双面卧式攻丝组合机床设计(减速器箱盖后面螺纹) .doc

上传人:西安人 文档编号:3624264 上传时间:2019-09-18 格式:DOC 页数:40 大小:860.27KB
返回 下载 相关 举报
双面卧式攻丝组合机床设计(减速器箱盖后面螺纹) .doc_第1页
第1页 / 共40页
双面卧式攻丝组合机床设计(减速器箱盖后面螺纹) .doc_第2页
第2页 / 共40页
双面卧式攻丝组合机床设计(减速器箱盖后面螺纹) .doc_第3页
第3页 / 共40页
双面卧式攻丝组合机床设计(减速器箱盖后面螺纹) .doc_第4页
第4页 / 共40页
双面卧式攻丝组合机床设计(减速器箱盖后面螺纹) .doc_第5页
第5页 / 共40页
亲,该文档总共40页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《双面卧式攻丝组合机床设计(减速器箱盖后面螺纹) .doc》由会员分享,可在线阅读,更多相关《双面卧式攻丝组合机床设计(减速器箱盖后面螺纹) .doc(40页珍藏版)》请在三一文库上搜索。

1、双面卧式攻丝组合机床设计(减速器箱盖后面螺纹)需要全套资料(CAD+说明书+其他的 )请先下载此篇文档并留下你的Email,我会及时将全套资料发到你的邮箱!第1章 绪论1.1 本课题的研究背景及意义随着现代化工业技术的快速发展,特别是随着它在自动化领域内的快速发展,组合机床的研究已经成为当今机器制造界的一个重要方向,在现代工业运用中,大多数机器的设计和制造都是用机床大批量完成的。现代大型工业技术的飞速发展,降低了组合机床的实现成本,软件支持机制也使得实现变得更为简单,因此,研究组合机床的设计具有十分重要的理论意义和现实意义。在工业高速发展的现代化浪潮中,各种机械设计和制造业中,组合机床的应用越

2、来越广泛,越来越转化为生产力,从这个意义上讲,对组合机床的研究具有重要的现实意义。组合机床是根据工件加工需要,以通用部件为基础,配以少量专用部件组成的一种高效专用机床。组合机床是按系列化标准化设计的通用部件和按被加工零件的形状及加工工艺要求设计的专用部件组成的专用机床。由于通用部件已经标准化和系列化,可根据需要灵活配置,从而缩短了设计和制造的周期,因此,组合机床兼有低成本和高效率的优点,在大批、大量生产中得到了广泛的应用,并可用以组成自动生产线。总体方案的设计主要包括制定工艺方案(确定零件在组合机床上完成工艺内容及加工方法,选择定位基准和夹紧部位,决定工步和刀具种类及其结构形式,选择切削用量等

3、)、确定机床配置形式、制订影响机床总体布局和技术性能的主要部件的结构方案。总体方案的拟定是设计组合机床最关键的一步。方案制定得正确与否,将直接影响机床能否达到合同要求,保证加工精度和生产率,并且结构简单、成本较低和使用方便。对于同一加工内容,有各种不同的工艺方案和机床配置方案,在最后决定采用哪种方案时,必须对各种可行的方案作全面分析比较,根据工件的加工要求和特点,按一定的原则、结合组合机床常用工艺方法、充分考虑各种影响因素,并经技术经济分析后拟订出先进、合理、经济、可靠的工艺方案。在组合机床诸多零件中,多轴箱和夹具与组合机床密切相关,是组合机床的重要组成部件。它是选用通用零件按专用要求设计的,

4、所以是组合机床设计过程中工作量较大的零部件,就多轴箱设计来说,工作量主要集中在传动系统的设计上,轴的设计必须保证各轴的转速、旋向、强度和刚度,而且应当考虑有无让刀,有无调位机构等。夹具是组合机床的重要组成部件,是根据机床的工艺和结构方案的具体要求而专门设计的。它是用于实现被加工零件的准确定位,夹压,刀具的导向,以及装卸工件时的限位等作用的。组合机床夹具和一般夹具所起的作用看起来好象很接近,但是其结构和设计要求却有着很显著的甚至是很根本的区别。组合机床夹具的结构和性能,对组合机床配置方案的选择,有很大的影响。因此,本课题基于使设计出的机床结构简单、使用方便、效率高、质量好提出的要求,着重选择最佳

