm(s)为测量变送器的传递函数。3系统控制方案设计与仿真3.1 PID控制原理y(t)+r(t) 比例P积分I微分D被控对象图3.1 PID控制基本原理图PID控制器是一种线性负反馈控制器,根据给定值r(t)与实际值y(t)构成控制偏差:。PID控制规律为:或以传递函数形式表示:式中,KP:比例系数 TI:积分时间常数 TD:微分时间常数 PID控制器各控制规律的作用如下:(1)比例控制(P):比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比

13、例关系,能较快克服扰动,使系统稳定下来。但当仅有比例控制时系统输出存在稳态误差(2)积分控制(I):在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称此控制系统是有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差的累积取决于时间的积分,随着时间的增加,积分项会越大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。但是过大的积分速度会降低系统的稳定程度,出现发散的振荡过程。比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。(3)微分控制(D):在

14、微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性环节或有滞后环节,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。所以在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。特别对于有较大惯性或滞后环节的被控对象,比例积分控制

15、能改善系统在调节过程中的动态特性。PID控制器的参数整定是控制系统设计的重要内容,应根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。1.临界比例法。在闭合控制系统中,把调节器的积分时间TI置于最大,微分时间TD置零,比例度置于较大数值,把系统投入闭环运行,将调节器的比例度由大到小逐渐减小,得到临界振荡过程,记录下此时的临界比例度k和临界振荡周期Tk。根据以下经验公式计算调节器参数: 调节器参数控制规律TITDP2k PI2.2kTK/1.2 PID1.6k0.5Tk0.25Tk表3.1临界振荡整定计算公式2.阻尼振荡法。在闭合控制系统中,把调节器的积分时间TI置于最大,

16、微分时间TD置零,比例度置于较大数值反复做给定值扰动实验,并逐渐减少比例度,直至记录曲线出现4:1的衰减为止。记录下此时的4:1衰减比例度k和衰减周期Tk。根据以下经验公式计算调节器参数: 调节器参数控制规律TITDPS PI1.2S0.5TS PID0.8S0.3TS0.1TS表3.2阻尼振荡整定计算公式3.反应曲线法若被控对象为一阶惯性环节或具有很小的纯滞后,则可根据系统开环广义过程测量变送器阶跃响应特性进行近似计算。在调节阀的输入端加一阶跃信号,记录测量变送器的输出响应曲线,并根据该曲线求出代表广义过程的动态特性参数。3.2系统控制方案设计1控制系统性能指标(1) 静态偏差:系统过渡过程

17、终了时的给定值与被控参数稳态值之差。(2) 衰减率:闭环控制系统被施加输入信号后,输出响应中振荡过程的衰减指标,即振荡经过一个周期以后,波动幅度衰减的百分数。为了保证系统足够的稳定程度,一般衰减率在0.75-0.9。(3) 超调量:输出响应中过渡过程开始后,被控参数第一个波峰值与稳态值之差,占稳态值的百分比,用于衡量控制系统动态过程的准确性。(4) 调节时间:从过渡过程开始到被控参数进入稳态值-5%+5%范围所需的时间2方案设计设计建立的串级控制系统由主副两个控制回路组成,每一个回路又有自己的调节器和控制对象。主回路中的调节器称主调节器,控制主对象。副回路中的调节器称副调节器,控制副对象。主调

18、节器有自己独立的设定值R,他的输出m1作为副调节器的给定值,副调节器的输出m2控制执行器,以改变主参数c2.m2m1e1c1扰动f1(t)e2设定值Rc2扰动f2(t)主调节器副调节器执行器副对象主对象测量与 变送器2测量与 变送器1通过针对双容水箱液位被控过程设计串级控制系统,将努力使系统的输出响应在稳态时系统的被控制量等于给定值,实现无差调节,并且使系统具有良好的动态性能,较块的响应速度。当有扰动f1(t)作用于副对象时,副调节器能在扰动影响主控参数之前动作,及时克服进入副回路的各种二次扰动,当扰动f2(t)作用于主对象时,由于副回路的存在也应使系统的响应加快,使主回路控制作用加强。图3.

