第十二章图.ppt

上传人:本田雅阁 文档编号:2969797 上传时间:2019-06-15 格式:PPT 页数:93 大小:1.52MB
返回 下载 相关 举报
第十二章图.ppt_第1页
第1页 / 共93页
第十二章图.ppt_第2页
第2页 / 共93页
第十二章图.ppt_第3页
第3页 / 共93页
第十二章图.ppt_第4页
第4页 / 共93页
第十二章图.ppt_第5页
第5页 / 共93页
点击查看更多>>
资源描述

《第十二章图.ppt》由会员分享,可在线阅读,更多相关《第十二章图.ppt(93页珍藏版)》请在三一文库上搜索。

1、第十二章 图,内容提要,抽象数据类型图的定义 图的存储表示 图的遍历 最小生成树 最短路径问题 拓扑排序 .,图是由一个顶点集 V 和一个弧集 R构成的数据结构。 Graph = (V , R ) 其中,VR| v,wV 且 P(v,w) 表示从 v 到 w 的一条弧,并称 v 为弧头,w 为弧尾。 谓词 P(v,w) 定义了弧 的意义或信息。,图的结构定义:,由于“弧”是有方向的,因此称由顶点集和弧集构成的图为有向图。,A B E C D,例如:,G1 = (V1, VR1),其中 V1=A, B, C, D, E VR1=, , , , , , ,若VR 必有VR, 则称 (v,w) 为顶

2、点v 和顶点 w 之间存在一条边。,B C A D F E,由顶点集和边集构成的图称作无向图。,例如: G2=(V2,VR2) V2=A, B, C, D, E, F VR2=, , , , , , ,名词和术语,网、子图,完全图、稀疏图、稠密图,邻接点、度、入度、出度,路径、路径长度、简单路径、简单回路,连通图、连通分量、 强连通图、强连通分量,生成树、生成森林,A,B,E,C,F,A,E,A,B,B,C,设图G=(V,VR) 和图 G=(V,VR), 且 VV, VRVR, 则称 G 为 G 的子图。,15,9,7,21,11,3,2,弧或边带权的图分别称作有向网或无向网。,假设图中有 n

3、 个顶点,e 条边,则,含有 e=n(n-1)/2 条边的无向图称作完全图;,含有 e=n(n-1) 条弧的有向图称作 有向完全图;,若边或弧的个数 enlogn,则称作稀疏图,否则称作稠密图。,假若顶点v 和顶点w 之间存在一条边, 则称顶点v 和w 互为邻接点,,A,C,D,F,E,例如:,ID(B) = 3,ID(A) = 2,边(v,w) 和顶点v 和w 相关联。 和顶点v 关联的边的数目定义为边的度。,B,顶点的出度: 以顶点v为弧尾的弧的数目;,A,B,E,C,F,对有向图来说,,顶点的入度: 以顶点v为弧头的弧的数目。,顶点的度(TD)= 出度(OD)+入度(ID),例如:,ID

4、(B) = 2,OD(B) = 1,TD(B) = 3,设图G=(V,VR)中的一个顶点序列 u=vi,0,vi,1, , vi,m=w中,(vi,j-1,vi,j)VR 1jm, 则称从顶点u 到顶点w 之间存在一条路径。 路径上边的数目称作路径长度。,A,B,E,C,F,如:长度为3的路径A,B,C,F,简单路径:序列中顶点不重复出现的路径。,简单回路:序列中第一个顶点和最后一个顶点相同的路径。,若图G中任意两个顶点之间都有路径相通,则称此图为连通图;,若无向图为非连通图,则图中各个极大连通子图称作此图的连通分量。,B,A,C,D,F,E,B,A,C,D,F,E,若任意两个顶点之间都存在一

5、条有向路径,则称此有向图为强连通图。,A,B,E,C,F,A,B,E,C,F,对有向图,,否则,其各个强连通子图称作它的强连通分量。,假设一个连通图有 n 个顶点和 e 条边,其中 n-1 条边和 n 个顶点构成一个极小连通子图,称该极小连通子图为此连通图的生成树。,对非连通图,则称由各个连通分量的生成树的集合为此非连通图的生成森林。,B,A,C,D,F,E,结构的建立和销毁,插入或删除顶点,对邻接点的操作,对顶点的访问操作,遍历,插入和删除弧,基本操作,CreatGraph(&G, V, VR): / 按定义(V, VR) 构造图,DestroyGraph(&G): / 销毁图,结构的建立和