5、的工艺方案,合适地确定机床工序集中程度,合理地选择组合机床的通用部件,恰当的组合机床的配置型式,合理地选择切削用量,以及设计高效率的夹具、工具、刀具及主轴箱就是本次设计主要内容。具体的工作就是要制定工艺方案,进行机床结构方案的分析和确定,进行组合机床总体设计,组合机床的部件设计和施工设计,使其具有工程意义,实现其在实际应用中的价值。1.2 本课题国内外研究概况近20年来,组合机床自动线技术取得长足进步,自动线在加工精度、生产效率、利用率、柔性化和综合自动化等方面的巨大进步,标志着组合机床自动线技术发展达到了高水平。自动线的技术发展,刀具、控制和其他相关技术的进步,特别是CNC控制技术发展对自动

6、线结构的变革及其柔性化起着决定性的作用。随着市场需求的变化,柔性将愈来愈成为抉择设备的重要因素。因此,组合机床自动线将面临由高速加工中心组成的FMS的激烈竞争。组合机床是一种专用高效自动化技术装备,目前,由于它仍是大批量机械产品实现高效、高质量和经济性生产的关键装备,因而被广泛应用于汽车、拖拉机、内燃机和压缩机等许多工业生产领域。其中,特别是汽车工业,是组合机床最大的用户。如德国大众汽车厂在Salzgitter的发动机工厂,在大批量生产的机械工业部门,大量采用的设备是组合机床。因此,组合机床的技术性能和综合自动化水平,在很大程度上决定了这些工业部门产品的生产效率、产品质量和企业生产组织的结构,

7、也在很大程度上决定了企业产品的竞争力。现代组合机床和自动线作为机电一体化产品,它是控制、驱动、测量、监控、刀具和机械组件等技术的综合反映。近20年来,这些技术有长足进步,同时作为组合机床主要用户的汽车和内燃机等行业也有很大的变化,其产品市场寿命不断缩短,品种日益增多且质量不断提高。这些因素有力地推动和激励了组合机床的不断发展。组合机床是由大量的通用部件和少量的专用部件组成且工序集中的高效专用机床.由万能机床和专用机床发展而来.由于组合机床工序的高度集中,即在一台机床上可同时完成一种或几种不同工序加工,因此适应了产量大、精度高的生产要求,并且克服了万能机床结构复杂、劳动强度大、生产效率低、精度不

8、易保证的缺点,以及专用机床通用性差、不适应现代技术迅速发展、产品经常更新的要求.所以,组合机床及其自动线已广泛应用到汽车、柴油机、电动机、仪器仪表以及军工产品等的生产上,并显示出巨大的优越性。1.3 本论文的主要工作及结构本次设计工作将设计一台双面卧式攻丝组合机床(减速器箱盖后面螺纹)。因此,目的是使设计出的机床结构简单、使用方便、效率高、质量好。从而选择最佳的工艺方案,合适地确定机床工序集中程度,合理地选择组合机床的通用部件,恰当的组合机床的配置型式,合理地选择切削用量,以及设计高效率的夹具、工具、刀具及主轴箱就是本次设计主要内容。具体的工作就是要制定工艺方案,进行机床结构方案的分析和确定,

9、进行组合机床总体设计,组合机床的部件设计和施工设计。摘要部分,指出了本课题的研究概况,本课题的研究方法,第1章是绪论,主要介绍了本课题的研究背景及意义,指出本课题在国内外的研究概况,并给出了本论文的主要工作及结构。第2章是本论文的主体部分,主要给出了本次课题研究即攻减速器箱盖后面螺纹的双面卧式攻丝组合机床的总体设计。在接下去的几个部分分别给出了通过本课题的研究之后得出的结论,并对此方向的课题进行展望,表达了对学院老师特别是导师的感谢,给出完成本论文所需要的参考文献,最后,附上相关的设计图纸7张,及一张生产效率卡。第2章 组合机床的总体设计2.1 组合机床工艺方案的拟定工艺方案的拟订是组合机床设

10、计的关键一步。因为工艺方案在很大程度上决定了组合机床的结构配置和使用性能。因此,应根据工件的加工要求和特点,按一定的原则、结合组合机床常用工艺方法、充分考虑各种影响因素,并经技术经济分析后拟出先进、合理、经济、可靠的工艺方案。2.1.1 确定组合机床工艺方案的基本原则2.1.1.1组合机床工艺方案的基本原则1粗精加工分开原则 粗加工的切削负荷较大,切削产生的热变形、较大夹压力引起的工件变形以及切削振动等,对精加工工序十分不利,影响加工尺寸精度和表面粗糙度。因此,在拟订工件一个连续的多工序工艺过程时,应选择粗精加工工序分开的原则。2工序集中原则 组合机床运用多刀集中在一台机床上完成一个或多个工件