19、2串级控制系统框图(1) 被控参数的选择应选择被控过程中能直接反映生产过程能够中的产品产量和质量,又易于测量的参数。在双容水箱控制系统中选择下水箱的液位为系统被控参数,因为下水箱的液位是整个控制作用的关键,要求液位维持在某给定值上下。如果其调节欠妥当,会造成整个系统控制设计的失败,且现在对于液位的测量有成熟的技术和设备,包括直读式液位计、浮力式液位计、静压式液位计、电磁式液位计、超声波式液位计等。(2) 控制参数的选择从双容水箱系统来看,影响液位有两个量,一是通过上水箱流入系统的流量,二是经下水箱流出系统的流量。调节这两个流量都可以改变液位的高低。但当电动调节阀突然断电关断时,后一种控制方式会

20、造成长流水,导致水箱中水过多溢出,造成浪费或事故。所以选择流入系统的流量作为控制参数更合理一些。(3) 主副回路设计为了实现液位串级控制,使用双闭环结构。副回路应对于包含在其内的二次扰动以及非线性参数、较大负荷变化有很强的抑制能力与一定的自适应能力。主副回路时间常数之比应在3到10之间,以使副回路既能反应灵敏,又能显著改善过程特性。下水箱容量滞后与上水箱相比较大,而且控制下水箱液位是系统设计的核心问题,所以选择主对象为下水箱,副对象为上水箱,。 (4) 控制器的选择根据双容水箱液位系统的过程特性和数学模型选择控制器的控制规律。为了实现液位串级控制,使用双闭环结构,主调节器选择比例积分微分控制规

21、律(PID),对下水箱液位进行调节,副调节器选择比例控制率(P),对上水箱液位进行调节,并辅助主调节器对于系统进行控制,整个回路构成双环负反馈系统。3.2 控制系统仿真通过MATLAB中的SIMULINK工具箱可以动态的模拟所的构造系统的响应曲线,以控制框图代替了程序的编写,只需要选择合适仿真设备,添加传递函数,设置仿真参数。下面根据前文的水箱模型传递函数对串级控制系统进行仿真,以模拟实际中的阶跃响应曲线,考察串级系统的设计方案是否合理。1. 阶跃响应性能图3.3 SIMULINK仿真框图通过手动切换开关(Manual Switch)可以实现副回路的引入与切除,以了解副回路对控制性能的影响,比

22、较串级控制和非串级控制对双容水箱液位的控制能力。在时间为0时对系统加入大小为30的阶跃信号,设置主控制器PID参数KP=60 TI=50 TD=3 ;副控制器P参数为KP=50,在初始点加40点阶跃输入量观察阶跃响应曲线。3.4 MATLAB加入副回路仿真曲线图图3.5 MATLAB不加入副回路仿真曲线图3.4为加入副回路时的仿真曲线:图3.5为切除副回路时的仿真曲线.由3.4和3.5两图对比可见,引入副回路组成双容水箱液位串级控制系统后动态特性比不加入副回路的控制系统有了很大的改善,提高了系统的工作频率,对被控对象的调节能力更强。 2抗扰动能力维持初始阶跃信号不变,并在副回路中加入扰动信号,

23、观察响应曲线. 在400s经过惯性环节向副回路加入阶跃值为70的扰动信号。控制器参数不变。图3.6 SIMULINK仿真框图图3.7 MATLAB加入副回路仿真曲线图3.8 MATLAB不加入副回路仿真曲线图3.7为加入副回路时的仿真曲线:图3.8为切除副回路时的仿真曲线.由图3.7和图3.8对比可见,引入副回路组成双容水箱液位串级控制系统后能够很好的克服进入副回路的扰动,及时消除扰动对主参数的影响.在克服二次扰动方面串级控制比不加副回路的非串级控制好。综上所述,选择串级PID控制的设计方案完成对水箱液位的控制调节应当是可行的.而且在改善系统的动态特性、抗扰动能力等方面与非串级控制系统是较为有

24、效的。但是仿真曲线只是在计算机上通过对实际系统仿真得到的较理想的模拟曲线.实际系统设计现场必须综合考虑各方面的因素,不可能得到与计算机仿真一致的理想曲线和控制性能。4 建立仪表过程控制系统以下将基于THJ-2高级过程控制实验装置和相关仪表仪器组建仪表过程控制系统,包括被控对象系统、智能仪表控制台及监控计算机三部分组成。4.1过程仪表介绍1检测变送装置采用工业用的BP800型扩散硅压力变送器对水箱液位变化进行测量,含不锈钢隔离模片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。当水箱中注水导致液位变化时,BP800压力变送器对被控过程中的流体压力进行测量,过程压力通过压力传感器将压力信号转换成

25、电信号,经差分放大器、输出放大器放大后,再经过V/A转换器,转换为与输入压力成线性对应关系的标准电流输出信号。BP800型压力变送器技术指标如下:被测介质:液体机械保护:IP65测量范围:-100KPa100MPa防爆等级:IaCT5输出:420mA DC二线制关联设备:EXZ231B安全栅准确度:0.5级温度极限:-1080。C 40120。C零点温度系数:小于0.02%/。C过载极限:额定量程的1.53倍满程温度系数:小于0.02%/。C相对湿度:小于95%电源电压:24DC二线制负载电阻:750欧姆表4.1压力变送器技术指标2执行机构(1)水泵采用16CQ8P型磁力驱动泵,流量为32升/

