新版人教A版高中数学精讲精练第05章数列(含答案解析).pdf

上传人:tbuqq 文档编号:4651303 上传时间:2019-11-24 格式:PDF 页数:14 大小:192.02KB
返回 下载 相关 举报
新版人教A版高中数学精讲精练第05章数列(含答案解析).pdf_第1页
第1页 / 共14页
亲,该文档总共14页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《新版人教A版高中数学精讲精练第05章数列(含答案解析).pdf》由会员分享,可在线阅读,更多相关《新版人教A版高中数学精讲精练第05章数列(含答案解析).pdf(14页珍藏版)》请在三一文库上搜索。

1、1 1 20xx 高中数学精讲精练第五章 数列 【知识图解】 【方法点拨 】 1学会从特殊到一般的观察、分析、思考,学会归纳、猜想、验证 2强化基本量思想,并在确定基本量时注重设变量的技巧与解方程组的技巧 3在重点掌握等差、等比数列的通项公式、求和公式、中项等基础知识的同时,会针对可化为等差(比) 数列的比较简单的数列进行化归与转化 4一些简单特殊数列的求通项与求和问题,应注重通性通法的复习如错位相减法、迭加法、迭乘法等 5增强用数学的意识,会针对有关应用问题,建立数学模型,并求出其解 第 1 课数列的概念 【考点导读】 1 了解数列(含等差数列、等比数列)的概念和几种简单的表示方法(列表、图

2、象、通项公式),了解 数列是一种特殊的函数; 2 理解数列的通项公式的意义和一些基本量之间的关系; 3 能通过一些基本的转化解决数列的通项公式和前n项和的问题。 【基础练习】 1. 已知数列 n a满足)( 13 3 ,0 * 11 Nn a a aa n n n ,则 20 a=3。 函 数数 列 一般数列 通项 前n项 和 特殊数列 等差数列 等比数列 通项公式 中项性质 前n项和公式 通项公式 中项性质 前n项和公式 分析 : 由 a1=0,)( 13 3 1 Nn a a a n n n 得, 0,3,3 432 aaa由此可知 : 数列 n a是周 期变化的 , 且三个一循环, 所以

3、可得 : . 3 220 aa 2在数列 n a中,若 1 1a, 1 2(1) nn aan,则该数列的通项 n a 2n-1 。 3设数列 n a的前 n 项和为 n S, *1(31) () 2 n n a SnN,且 4 54a,则 1 a_2_. 4已知数列 n a的前n项和 (51) 2 n nn S,则其通项 n a52n 【范例导析】 例 1设数列 n a的通项公式是 2 85 n ann,则 (1) 70 是这个数列中的项吗?如果是,是第几项? (2)写出这个数列的前5 项,并作出前5 项的图象; (3)这个数列所有项中有没有最小的项?如果有,是第几项? 分析: 70 是否是

4、数列的项,只要通过解方程 2 7085nn就可以知道;而作图时则要注意数列与函数 的区别,数列的图象是一系列孤立的点;判断有无最小项的问题可以用函数的观点来解决,一样的是要注 意定义域问题。 解: ( 1)由 2 7085nn得:13n或5n 所以 70 是这个数列中的项,是第13 项。 (2)这个数列的前5 项是2, 7, 10, 11, 10; (图象略) (3)由函数 2 ( )85fxxx的单调性:(,4)是减区间,(4,)是增区间, 所以当 4n 时, n a最小,即 4 a最小。 点评: 该题考察数列通项的定义,会判断数列项的归属,要注重函数与数列之间的联系,用函数的观点解 决数列

5、的问题有时非常方便。 例 2设数列 n a的前 n 项和为 n S,点( ,)() n S nnN n 均在函数y 3x2 的图像上 , 求数列 n a的通项 公式。 分析: 根据题目的条件利用 n S与 n a的关系: n a 1( 1) (2) n Sn Sn 当时 当时 , (要特别注意讨论n=1的情况)求出 数列 n a的通项。 解:依题意得,32, n n n S 即 2 32 n nn S 。 当 n2 时, 2 2 (32 )312(1)65 1 n annnnn nn SS ; 当 n=1 时, 11 1aS所以 * 65() n annN。 例 3已知数列an满足1 1 a,

6、)(12 * 1 Nnaa nn ()求数列 n a的通项公式; ()若数列 n b满足 12 111* 44.4(1) .() nn bbbb n anN, 证明: n b是等差数列 ; 分析: 本题第 1 问采用构造等比数列来求通项问题,第2 问依然是构造问题。 解: ( I ) * 1 21(), nn aanN 1 12(1), nn aa 1 n a是以 1 12a为首项, 2 为公比的等比数列。12 . n n a 即 * 21(). n n anN (II ) 12 111 44.4(1) . nn bbbb n a 12 (.) 42. nn bbbnnb 12 2(.), n