11、的不同表面的复杂过程,从而有效的提高生产率。因此,在拟订工艺方案时,在保证加工质量和操作维修方便的情况下,应适当提高工序集中程度,以便减少机床台数、占地面积和节省人力,取得理想的效益。本机床由于螺纹孔直径较小,精度较高,要求主轴和机床刚度较好,所以工序应集中,并且十个孔的相对位置精度要求较高所以工序集中加工。通过丝锥对孔进行一次性加工,从而保证精度,质量,生产率。2.1.1.2 备注攻丝机床都是借助电动机正转进行攻丝,加工完了电动机反转使丝锥退出工件。电动机的反向和停止是由攻丝行程控制机构来操纵的。为了确保攻丝电动机的可靠反向和停止,在电气控制系统设计上,除了一般动作控制信号外,还必须增设互锁

12、保险开关。为了在丝锥退回原位电动机能及时停止,不因惯性转动造成丝锥超程,破坏攻丝机构的原位状态,在电动机停转时,一般应采用刹车机构以制动。当一个主轴箱上攻丝主轴少于8根时可以不用。对特大的攻丝主轴箱有时还应设置两个或更多的刹车机构,以确保可靠的制动。本设计的主轴箱的主轴只有6根,所以不需要2.1.2 组合机床工艺方案的拟订2.1.2.1 分析、研究加工要求和现场工艺根据分析、研究被加工零件减速器箱盖两端面螺纹孔,在箱体上分别加工,技术要求及生产纲领。深入现场调查分析零件(或同类零件)的加工工艺方法,定位和加紧,所采用的设备、刀具及切削用量,生产率情况及工作条件等方面的现行工艺资料,以便制定出切

13、合实际的合理工艺方案。2.1.2.2定位基准和夹压部位的选择1由于实行多刀加工,切削负荷大,工件受力方向变化,加工零件为箱体,所以采用一面两销定位,上面夹紧。2组合机床的工艺方法及所能获得的加工精度;表面粗糙度和形位精度。表1-1所列是组合机床加工螺纹孔的典型工艺过程。表1-1 螺纹孔加工典型工艺过程螺纹孔类别工艺过程一般紧固螺纹孔钻底孔,倒角,攻丝较高精度螺纹孔钻底孔,扩至底孔尺寸,倒角,攻丝在攻丝前最好在孔口倒角,以使丝锥容易进入空中,有利于准确的保证攻丝深度。攻丝一般都采用一个工步一次加工出需要的深度。但当螺纹孔较深时,可以利用二次进给的方法来攻丝。第一次攻到一段距离后,丝锥反转退回,但

14、不全部退出工件,然后丝锥又正转攻进,一直到需要的深度。这样可以减少因切削阻塞使扭力矩增大,甚至使丝锥折断。这种分两次攻丝的进给运动,也是通过特殊的攻丝行程控制机构自动控制的。其工作原理与通用的攻丝行程控制机构类似。亦可以在通用的攻丝行程控制机构上增加两个行程开关和挡铁来实现。2.1.3 确定组合机床配置型式及结构方案应考虑的问题根据工件的特点、工艺要求、生产率要求及工艺方案等,可大体确定采用哪种基本配置型式的机床。配置方案不同对机床的复杂程度、通用化程度、结构工艺性、加工精度、机床重新调整的可能以及经济性等都有不同的影响。因此,确定机床配置型式和结构方案时应考虑以下主要问题。在确定机床配置型式

15、和结构方案时,首先要考虑如何稳定地保证零件的加工精度。影响加工精度的主要因素有夹具误差和加工误差两方面。夹具误差:一般精加工的夹具公差为零件公差的1/31/5。固定式夹具单工位组合机床可达到的加工精度很高。2.1.4 工艺规程工序10:粗铣机盖下底面工序20:铣机盖上窥视孔表面工序30:半精铣、精铣机盖下底面工序40:粗铣机盖主轴孔附近凸台工序50:在机盖上底面左侧钻孔2-11惚孔2-24工序60:在机盖底面右侧钻2个7.8孔,在左侧钻一个7.8孔工序70:攻机盖底面右侧的M10-H7的螺纹孔工序80:钻100+0.0350与80+0.0300(不到尺寸)工序90:镗主轴孔100+0.0350