6、销毁,对顶点的访问操作,LocateVex(G, u); / 若G中存在顶点u,则返回该顶点在 / 图中“位置” ;否则返回其它信息。,GetVex(G, v); / 返回 v 的值。,PutVex( / 对 v 赋值value。,对邻接点的操作,FirstAdjVex(G, v); / 返回 v 的“第一个邻接点” 。若该顶点 /在 G 中没有邻接点,则返回“空”。,NextAdjVex(G, v, w); / 返回 v 的(相对于 w 的) “下一个邻接 / 点”。若 w 是 v 的最后一个邻接点,则 / 返回“空”。,插入或删除顶点,InsertVex( /在图G中增添新顶点v。,Del

7、eteVex( / 删除G中顶点v及其相关的弧。,插入和删除弧,InsertArc( / 在G中增添弧,若G是无向的, /则还增添对称弧。,DeleteArc( /在G中删除弧,若G是无向的, /则还删除对称弧。,遍 历,DFSTraverse(G, v, Visit(); /从顶点v起深度优先遍历图G,并对每 /个顶点调用函数Visit一次且仅一次。,BFSTraverse(G, v, Visit(); /从顶点v起广度优先遍历图G,并对每 /个顶点调用函数Visit一次且仅一次。,图的存储表示,一、图的数组(邻接矩阵)存储表示,二、图的邻接表存储表示,三、有向图的十字链表存储表示,四、无向

8、图的邻接多重表存储表示,Aij=,0 (i,j)VR,1 (i,j)VR,一、图的数组(邻接矩阵)存储表示,B,A,C,D,F,E,定义:矩阵的元素为,有向图的邻接矩阵为非对称矩阵,A,B,E,C,F,typedef struct ArcCell / 弧的定义 VRType adj; / VRType是顶点关系类型。 / 对无权图,用1或0表示相邻否; / 对带权图,则为权值类型。 InfoType *info; / 该弧相关信息的指针 ArcCell, AdjMatrixMAX_VERTEX_NUM MAX_VERTEX_NUM;,typedef struct / 图的定义 VertexTy

9、pe / 顶点信息 vexsMAX_VERTEX_NUM; AdjMatrix arcs; / 弧的信息 int vexnum, arcnum; / 顶点数,弧数 GraphKind kind; / 图的种类标志 MGraph;,0 A 1 4 1 B 0 4 5 2 C 3 5 3 D 2 5 4 E 0 1 5 F 1 2 3,B,A,C,D,F,E,二、图的邻接表 存储表示,1 4,2,3,0 1,2,0 1 2 3 4,A B C D E,有向图的邻接表,A,B,E,C,F,可见,在有向图的邻接表中不易找到指向该顶点的弧。,A,B,E,C,D,有向图的逆邻接表,A B C D E,3,

10、0,3,4,2,0,0 1 2 3 4,在有向图的邻接表中,对每个顶点,链接的是指向该顶点的弧。,typedef struct ArcNode int adjvex; / 该弧所指向的顶点的位置 struct ArcNode *nextarc; / 指向下一条弧的指针 InfoType *info; / 该弧相关信息的指针 ArcNode;,adjvex nextarc info,弧的结点结构,typedef struct VNode VertexType data; / 顶点信息 ArcNode *firstarc; / 指向第一条依附该顶点的弧 VNode, AdjListMAX_VERT

11、EX_NUM;,data firstarc,顶点的结点结构,typedef struct AdjList vertices; int vexnum, arcnum; int kind; / 图的种类标志 ALGraph;,图的结构定义,三、有向图的十字链表存储表示,弧的结点结构,弧尾顶点位置 弧头顶点位置 弧的相关信息,指向下一个有相同弧尾的结点,指向下一个有相同弧头的结点,typedef struct ArcBox / 弧的结构表示 int tailvex, headvex; InfoType *info; struct ArcBox *hlink, *tlink; VexNode;,顶点的