26、分,扬程为8米,功率为180W.为三相380恒压供水输入。(2)调节阀采用QSVP16K型电动调节阀实现对双容水箱液位系统进水量的控制。其由QSL智能型电动执行机构与阀门组合构成。通过将压力变送器检测到的电压/电流信号输入到QSL电动执行机构的智能放大器,和来自位置信号发生器产生的开度信号相比较并放大后,向消除其偏差的方向驱动并控制电机转动,以改变调节阀的开度,同时将阀门开度的隔离信号反馈给控制系统。当其偏差值达到零时,电机停止转动。阀开关形式:电开式动作速度:0.25mm/s输入控制信号:420mA DC/15V DC流量特性:直线输出信号:420mA DC额定流量系数Kv:1.2输入阻抗:

27、250/500介质温度:-4200。C输出最大负载:20 then下水箱液位PV1=20endifif 上水箱液位PV120 then上水箱液位PV1=20(3) 退出脚本程序!SetDevice(调节仪1,2, )!SetDevice(调节仪2,2, )endif程序注释:SetDevice(DevName,DevOp,CmdStr)函数意义:按照设备名字对设备进行操作。返 回 值:数值型。返回值:=0:调用正常。0:调用不正常。参 数:DevName,设备名,字符型;DevOp,设备操作码,数值型;CmdStr,设备命令字符串,只有当DevOp=6时CmdStr才有意义。DevOp取值范围

28、及相应含义:1:启动设备开始工作。2:停止设备的工作使其处于停止状态。3:测试设备的工作状态。4:启动设备工作一次。5:改变设备的工作周期,CmdStr中包含新的工作周期,单位为ms。6:执行指定的设备命令,CmdStr中包含指定命令的格式。4计算机设备窗口设置:(实现计算机对调节仪表的监控) AI-808P智能调节仪设备设置:设备名称:调节仪1调节仪2设备注释:宇光-AI808P仪表宇光-AI808P仪表初始工作状态:1-启动1-启动最小采集周期(ms):10001000模块地址:12设置小数点位数:1-1位小数1-1位小数输入范围:10-15V10-15V连接通道通道类型数据对象1数据对象

29、20通讯状态mm1mm21PV值(液位测量值)pv1pv22SV值(液位给定值)sv1sv23MV值(调节器输出值)op1op218CTRL控制方式ctrl1ctrl223Sn输入规格sn1sn225dil下限显示dil1dil226dih上限显示dih1dih232CF系统功能cf1cf234通讯地址addr1addr2表4.6调节仪设备窗口参数设置4.3 仪表过程控制系统调试运行在组建仪表系统设备构件,实现计算机与仪表系统通讯后,完成仪表液位控制系统的调试运行,完成PID参数的整定,完成仪表控制系统的实验。根据液位串级控制系统的设计原则和被控过程模型,主副被控过程的时间常数之比在4.5:1

30、左右。主副回路的工作频率和操作周期相差较大,其动态联系很小可忽略不计。所以副调节器按单回路系统方法整定后,可以将副回路作为主回路的一个环节,按单回路控制系统的整定方法,整定主调节器的参数,而不再考虑主调节器参数变化对副回路的影响。而且在液位控制系统的设计中,对于主参数下水箱液位的质量指标要求较高,对副参数上水箱液位没有严格的要求。设置副参数的目的是为了进一步提高主参数的控制质量,只要通过主调节器参数整定保证主参数质量,副参数的控制质量可以牺牲一些。采用两步整定法整定调节仪表PID参数:(1)在工况稳定主回路闭合,主副调节器都在纯比例作用的条件下,主调节器的比例度置于100%,用单回路控制系统的

31、阻尼振荡法整定,求取副调节器比例度和操作周期。(2)将副调节器的比例度置于(1)中所求得的数值上,把副回路作为主回路的一个环节,用同样的方法整定主回路,求取主回路的比例度和操作周期。(3)根据以上求得的数据,按单回路系统阻尼振荡法整定公式计算主副调节器的比例度积分时间和微分时间的数值。(4)按先副后主先比例后积分适当加入微分的整定程序,设置主副调节器的参数,再观察过渡过程曲线,必要时进行适当调整,直到系统质量达到最佳为止。 主副调节器参数整定结果如下:主调节器比例系数P=20,积分时间I=80,微分时间D=10;副调节器比例系数P=40。对仪表控制系统设置下水箱液位给定值为4cm,等待系统稳定

32、后,突加阶跃扰动(将设定值增加75%),设置下水箱液位给定值为7cm,得到下水箱液位输出响应曲线。图4.2下水箱液位阶跃响应曲线结果分析:仪表系统中的调节仪表为反作用调节方式,输入增大时,输出趋向减小。根据PID控制的特性再调节参数,使系统达到较满意的状态。加阶跃输入后观察系统的动态性能,由曲线和响应数据得延迟时间Td=31s,峰值时间Tp=160s,调节时间Ts=300s,超调量为13.3%(最大峰值7.4cm),余差为0。通过增加比例系数克服扰动,比例系数越小,调节器输出越大,但比例调节仍有余差,所以引入积分调节,系统中由于积分作用偏强,造成曲线上升后恢复较慢,再略加入微分作用减小余差,加