16、与80+0.0300(不到尺寸)工序100:精镗主轴孔100+0.0350与80+0.0300工序110:钻6-13惚平30的螺栓孔工序120:精铣机盖主轴孔附近凸台工序130:在组合机床上分别在机盖前后端面上钻12-6.8的孔工序140:在组合机床上分别在机盖前后端面上攻12-M8-7H的螺纹孔工序150:钻机盖上窥视孔4-3.9孔工序160:钻削为2-8的锥销孔工序170:在窥视孔上攻4-M6-H7的螺纹孔工序180:清洗去毛刺工序190:检查2.2 加工工序图被加工零件工序图具有直观的作用,此外,它还具有一些特定的要求。被加工零件工序图是根据选定的工艺方案,表示在一台机床上或一条自动线上

17、完成的工艺内容,加工部位的尺寸及精度、技术要求、加工用定位基准、夹压部以及被加工零件的材料、硬度和在本机床上加工前毛坯情况的图纸。它是在原有的工件图基础上,以突出本机床或自动线加工内容,加上必要的说明绘制的。它是组合机床设计的主要依据。也是制造使用时调整机床,检查精度的重要技术文件。被加工零件工序图应包括下列内容:1在图上应表示出被加工零件的形状,尤其是要设置中间导向时,应表示出工件内部筋的布置和尺寸,以便检查工件装进夹具是否相碰,以及刀具通过的可能性。2在图上应表示出加工用基面和夹压的方向及位置,以便依此进行夹具的支承,定位及夹压系统的设计。3在图上应表示出加工表面的尺寸、精度、光洁度,位置

18、尺寸及精度和技术条件(包括对上道工序的要求及本机床保证的部分)。4图中还应注明被加工零件的名称、编号、材料、硬度以及被加工部位的余量。此外,为了使被加工零件工序图清晰明了,能突出本机床的加工内容,绘制时对本机床加工部位用粗实线表示,其尺寸打上方框,其余部位用细实线表示。本设计中,我设计的是攻减速器箱盖后面螺纹,采用一面两销定位,实现完全定位。由于利用工件的底面作为基面,为了使夹紧可靠以及部件配置合理,采用对工件的顶面进行夹紧。要求加工之后能满足尺寸的公差范围之内。整体的定位及夹紧的位置可见下图所示。2.3 加工示意图加工示意图是组合机床设计的重要图纸之一,在机床总体设计中占有重要地位。它是设计

19、刀具、夹具、主轴箱以及选择动力部件的主要资料,同时也是调整机床和刀具的依据。加工示意图,要反映机床的加工过程和加工方法,刀具尺寸及加工尺寸,主轴尺寸及伸出长度,主轴、刀具、工件间的联系尺寸等,根据机床要求的生产率及刀具特点,合理地选择刀削用量,决定动力头的工作循环。加工示意图应绘制成展开图,其绘制顺序是:首先按比例绘制工件的外形及加工部位的展开图,加工示意图还要绘制出工件加工部位的图形。加工示意图还要考虑一些特殊要求(如工件抬起、主轴定位、危险区等)。决定动力头的工作循环及行程。最后,选择切削用量及附加必要的说明。综合考虑以上各种注意事项,可以看出加工示意图的绘制方法可以分为几个步骤,即刀具的

20、选择、工序间余量的确定等。2.3.1 技术分析螺纹孔M8 精度等级:7H材料: HT200 硬度: HB190盲孔 加工深度L=15mm2.3.2 刀具的选择刀具的类型的选择决定于所切螺纹的性质、所切螺纹在工件上的位置、工件的构造与尺寸及生产的批量。查 10 P899 表10-49 选用细柄机用丝锥 6-M8-H3 GB3464-83。2.3.3 攻丝靠模装置选择在组合机床上攻制螺纹多采用攻丝靠模装置。其原理仍然是“自引法”攻丝。这种攻丝装置的进给运动,直接由靠模螺杆、螺母得到。常用的靠模装置有:TO281型攻丝靠模装置和TO282型靠模装置。本设计中采用了通用的TO281型攻丝靠模装置TO2

21、81型攻丝靠模这种靠模装置有攻丝靠模和攻丝卡头配合组成,并由攻丝装置配置成攻丝组合机床。动力由攻丝主轴通过双键传到攻丝靠模杆,再经平键传递给攻丝卡头上的丝锥。靠模螺母通过结合子和弹簧装在套筒内,套筒由压板压在靠模板谁上。攻丝时,靠模杆边转动边向前移动,其进给量与丝锥引进量相同。压板的压力要适当,以保证丝锥遇到故障不能前进,扭力增大,靠模杆与靠模螺母同时转动,停止进给,避免破坏传动件或扭转丝锥。这种装置易于调整,只要松开压板,则可方便的将攻丝靠模取出,且在变动加工螺孔规格时,易装卸调换。选用攻螺纹靠模规格2。2.3.4切削用量的选取由于组合机床有大量刀具同时工作,为了使机床正常工作,不经常停车换