12、结点结构,顶点信息数据,指向该顶点的第一条入弧,指向该顶点的第一条出弧,typedef struct VexNode / 顶点的结构表示 VertexType data; ArcBox *firstin, *firstout; VexNode;,typedef struct VexNode xlistMAX_VERTEX_NUM; / 顶点结点(表头向量) int vexnum, arcnum; /有向图的当前顶点数和弧数 OLGraph;,有向图的结构表示(十字链表),四、无向图的邻接多重表存储表示,typedef struct Ebox VisitIf mark; / 访问标记 int i

13、vex, jvex; /该边依附的两个顶点的位置 struct EBox *ilink, *jlink; InfoType *info; / 该边信息指针 EBox;,边的结构表示,typedef struct / 邻接多重表 VexBox adjmulistMAX_VERTEX_NUM; int vexnum, edgenum; AMLGraph;,顶点的结构表示,typedef struct VexBox VertexType data; EBox *firstedge; / 指向第一条依附该顶点的边 VexBox;,无向图的结构表示,图的遍历,从图中某个顶点出发游历图,访遍 图中其余顶点

14、,并且使图中的每个顶点 仅被访问一次的过程。,深度优先搜索,广度优先搜索,遍历应用举例,从图中某个顶点V0 出发,访问此顶点,然后依次从V0的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和V0有路径相通的顶点都被访问到。,一、深度优先搜索遍历图,连通图的深度优先搜索遍历,V,w1,SG1,SG2,SG3,W1、W2和W3 均为 V 的邻接点,SG1、SG2 和 SG3 分别为含顶点W1、W2和W3 的子图。,访问顶点 V : for (W1、W2、W3 ) 若该邻接点W未被访问, 则从它出发进行深度优先搜索遍历。,w2,w3,w2,从上页的图解可见:,1. 从深度优先搜索遍历连通图

15、的过程类似于树的先根遍历;,解决的办法是:为每个顶点设立一个 “访问标志 visitedw”。,2. 如何判别V的邻接点是否被访问?,void DFS(Graph G, int v) / 从顶点v出发,深度优先搜索遍历连通图 G visitedv = TRUE; VisitFunc(v); for(w=FirstAdjVex(G, v); w!=0; w=NextAdjVex(G,v,w) if (!visitedw) DFS(G, w); / 对v的尚未访问的邻接顶点w / 递归调用DFS / DFS,首先将图中每个顶点的访问标志设为 FALSE, 之后搜索图中每个顶点,如果未被访问,则以该

16、顶点为起始点,进行深度优先搜索遍历,否则继续检查下一顶点。,非连通图的深度优先搜索遍历,void DFSTraverse(Graph G, Status (*Visit)(int v) / 对图 G 作深度优先遍历。 VisitFunc = Visit; for (v=0; vG.vexnum; +v) visitedv = FALSE; / 访问标志数组初始化 for (v=0; vG.vexnum; +v) if (!visitedv) DFS(G, v); / 对尚未访问的顶点调用DFS ,a,b,c,h,d,e,k,f,g,F F F F F F F F F,T,T,T,T,T,T,T

17、,T,T,a,c,h,d,k,f,e,b,g,a,c,h,k,f,e,d,b,g,访问标志:,访问次序:,例如:,0 1 2 3 4 5 6 7 8,二、广度优先搜索遍历图,V,w1,w8,w3,w7,w6,w2,w5,w4,对连通图,从起始点V到其余各顶点必定存在路径。,其中,V-w1, V-w2, V-w8 的路径长度为1;,V-w7, V-w3, V-w5 的路径长度为2;,V-w6, V-w4 的路径长度为3。,w1,V,w2,w7,w6,w3,w8,w5,w4,从图中的某个顶点V0出发,并在访问此顶点之后依次访问V0的所有未被访问过的邻接点,之后按这些顶点被访问的先后次序依次访问它们

18、的邻接点,直至图中所有和V0有路径相通的顶点都被访问到。,若此时图中尚有顶点未被访问,则另选图中一个未曾被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。,void BFSTraverse(Graph G, Status (*Visit)(int v) for (v=0; vG.vexnum; +v) visitedv = FALSE; /初始化访问标志 InitQueue(Q); / 置空的辅助队列Q for ( v=0; vG.vexnum; +v ) if ( !visitedv) / v 尚未访问 / BFSTraverse, ,visitedu = TRUE; Vi