7、n bbbnnb 1211 2(.)(1)(1). nnn bbbbnnb; ,得 11 2(1)(1), nnn bnbnb即 1 (1)20, nn nbnb 21 (1)20. nn nbnb ,得 21 20, nnn nbnbnb即 21 20, nnn bbb * 211 (), nnnn bbbb nN n b是等差数列。 点评: 本小题主要考查数列、不等式等基本知识,考查化归的数学思想方法,考查综合解题能力。 【反馈演练】 1若数列 n a前 8 项的值各异, 且 8nn aa对任意nN * 都成立, 则下列数列中可取遍 n a前 8 项值的 数列为(2)。 (1) 21k a

8、 (2) 31k a (3) 41k a (4) 61k a 2设Sn是数列 n a的前n项和,且Sn=n 2,则 n a是等差数列,但不是等比数列。 3设f(n)= nnnn2 1 3 1 2 1 1 1 (nN) ,那么f(n+1)f(n)等于 22 1 12 1 nn 。 4 根据市场调查结果, 预测某种家用商品从年初开始的n个月内累积的需求量Sn(万件)近似地满足Sn= 90 n (21nn 25) ( n=1,2, 12). 按此预测,在本年度内,需求量超过1.5 万件的月份是 7月、 8 月。 5在数列 n a中, 1234 1,23,456,78910,aaaa则 10 a 50

9、5 。 6数列 n a中,已知 2 1 () 3 n nn anN, (1)写出 10 a, 1n a , 2 n a;(2) 2 79 3 是否是数列中的项?若是,是第几项? 解: ( 1) 2 1 () 3 n nn anN, 10 a 2 10101109 33 , 1n a 2 2 11131 33 nnnn , 2 n a 2 22 42 1 1 33 nn nn ; (2)令 2 79 3 2 1 3 nn ,解方程得15,16nn或, nN ,15n, 即 2 79 3 为该数列的第15 项。 第 2 课等差、等比数列 【考点导读】 1 掌握等差、等比数列的通项公式、前n项和公式

10、,能运用公式解决一些简单的问题; 2 理解等差、等比数列的性质,了解等差、等比数列与函数之间的关系; 3 注意函数与方程思想方法的运用。 【基础练习】 1在等差数列an中,已知a510,a12 31,首项a1= -2 ,公差d= 3 。 2一个等比数列的第3 项与第 4 项分别是12 与 18,则它的第1 项是 16 3 ,第 2 项是 8 。 3设 n a是公差为正数的等差数列,若 123 15aaa, 123 80a a a,则 111213 aaa105。 4公差不为0 的等差数列 an 中,a2,a3,a6依次成等比数列,则公比等于 3 。 【范例导析】 例 1 (1)若一个等差数列前

11、3项的和为34,最后 3 项的和为146,且所有项的和为390,则这个数列有 13 项。 (2)设数列 an 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 2 。 解: ( 1)答案: 13 法 1:设这个数列有n项 d nn naS dndaSSS daS n nn 2 )1( 633 2 23 3 1 133 13 390 2 )1( 146)2(33 34)( 3 1 1 1 dnn na nda da n 13 法 2:设这个数列有n项 12312 34,146 nnn aaaaaa 121321 ()()()3()34146180 nnnn aaaaaaaa 1

12、60 n aa 又 1 () 390 2 n n aa n13 (2)答案: 2 因为前三项和为12,a1a2a312,a2 3 3 S 4 又a1a2a348, a24,a1a312,a1a38, 把a1,a3作为方程的两根且a1a3, x 28x120, x16,x22,a12,a36,选 B. 点评: 本题考查了等差数列的通项公式及前n 项和公式的运用和学生分析问题、解决问题的能力。 例 2 (1)已知数列)1(log * 2 Nnan为等差数列,且.9,3 31 aa ()求数列 n a的通项公式; ()证明.1 111 12312nn aaaaaa 分析 : (1)借助.9,3 31

13、 aa通过等差数列的定义求出数列)1(log * 2Nnan的公差,再求出数列 n a的通项公式, (2)求和还是要先求出数列 1 1nn aa 的通项公式,再利用通项公式进行求和。 解: ( 1)设等差数列)1(log 2n a的公差为d, 由, 8log2log)2(log2:9,3 22231 daa得即d=1。 所以,1)1(1) 1(log 2 nnan即.12 n n a (II )证明:因为 nnn nn aa2 1 22 11 1 1 , 所以 n nn aaaaaa2 1 2 1 2 1 2 1111 321 12312 L .1 2 1 1 2 1 1 2 1 2 1 2