22、刀,而达到较高的生产率。所选择的切削用量比一般通用机床的切削用量要低一些。总体上说:在采用多轴加工的组合机床的切削用量和切削速度要低一些。根据现有组合机床使用情况,多轴加工的切削用量比通用机床单刀加工的切削用量约30%左右。查阅 2 P51表2-17 攻丝切削速度加工材料为铸铁 切削速度:v=48m/min 查 10 P1142 表14-90由公式计算得 (2-1)取v=8m/min进给量为丝锥的导程f=1.25mm/r由公式:v=d n得:主轴转速n=318/r/min2.3.5 确定主轴类型、尺寸、外伸长度主轴类型主要依据工艺方法和刀杆与主轴的联结结构进行确定。主轴轴颈及轴端尺寸主要取决于

23、进给抗力和主轴刀具系统结构。 通用攻螺纹主轴有两种(1)滚锥轴承攻螺纹主轴(2)滚针轴承攻螺纹主轴。2.3.5.1主轴类型查9 表4-2 选用滚锥轴承攻螺纹主轴2.3.5.2 主轴尺寸根据公式:d=6.2 (2-2)可算出本设计中攻螺纹主轴的大致直径式中:d主轴直径(mm) T转矩(Nm) D螺距大径(mm) P螺距(mm)加工铸铁时T=0.195DP (2-3)由于本设计中D=8mm,P=1.25mm,所以查9中表3-5攻螺纹主轴直径的确定,得螺纹M8的主轴直径d=17mm 转矩T=5 Nm查9表3-6和4-2 主轴直径d=20mm外伸尺寸L=120mm。2.3.6 选择接杆、浮动卡头加工螺

24、纹时,常采用攻螺纹靠模装置和攻螺纹卡头及相配套的攻螺纹接杆,丝锥用相应的弹簧夹头装在攻螺纹接杆上。查9中图8-1选用用于夹持M6M30的机用丝锥弹簧夹头。查9中图8-6选用攻螺纹卡头及攻螺纹接杆。2.3.7 动力部件工作循环及行程的确定动力部件的工作循环是指加工时,动力部件从原始位置开始运动到加工终了位置,又返回到原位的动作过程。2.3.7.1 工作进给长度的确定 (2-4):工作进给长度 :切入长度 :加工长度 :切出长度=15+8=23mm 切入长度一般为510mm,取8mm。 切出长度为0。2.3.7.2 快速引进长度确定快速引进是指动力部件把刀具送到工作进给位置,其长度由具体情况确定。

25、本工序选取快速引进长度为75mm。2.3.7.3动力部件总行程的确定动力部件总行程为快退行程和前后备量之和。总行程为630mm前备量为40mm,后备量为515mm。2.4 机床联系尺寸图2.4.1机床联系尺寸图作用和内容 机床联系尺寸图是以被加工零件工序图和加工示意图为依据,并按初步选定的主要通用部件以及确定专用部件的总体结构而绘制的。是用来表示机床的配置形式、主要构成及各部件安装位置、相互关系、运动关系和操作方位的总体布局图。 机床联系尺寸总图表示的内容: 1表示机床的配置形式和总布局。 2完整齐全的反映各部件之间的主要装配关系和联系尺寸、专用部件的主要轮廓尺寸、运动部件的运动极限位置及滑台

26、工作循环总的工作行程和前后备量尺寸。 3标注主要通用部件的规格代号和电动机型号、功率及转速,并标出机床分组编号及组件名称,全部组件应包括机床全部通用及专用零部件。 4标明机床验收标准及安装规程。2.4.2绘制机床尺寸联系总图之前应确定的内容2.4.2.1 选择动力部件 动力部件的选择主要是确定动力箱和动力滑台。根据已定的工艺方案和机床配置形式并结合使用及修理因素,确定机床为卧式双面单工位液压传动组合机床,液压滑台实现工作进给运动,选用配套的动力箱驱动多轴箱攻丝主轴。 动力箱规格与滑台要匹配,其驱动功率主要依据是根据多轴箱所传递的切屑功率来选用。确定攻丝电机功率,应考虑丝锥钝化的影响,一般按计算