19、sit(u); / 访问u EnQueue(Q, v); / v入队列 while (!QueueEmpty(Q) DeQueue(Q, u); / 队头元素出队并置为u for(w=FirstAdjVex(G, u); w!=0; w=NextAdjVex(G,u,w) if ( ! visitedw) visitedw=TRUE; Visit(w); EnQueue(Q, w); / 访问的顶点w入队列 / if / while,三、遍历应用举例,如何求一条从顶点 i 到顶点 s 的简单路径?,求一条从顶点 i 到顶点 s 的简单路径,a,b,c,h,d,e,k,f,g,求从顶点 b 到顶

20、点 k 的一条简单路径。,从顶点 b 出发进行深度优先搜索遍历。,例如:,假设找到的第一个邻接点是a,则得到的结点访问序列为: b a d h c e k f g。,假设找到的第一个邻接点是c,则得到的结点访问序列为: b c h d a e k f g,,1. 从顶点 i 到顶点 s ,若存在路径,则从顶点 i 出发进行深度优先搜索,必能搜索到顶点 s 。,2. 遍历过程中搜索到的顶点不一定是路径上的顶点。,结论:,3. 由它出发进行的深度优先遍历已经完成的顶点不是路径上的顶点。,void DFSearch( int v, int s, char *PATH) / 从第v个顶点出发递归地深度

21、优先遍历图G, / 求得一条从v到s的简单路径,并记录在PATH中 visitedv = TRUE; / 访问第 v 个顶点 Append(PATH, getVertex(v); / 第v个顶点加入路径 for (w=FirstAdjVex(v); w!=0 / 从路径上删除顶点 v ,(连通网的)最小生成树,假设要在 n 个城市之间建立通讯联络网,则连通 n 个城市只需要修建 n-1条线路,如何在最节省经费的前提下建立这个通讯网?,问题:,构造网的一棵最小生成树,即: 在 e 条带权的边中选取 n-1 条边(不构成回路),使“权值之和”为最小。,算法二:(克鲁斯卡尔算法),该问题等价于:,算

22、法一:(普里姆算法),取图中任意一个顶点 v 作为生成树的根,之后往生成树上添加新的顶点 w。在添加的顶点 w 和已经在生成树上的顶点v 之间必定存在一条边,并且该边的权值在所有连通顶点 v 和 w 之间的边中取值最小。之后继续往生成树上添加顶点,直至生成树上含有 n-1 个顶点为止。,普里姆算法的基本思想:,a,b,c,d,e,g,f,例如:,19,5,14,18,27,16,8,21,3,a,e,12,d,c,b,g,f,7,14,8,5,3,16,21,所得生成树权值和,= 14+8+3+5+16+21 = 67,在生成树的构造过程中,图中 n 个顶点分属两个集合:已落在生成树上的顶点集

23、 U 和尚未落在生成树上的顶点集V-U ,则应在所有连通U中顶点和V-U中顶点的边中选取权值最小的边。,一般情况下所添加的顶点应满足下列条件:,设置一个辅助数组,对当前VU集中的每个顶点,记录和顶点集U中顶点相连接的代价最小的边:,struct VertexType adjvex; / U集中的顶点序号 VRType lowcost; / 边的权值 closedgeMAX_VERTEX_NUM;,a,b,c,d,e,g,f,19,5,14,18,27,16,8,21,3,a,e,12,d,c,b,7,a,a,a,19,14,18,14,例如:,e,12,e,e,8,16,8,d,3,d,d,7

24、,21,3,c,5,5,void MiniSpanTree_P(MGraph G, VertexType u) /用普里姆算法从顶点u出发构造网G的最小生成树 k = LocateVex ( G, u ); for ( j=0; jG.vexnum; +j ) / 辅助数组初始化 if (j!=k) closedgej = u, G.arcskj.adj ; closedgek.lowcost = 0; / 初始,Uu for (i=0; iG.vexnum; +i) ,继续向生成树上添加顶点;,k = minimum(closedge); / 求出加入生成树的下一个顶点(k) printf(

