可穿戴式生命体征监护设备的研制.doc

上传人:白大夫 文档编号:3400098 上传时间:2019-08-21 格式:DOC 页数:3 大小:16KB
返回 下载 相关 举报
可穿戴式生命体征监护设备的研制.doc_第1页
第1页 / 共3页
亲,该文档总共3页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《可穿戴式生命体征监护设备的研制.doc》由会员分享,可在线阅读,更多相关《可穿戴式生命体征监护设备的研制.doc(3页珍藏版)》请在三一文库上搜索。

1、可穿戴式生命体征监护设备的研制专门针对高压氧舱内生命体征多参数监测及健康监护的技术实现问题,提出了一种基于IEEE802154协议的无线传感检测技术系统解决方案,阐述了无线传感检测系统的体系结构以及主控制节点与生命体征参数采集传感器节点的硬件设计方法,给出了软件系统架构、软件设计流程及监护软件工作界面,对MAC层帧结构、物理层帧结构及系统时问同步策略进行了详细分析和设计。该系统样机已进入临床实验阶段,文中还给出了患者的临床检测数据,并与实用的进口监护设备的检测数据进行了对比,验证了临床应用的可行性。随着无线通信网络和传感器等技术发展,医疗监护技术和方式将发生根本变化。高压氧舱已广泛应用于临床疾

2、病救治,舱内生理监护系统是高压氧治疗过程中对危重病员进行生理指标监护的重要设备。由于高压氧舱内的特殊环境,现有监护设备对舱内病人的心电、血压、呼吸、脉搏及血氧饱和度等参数的监护存在局限性,主要表现在:多个传感器通过有线的方式和处理器相连接;独立的传感器间缺乏系统整合;不支持信号的持续采集和数据的实时处理;分别的监护设备间无法共享无线通信资源。研制一种基于无线传感技术的可穿戴式多参数监护设备,可更好地适应高压氧舱特殊环境和临床救治的需要。该监护仪要求心电、血压、血氧饱和度、脉搏、呼吸、体温检测等电路模块采用超低功耗器件,并结合硬、软件省电设计,使氧舱内监护终端可采用电池供电;信号采集转换后,一方

3、面在舱内监护终端(子机)上显示,并通过Zigbee等无线传输技术将采集信号送入舱外中央监护PC终端(主机)上,实现舱内外同步监测。1系统体系结构与硬件设计小封装、低功耗、无线通信、安全性和互操作是医疗可穿戴式监护设备设计的基本要求。本文所设计的生命特征监护设备的系统结构如图1所示。系统主要由监护PC主机、舱外主节点(coordinatornode)和舱内的多参数采集传感器子节点(sensornodes)等三个部分组成,主节点和各子节点之间通过IEEE802154无线通信协议构成一套结构简单、工作稳定,运行可靠的星型无线通信网络。主节点主要负责协调高压氧舱内各无线医疗传感器子节点与舱外监护主机P

4、C之间的数据通信,提供透明的通信接口。无线通信接口主要功能包括网络配置和网络管理两个方面。网络配置阶段主要完成传感器节点的注册和初始化,以确定传感器节点的归属、数量和采样频率等。网络配置完成后,主节点负责无线网络的维护和管理,包括信道共享、时间同步、数据提取、数据融合与处理等。子节点分别负责心电、血压、呼吸、血氧、体温等生理信号的采集、检测和监护,并通过无线接口向主节点传输,进而由监护主机存储、处理采集数据,主机可按监护要求进行状态实时显示和异常状态告警。11主节点硬件设计主控节点结构如图2所示。它通过串口与PC主机交互数据,通过无线模块与舱内子节点通信,同时管理和协调舱内各节点的工作时序和同

5、步。其中,微处理器用TI公司超低功耗的MSP430F149,无线通信模块选用Chipcon公司的24GHz频段射频低功耗接口芯片CC2420,电源模块采用DC/DC电源变换模式。MSP430微控制器在16bitRISC核的基础上集成了RAM和闪存,同时集成了8路A/D转换模块、传输速度可编程的串口模块和一个灵活的时钟子系统,支持多种低功耗操作模式。CC2420芯片与IEEE802154协议兼容,最大数据数率250Kbit/s,可编程控制输出功率,并支持错误校正和加密。MSP430可通过SPI接口和中断数字I/O线对CC2420进行控制,如图3所示。12子节点硬件设计传感器子节点的组成框图如图4

6、所示,包含电源模块、心电与呼吸监测模块、血压监测模块、血氧饱和度与脉搏监测模块、体温监测模块、无线传输节点、微处理器模块、输入与LCD显示模块等8个子模块,主要执行生命体征参数的采集、放大、滤波和无线传输,无线传输前,子节点也进行实时分析、特征提取等信号预处理。心电检测采用三电极胸部检测方法,选用具有高输入阻抗、低噪声、低漂移精密运算放大器AD620作为第一级放大器,并与呼吸检测电路共用。心电信号经过放大、滤波等处理后,一路进行A/D转换,用于心电波形显示;另一路信号送人一个中心频率为918Hz的低Q值带通滤波器,提取R波并抑制部分干扰,经波形变换后可获取心率信号。呼吸检测选用阻抗法,为了降低

7、电极接触阻抗对检测结果所产生的干扰,通常选择双电极阻抗法,用控制器MSP430集成的PWM产生两路相差半个周期的625kHz方波对呼吸信号进行调制,对调制信号进行放大、解调和滤波后可获取呼吸信号。血压检测采用无创袖套间接方式,可同时检测收缩压(SP)、平均压(MP)、舒张压(DP)3个血压指标,其测量范围为0250mmHg(03333kPa)。血氧饱和度检测采用指端脉搏光电检测法。根据朗伯一比尔定律(Lambert-BeerSlaw),单色光透过均匀溶液后的透射光强与溶液参数有关。还原血红蛋白与氧结合后,对某一波长色光的吸光系数将发生很大变化。因此,在入射光强度不变的情况下,透射光强度的变化反

8、映了血氧饱和度的变化。在设计时,我们利用MSP430的时钟控制端口产生逻辑时序控制红光和红外光二极管工作,通过检测透射光强度实现对血氧饱和度的测量。体温测量采用美国DALLAS公司生产的高精度集成温度传感器DS1624,它具有分辨率高(可达0.03)、外围电路简单、输出直接为数字信号等特点。两个微处理器模块选用两个MSP43OF149芯片,一个用于实现对各参数采集模块和LCD显示的控制;另一个用于无线通信模块的控制,并与芯片CC2420组成一个无线通信节点。另外,为了减少设备的体积和功耗,舱内终端机采用单色超低工作电压LCD屏,实时显示心电、脉搏等生理参数波形。终端设计采用锂电池供电,工作电压为+33V。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1