27、功率的1.52.5倍选取。(轴数少时取大值,轴数多时取小值) (2-5)式中:消耗于各主轴的切削功率的总和,单位为kw; 主轴箱的传动效率,加工黑色金属时取0.80.9,加工有色金属时取0.70.8,主轴数多、传动复杂时取小值,反之取大值。查组合机床设计简明手册表6-20则: (2-6)=6x0.1636/0.8=1.09kw 1.09x2=2.18kw查9表5-39本机床左右多轴箱均采用1TD25-IB型动力箱(=1420r/min;电动机选Y100L1-4型,功率为2.2KW)。 (2-7)根据选定的切削用量,计算总的进给力,根据所需的最小进给速度、工作行程、结合多轴箱轮廓尺寸,考虑工作稳

28、定性,选用HY63-I 型液压滑台,以及相配套的侧底座(1CC631型)。查9P91表5-1 滑鞍宽度: 630mm 滑鞍长度: 1250mm 行 程: 630mm滑座长度: 1920mm高 度: 400mm工进速度:6.5-250mm/min快进速度:5m/min。2.4.2.2 确定机床装料高度H 装料高度是指工件安装基面至地面的垂直距离。考虑上述刚度结构功能和使用要求等因素选取计算:最低孔高度 h2=204.5mm滑台高度 h3=400mm侧底座高度 h4=630mm取H=1250mm。2.4.2.3 确定夹具轮廓尺寸 主要确定夹具底座的长、宽、高尺寸。初取长为1000mm,宽为600m

29、m,高为850mm。2.4.2.4 确定中间底座尺寸 中间底座尺寸在长度和宽度上满足夹具的安装要求。他在加工方向上的尺寸,实际已由加工示意图确定。2.4.2.5 确定多轴箱轮廓尺寸 标准通用多轴箱厚度是一定的、卧式325mm。因此,确定多轴箱,主要是确定多轴箱的宽度B和高度H及最低主轴高度h1。B=b+2 (2-8)H=h+ (2-9)式中 b工件在宽度方向相距最远的两孔的距离 b=245mm b1最边缘主轴中心至箱体壁距离 b170100mm 取b1=75mm h工件在高度方向相距最远的两孔距离 h=35mm h1最低轴高度B=245+2x75=395mmh1=h2+H-(0.5+h3+h4

30、)=25+1100-(0.5+400+630)=94.5mmH=35+100+94.5=229.5mm查9,P135表7-1选取多轴箱体规格尺寸400x400。联系尺寸图如下图所示2.4.3 机床分组为了便于设计和组织生产,组合机床各部件和装置按不同功能划分编组。本机床编组如下:第10组 左侧床身第20组 夹具第11组 右侧床身第12组 中间底座第30组 电气装置第40组 传动装置第50组 润滑装置第60组 刀具第61组 工具第71组 左多主轴箱第72组 右多主轴箱2.5 机床生产率计算卡根据加工示意图所确定的工作循环及切削用量等,就可以计算机床生产率并编制生产率计算卡。生产率计算卡是反映机床

31、生产节拍或实际生产率和切削用量、动作时间、生产纲领及负荷率等关系的技术文件。它是用户验收机床生产效率的重要依据。2.5.1 理想生产率Q 理想生产率是指完成年生产纲领A 所要求的机床生产率。与全年工时tk 总数有关,单班制取2350h A=5000x(1+2%+2%)=5200件 (2-10)Q=A/tk=5200/2350=2.21件/h (2-11)2.5.2 实际生产率Q1 实际生产率是指设计机床每小时实际可生产的零件数量。 Q1=60/T单 (2-12)式中 T单生产一个零件所需的时间(min), 可按下式计算:T单=t切+t辅=(L1/vf1+ L2/vf2+t停)+(L快进+L快退

32、)/vfk+ t移+ t装 (2-13)L1、L2刀具第一、第二工作进给长度,单位为mm;vf1 vf2刀具第一、第二工作进给量,单位为mm/min;t停通常刀具在加工终了时无进给状态下旋转510转所需的时间,单位为min;取0.1min,即6s.vfk动力部件快速行程速度。 本次采用的是液压动力部件, 为5m/min。t移回转工作台进行一次工位转换时间,一般取0.1 min;此道工序可忽略。t装工件装、卸的时间(包括定位或撤消定位、夹紧或松开、清理基面或切屑及调运工件等的时间)通常.取0.5-1.5min.取1.5min .把数值带入(2-13)中:得到:T单=23/397.5+23/397