25、closedgek.adjvex, G.vexsk); / 输出生成树上一条边 closedgek.lowcost = 0; / 第k顶点并入U集 for (j=0; jG.vexnum; +j) /修改其它顶点的最小边 if (G.arcskj.adj closedgej.lowcost) closedgej = G.vexsk, G.arcskj.adj ;,具体做法: 先构造一个只含 n 个顶点的子图 SG,然后从权值最小的边开始,若它的添加不使SG 中产生回路,则在 SG 上加上这条边,如此重复,直至加上 n-1 条边为止。,考虑问题的出发点: 为使生成树上边的权值之和达到最小,则应使

26、生成树中每一条边的权值尽可能地小。,克鲁斯卡尔算法的基本思想:,a,b,c,d,e,g,f,19,5,14,18,27,16,8,21,3,a,e,12,d,c,b,g,f,7,14,8,5,3,16,21,例如:,7,12,18,19,算法描述:,构造非连通图 ST=( V, ); k = i = 0; / k 计选中的边数 while (kn-1) +i; 检查边集 E 中第 i 条权值最小的边(u,v); 若(u,v)加入ST后不使ST中产生回路, 则 输出边(u,v); 且 k+; ,普里姆算法,克鲁斯卡尔算法,时间复杂度,O(n2),O(eloge),稠密图,稀疏图,算法名,适应范围

27、,比较两种算法,两点之间的最短路径问题,求从某个源点到其余各点的最短路径,每一对顶点之间的最短路径,求从源点到其余各点的最短路径的算法的基本思想:,依最短路径的长度递增的次序求得各条路径,源点,v1,其中,从源点到顶点v的最短路径是所有最短路径中长度最短者。,v2,在这条路径上,必定只含一条弧,并且这条弧的权值最小。,下一条路径长度次短的最短路径的特点:,路径长度最短的最短路径的特点:,它只可能有两种情况:或者是直接从源点到该点(只含一条弧); 或者是从源点经过顶点v1,再到达该顶点(由两条弧组成)。,其余最短路径的特点:,再下一条路径长度次短的最短路径的特点:,它可能有三种情况:或者是直接从

28、源点到该点(只含一条弧); 或者是从源点经过顶点v1,再到达该顶点(由两条弧组成);或者是从源点经过顶点v2,再到达该顶点。,它或者是直接从源点到该点(只含一条弧); 或者是从源点经过已求得最短路径的顶点,再到达该顶点。,求最短路径的迪杰斯特拉算法:,一般情况下, Distk = 或者 = + 。,设置辅助数组Dist,其中每个分量Distk 表示 当前所求得的从源点到其余各顶点 k 的最短路径。,1)在所有从源点出发的弧中选取一条权值最小的弧,即为第一条最短路径。,2)修改其它各顶点的Distk值。 假设求得最短路径的顶点为u, 若 Distu+G.arcsukDistk 则将 Distk

29、改为 Distu+G.arcsuk。,V0和k之间存在弧,V0和k之间不存在弧,其中的最小值即为最短路径的长度。,求每一对顶点之间的最短路径,弗洛伊德算法的基本思想是:,从 vi 到 vj 的所有可能存在的路径中,选出一条长度最短的路径。,若存在,则存在路径vi,vj / 路径中不含其它顶点 若,存在,则存在路径vi,v1,vj / 路径中所含顶点序号不大于1 若vi,v2, v2,vj存在, 则存在一条路径vi, , v2, vj / 路径中所含顶点序号不大于2 ,依次类推,则 vi 至 vj 的最短路径应是上述这些路径中,路径长度最小者。,拓扑排序,问题:,假设以有向图表示一个工程的施工图

30、或程序的数据流图,则图中不允许出现回路。,检查有向图中是否存在回路的方法之一,是对有向图进行拓扑排序。,何谓“拓扑排序”?,对有向图进行如下操作:,按照有向图给出的次序关系,将图中顶点排成一个线性序列,对于有向图中没有限定次序关系的顶点,则可以人为加上任意的次序关系。,例如:对于下列有向图,B,D,A,C,可求得拓扑有序序列: A B C D 或 A C B D,由此所得顶点的线性序列称之为拓扑有序序列,B,D,A,C,反之,对于下列有向图,不能求得它的拓扑有序序列。,因为图中存在一个回路 B, C, D,如何进行拓扑排序?,一、从有向图中选取一个没有前驱 的顶点,并输出之;,重复上述两步,直