33、快系统响应速度。仪表系统采样时间为1s,采样时间较长,调节器作用的速度略慢,特别是接近稳态值时总是抖动较大,不能很快的到达稳态。-150mV150mV -20mA20mA 对应80007FFF电源输入:1030VDC电源功耗:1.3W。3模拟量输出通道在计算机控制系统中,模拟量输出通道一般包括接口电路D/A转换器V/I变换等。模拟量输出通道的任务是将计算机输出的数字量转换成模拟电压或电流信号,以便驱动相应的执行机构(电动调节阀)。在远程数据采集过程控制系统,将使用ICP-7024数据采集模块实现模拟量输入通道的功能。7024D/A 转换模块:数据采集程序存储在EEPROM中,计算机将数据通过R

34、S-485接口送给7024D/A 转换模块,由内部控制器按控制程序将数据送入对应DAC通道,转换为模拟电压/电流输出。7024D/A 转换模块技术指标: 模拟量输出类型:V,mA. 带宽:15.7Hz 准确率:0.1% 波特率:9600bps零点漂移:30V/ 20A/ 量程:020mA 4mA20mA 0V10V -10V10V 0V5V -5V5V 电源输入:1030VDC电源功耗:2.3W4.计算机控制系统硬件电路设计: 图5.3采集模块电路原理图5.2 MCGS软件工程组态通过MCGS组态软件在控制计算机上构建一个人机交互界面,经过RS232/485转换器实现计算机与数据采集模块的通讯

35、,将检测变送装置的信号传送到控制计算机中,从而在人机交互界面中可以对水箱液位对象进行监控控制器设计改造数据浏览和存储记录实验曲线等。MCGS组态软件所建立的工程由主控窗口、设备窗口、用户窗口、实时数据库和运行策略五部分构成,每一部分分别进行组态操作,完成不同的工作,具有不同的特性MCGS组态软件的工作方式:(1)MCGS与设备通讯:MCGS通过设备驱动程序与外部设备进行数据交换。包括数据采集和发送设备指令。设备驱动程序是由VB程序设计语言编写的DLL(动态连接库)文件,设备驱动程序中包含符合各种设备通讯协议的处理程序,将设备运行状态的特征数据采集进来或发送出去。MCGS负责在运行环境中调用相应

36、的设备驱动程序,将数据传送到工程中各个部分,完成整个系统的通讯过程。每个驱动程序独占一个线程,达到互不干扰的目的。(2)MCGS产生动画效果:MCGS为每一种基本图形元素定义了不同的动画属性,每一种动画属性都会产生一定的动画效果。所谓动画属性是反映图形大小、颜色、位置、可见度、闪烁性等状态的特征参数。在图形的每一种动画属性中都有一个“表达式”设定栏,其中设定一个与图形状态相联系的数据变量,连接到实时数据库中,以此建立相应的对应关系,MCGS称之为动画连接。(3)当工业现场中测控对象的状态(如:水箱液位高度等)发生变化时,通过设备驱动程序将变化的数据采集到实时数据库的变量中,该变量是与动画属性相

37、关的变量,数值的变化,使图形的状态产生相应的变化(如高低变化)。现场的数据是连续被采集进来的,这样就会产生逼真的动画效果(如水箱液面的升高和降低)。用户也可编写程序来控制动画界面,以达到满意的效果。(4)MCGS实施远程多机监控:MCGS提供了一套完善的网络机制,可通过TCP/IP网、Modem网和串口网将多台计算机连接在一起,构成分布式网络测控系统,实现网络间的实时数据同步、历史数据同步和网络事件的快速传递。同时,可利用MCGS提供的网络功能,在工作站上直接对服务器中的数据库进行读写操作。分布式网络测控系统的每一台计算机都要安装一套MCGS工控组态软件。MCGS把各种网络形式,以父设备构件和子设备构件的形式,供用户调用,并进行工作状态、端口号、工作站地址等属性参数的设置。(5)MCGS控制工程运行流程:MCGS开辟了专用的“运行策略”窗口,建立用户运行策略。MCGS提供了丰富的功能构件,供用户选用,通过构件配置和属性设置两项组态操作,生成各种功能模块,使系统能够按照设定的顺序和条件,操作实时数据库,实现对动画窗口的任意切换,控制系统的运行流程和设备的工作状态。所有的操作均采用面向对象的直观方式,避免了烦琐的编程工作。在MCGS组态环境下的工程组态流程如

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1