33、.5+0.1+0.075/5+0.075/5+1.5 =1.7456min; 所以Q1=60/T单=60/1.71=34.32件/小时则 Q1Q 所以满足生产率要求2.5.3 机床负荷率当Q1Q时,机床负荷率为二者之比。 即负= Q/ Q1 (2-14) =2.21/34.32 =6.4%2.5.4编制生产率计算卡第3章 多轴箱设计3.1多轴箱的组成及表示方法多轴箱按结构特点分为通用(即标准)和专用多轴箱两大类。前者结构典型,能利用同用的箱体和传动件;后者结构特殊,往往需要加强主轴系统刚性,而使主轴及某些传动件必须专门设计,故专用主轴箱通常指“刚性主轴箱”,即采用不需要刀具导向装置的刚性主轴和

34、用精密滑台导轨来保证加工孔的位置精度。通用主轴箱则采用标准主轴,借助导向套引导刀具来保证被加工孔的位置精度。本设计中所采用的就是通用主轴箱。3.1.1 多轴箱的组成多轴箱由通用零件如箱体、主轴、传动轴、齿轮和附加机构等组成。其基本结构中,箱体、前盖、后盖、上盖、侧盖等为箱体类零件;主轴、传动轴、传动齿轮、动力箱和电动机齿轮等为传动类零件;分油器、注油标、排油塞、和防油套等为润滑及防油元件。在多轴箱箱体内腔,可安排两排32mm宽的齿轮或三排24mm宽的齿轮;箱体后壁与后盖之间可安排一排(后盖用90mm厚时)或两排(后盖用125mm厚时)24mm宽的齿轮。本多轴箱考虑到实际情况,在箱体体内安排了三

35、排24mm宽的齿轮和一排32mm宽的齿轮。3.1.2 多轴箱总图绘制方法特点1主视图 用点划线表示齿轮节圆,标注齿轮齿数和模数,两啮合齿轮相切处标注罗马字母,表示齿轮所在排数。标注各轴轴号及主轴和驱动轴、液压泵轴的转速和方向。2展开图 每根轴、轴承、齿轮等组件只画轴线上边或下边(左边或右边)一半,对于结构尺寸完全相同的轴组件只画一根,但必须在轴端注明相应的轴号;齿轮可不按比例绘制,在图形一侧用数码箭头标明齿轮所在排数。3.2 多轴箱通用零件多轴箱的通用零件的编号方法如下:T07或1T07系指与TD或与1TD系列动力箱配套的主轴箱同用零件,其标记方法详见9中表4-1、表4-2、表4-4、表4-5

36、和第七章相应的配套零件表。顺序号和零件顺序号表示的内容随类别号和小组号的不同而不同。例如:800630T0711-11,表示宽800mm,高400mm的主轴箱体;30T0731-42,表示有排齿轮,用圆锥滚子轴承、直径为40mm的传动轴;34040T0741-41表示模数为3、齿数为40、孔径为20mm和宽度为32mm的齿轮。3.2.1 通用箱体类零件多轴箱的通用箱体类零件配套表详见组合机床设计简明手册中表7-4;箱体材料为HT200,前、后、侧盖等材料为HT150。多轴箱体基本尺寸系列标准(GB3668.1-83)规定,9种名义尺寸用相应滑台的滑鞍宽度表示,多轴箱体宽度和高度是根据配套滑台的

37、规格按规定的系列尺寸(9中表7-1)选择;多轴箱后盖与动力箱法兰尺寸见9中表7-2,其结合面上联接螺孔、定位销孔及其位置与动力箱联系尺寸相适应(参见9中表5-40);通用多轴箱体结构尺寸及螺孔位置详见9中表7-1及表7-3。多轴箱的标准厚度为180mm,用于卧式主轴箱的前盖厚度为55mm,用于立式的因兼作油池用,故加后到70mm,基型后盖的厚度为90mm,变形后盖厚度为50mm,100mm和125mm三种,应根据多轴箱的传动系统安排和动力部件与多轴箱的连接情况合理选用。3.2.2 通用主轴、通用传动轴、通用齿轮和套本设计中,通用主轴、通用传动轴的传动结构,配套零件及联系尺寸,详见9中第七章第二

38、节。多轴箱通用齿轮有:传动齿轮、动力箱齿轮和电机齿轮三种(见9表4-5),其结构型式、尺寸参数及制造装配要求详见9表7-247-23。多轴箱用套和防油套综合表参阅9表7-24、表7-23。3.3 绘制多轴箱设计原始依据图多轴箱设计原始原始依据图,是根据“三图一卡”整理编绘出来的。其内容及注意事项如下:1 根据机床联系尺寸图,绘制多轴箱外形图,并标注轮廓尺寸及动力箱驱动轴的相对位置尺寸。2 根据联系尺寸图和加工示意图,标注所有主轴位置尺寸及工件与主轴、主轴与驱动轴的相关位置尺寸。3 根据加工示意图标注各主轴转速及转向主轴逆时针转向。4 列表标明各主轴的工序内容、切削用量及主轴外伸尺寸。5 标明动