31、至图空,或者图不空但找不到无前驱的顶点为止。,二、从有向图中删去此顶点以及所 有以它为尾的弧;,a,b,c,g,h,d,f,e,a,b,h,c,d,g,f,e,在算法中需要用定量的描述替代定性的概念,没有前驱的顶点 入度为零的顶点,删除顶点及以它为尾的弧 弧头顶点的入度减1,取入度为零的顶点v; while (v0) printf(v); +m; w:=FirstAdj(v); while (w0) inDegreew-; w:=nextAdj(v,w); 取下一个入度为零的顶点v; if mn printf(“图中有回路”);,算法描述,为避免每次都要搜索入度为零的顶点, 在算法中设置一个“

32、栈”,以保存“入度为零”的顶点。,CountInDegree(G,indegree); /对各顶点求入度 InitStack(S); for ( i=0; iG.vexnum; +i) if (!indegreei) Push(S, i); /入度为零的顶点入栈,count=0; /对输出顶点计数 while (!EmptyStack(S) Pop(S, v); +count; printf(v); for (w=FirstAdj(v); w; w=NextAdj(G,v,w) -indegree(w); / 弧头顶点的入度减一 if (!indegreew) Push(S, w); /新产生

33、的入度为零的顶点入栈 if (countG.vexnum) printf(“图中有回路”),关键路径,问题:,假设以有向网表示一个施工流图,弧上的权值表示完成该项子工程所需时间。 问:哪些子工程项是“关键工程”? 即:哪些子工程项将影响整个工程的完成期限的。,a,b,c,d,e,f,g,h,k,6,4,5,2,1,1,8,7,2,4,4,例如:,“关键活动”指的是:该弧上的权值增加 将使有向图上的最长路径的长度增加。,整个工程完成的时间为:从有向图的源点到汇点的最长路径。,源点,汇点,6,1,7,4,如何求关键活动?,“事件(顶点)” 的 最早发生时间 ve(j) ve(j) = 从源点到顶点

34、j的最长路径长度;,“事件(顶点)” 的 最迟发生时间 vl(k) vl(k) = 从顶点k到汇点的最短路径长度。,假设第 i 条弧为 则 对第 i 项活动言 “活动(弧)”的 最早开始时间 ee(i) ee(i) = ve(j); “活动(弧)”的 最迟开始时间 el(i) el(i) = vl(k) dut();,事件发生时间的计算公式: ve(源点) = 0; ve(k) = Maxve(j) + dut() vl(汇点) = ve(汇点); vl(j) = Minvl(k) dut(),a,b,c,d,e,f,g,h,k,6,4,5,2,1,1,8,7,2,4,4,0,0,0,0,0,

35、0,0,0,0,6,4,5,7,11,5,7,15,14,18,18,18,18,18,18,18,18,18,18,16,14,8,6,6,10,8,0,7,拓扑有序序列: a - d - f - c - b - e - h - g - k,0,6,4,5,7,7,15,14,18,18,14,16,10,7,8,6,6,0,0,0,0,6,4,5,7,7,7,15,14,14,16,0,2,3,6,6,8,8,7,10,算法的实现要点:,显然,求ve的顺序应该是按拓扑有序的次序;,而 求vl的顺序应该是按拓扑逆序的次序;,因为 拓扑逆序序列即为拓扑有序序列的 逆序列,,因此 应该在拓扑排序的过程中, 另设一个“栈”记下拓扑有序序列。,1. 熟悉图的各种存储结构及其构造算法,了解实际问题的求解效率与采用何种存储结构和算法有密切联系。 2. 熟练掌握图的两种搜索路径的遍历:遍历的逻辑定义、深度优先搜索和广度优先搜索的算法。 在学习中应注意图的遍历算法与树的遍历算法之间的类似和差异。,3. 应用图的遍历算法求解各种简单路径问题。 4. 理解教科书中讨论的各种图的算法。,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1