39、力件型号及其性能参数。多轴箱原始依据图如下图所示3.4 主轴、齿轮的确定及动力计算主轴的型式和直径,主要取决于加工工艺方法、刀具主轴联接结构、刀具的进给抗力和切削转矩。攻螺纹类主轴按支承型式分为两种:1前后支承均为圆锥滚子轴承主轴。 2 前后支承均为推力球轴承和无内环滚针轴承的主轴。3.4.1 主轴型式的确定本设计中根据加工工艺要求,采用了第一种前后支承均为圆锥滚子轴承主轴。其装配结构、配套零件及联系尺寸详见组合机床设计简明手册中第七章第二节。主轴材料采用了40Cr钢,热处理C42。数量:6根。3.4.2 主轴直径的确定根据被加工零件工序图和加工示意图中的要求,是采用标准高速钢丝锥,对减速器箱

40、盖后面的6个M81-7H的螺纹孔进行攻丝。根据公式:d=6.2 (3-1)可算出本设计中攻螺纹主轴的大致直径式中:d主轴直径(mm) T转矩(Nm) D螺距大径(mm) P螺距(mm)加工铸铁时T=0.195DP,由于本设计中D=8mm,P=1.25mm,所以查9中表3-5攻螺纹主轴直径的确定,得螺纹M8的主轴直径d=17mm 转矩T=5N.mm查9中表4-2得主轴直径d=20mm。 3.4.3 主轴位置的确定由于是6根主轴同时对6个M8的螺纹孔进行攻丝加工,所以6根主轴的相对位置应与6个螺纹孔的相对位置保持一致。3.4.4齿轮模数齿轮模数m一般用类比法确定。多轴箱中的齿数模数常用2、2.5、

41、3、3.5、4几种。为便于生产,同一多轴箱中的模数规格最好不要大于两种。 本设计齿轮模数选2和3。3.4.5 多轴箱所需动力的计算 多轴箱的动力计算包括多轴箱所需要的功率和进给力两项。3.4.5.1传动系统确定之后,多轴箱所需要的功率按下列公式计算 (3-2) 式中 切削功率,单位为KW 空转功率,单位为KW 与负荷成正比的功率损失,单位为KW每根主轴的切削功率,由选定的切削用量按公式计算或查图表获得;每根主轴的空转功率按9P62表4-6确定;每根主轴上的功率损失,一般取所传递功率的1%。3.4.5.2 主轴切削功率=0.1636KW=6P=6x0.1636=0.9821KW3.4.5.3 空

42、转功率由于主轴直径为20mm,根据9P62表4-6:主轴转速为n=318r/min,根据插值法: (3-3)=6x0.028=0.168KW3.4.5.4 功率损失每根轴上的功率损失,一般可取所传递功率的1%=(0.9821+0.168)x1%=0.0115KW (3-4)3.4.5.5 多轴箱所需进给力计算 (3-5)式中 各主轴所需的轴向切削力,单位为NF=5973.23N (3-6)=6F=6x5973.23=35839.39N3.5 多轴箱传动系统设计多轴箱传动系统设计,是根据动力箱驱动轴位置和转速、各主轴位置及其转速要求,设计传动链,把驱动轴与各主轴连接起来,使各主轴获得预定的转速和

43、转向。3.5.1 对多轴箱传动系统的一般要求1在保证主轴的强度、刚度、转速和转向的条件下,力求使传动轴和齿轮的规格、数量为最少。因此,应尽量用用一根中间传动轴带动多根主轴,并将齿轮布置在同一排上。当中心距不符合标准时,可采用变位齿轮或略微改动传动比的方法解决。2尽量不用主轴带动主轴的方案,以免增加主轴负荷,影响加工质量。遇到主轴分布较密,布置齿轮的空间受到限制或主轴负荷较小、加工精度要求不高时,可用一根强度较高的主轴带动12根主轴的传动方案。3为使结构紧凑,主轴箱内齿轮副的传动比一般要大于1/2(最佳传动比为11/1.5),后盖内齿轮传动比允许取至1/31/3.5;尽量避免用升速传动。当驱动轴转速较低时,允许先升速后再降一些,使传动链前面的轴、齿轮转速较小,结构紧凑,但空转功率损失随之增加,故要求升速传动比小于等于2;为使主轴上的齿

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1