14、1 n n 点评: 该题通过求通项公式,最终通过通项公式解释复杂的不等问题,属于综合性的题目,解题过程中注 意观察规律。 例 3已知数列 n a的首项 1 21aa(a是常数,且1a) ,242 2 1 nnaa nn (2n) ,数 列 n b的首项 1 ba, 2 nab nn (2n) 。 (1)证明: n b从第 2 项起是以2 为公比的等比数列; (2)设 n S为数列 n b的前 n 项和,且 n S是等比数列,求实数a的值。 分析: 第( 1)问用定义证明,进一步第(2)问也可以求出。 解: ( 1) 2 nab nn 222 11 )1(2)1(4)1(2) 1(nnnanab

15、 nnn nn bna222 2 (n 2) 由 1 21aa得 2 4aa, 22 444baa,1a, 2 0b, 即 n b从第 2 项起是以2为公比的等比数列。 (2) 1 (44)(12) 34(22)2 12 n n n a Saaa 当 n2 时, 11 1 (22)23434 2 (22)234(1)234 n n nn n Saaa Saaaa n S是等比数列 , 1n n S S (n 2)是常数, 3a+4=0,即 4 3 a。 点评: 本题考查了用定义证明等比数列,分类讨论的数学思想,有一定的综合性。 【反馈演练】 1已知等差数列 n a中, 24 7,15aa,则前

16、 10 项的和 10 S 210 。 2在等差数列 n a中,已知 123 2,13,aaa则 456 aaa 42 。 3已知等差数列共有10 项,其中奇数项之和15,偶数项之和为30,则其公差是 3 。 4如果1, , , ,9a b c成等比数列,则b 3 ,ac -9 。 5设等差数列an的前n项和为Sn, 已知a3=12,S120,S13a2a3a12a13, 因此,在S1,S2,S12中S k为最大值的条件为: ak0 且 ak+10, 即 0)2( 0)3( 3 3 dka dka a3=12, 122 123 dkd dkd , d0, 2 d 12 k3 d 12 7 24

17、d 3, 2 7 d 12 4, 得 5.5 k7. 因为k是正整数,所以k=6, 即在S1,S2,S12中,S6最大 . 解法二:由d0 得a1a2a12a13, 因此若在 1k12中有自然数k, 使得ak0, 且ak+10, 则Sk是S1,S2, ,S12中的最大值。 又 2a7=a1+a13= 13 2 S13 0, a70, a7+a6=a1+a12= 6 1 S120, a6a70 故在S1,S2,S12中S6最大 . 解法三:依题意得:)( 2 )212()1( 2 2 1 nn d dndn n naSn 222 ) 24 5( 2 1 , 0,) 24 5( 8 ) 24 5(

18、 2 1 2d nd d d d n d 最小时,Sn最大; 7 24 d3, 6 2 1 (5 d 24 )6.5. 从而,在正整数中,当n=6 时, n 2 1 (5 d 24 ) 2 最小,所以S6最大 . 点评: 该题的第 (1) 问通过建立不等式组求解属基本要求,难度不高,入手容易. 第(2) 问难度较高,为求Sn 中的最大值Sk(1k12) :思路之一是知道Sk为最大值的充要条件是ak0 且ak+10;而思路之二则是通过等差数列的性质等和性探寻数列的分布规律,找出“分水岭”,从而得解; 思路之三是可视Sn为n的二次函数,借助配方法可求解,它考查了等价转化的数学思想、逻辑思维能力和

19、计算能力,较好地体现了高考试题注重能力考查的特点. 第 3 课数列的求和 【考点导读】 对于一般数列求和是很困难的,在推导等差、等比数列的和时出现了一些方法可以迁移到一般数列的求和 上,掌握数列求和的常见方法有: (1)公式法:等差数列的求和公式,等比数列的求和公式 ( 2)分组求和法:在直接运用公式求和有困难时常,将“和式”中的“同类项”先合并在一起,再运用 公式法求和(如:通项中含 n (-1)因式,周期数列等等) (3)倒序相加法:如果一个数列a n ,与首末两项等距的两项之和等于首末两项之和,则可用把正着写 和与倒着写和的两个和式相加,就得到了一个常数列的和,这一求和方法称为倒序相加法

20、。特征: an+a1=an-1+a2 ( 4)错项相减法:如果一个数列的各项是由一个等差数列与一个等比数列的对应项相乘所组成,此时求 和可采用错位相减法。 (5)裂项相消法:把一个数列的各项拆成两项之差,在求和时一些正负项相互抵消,于是前n 项之和变 成首尾若干少数项之和。 【基础练习】 1已知公差不为0的正项等差数列an中 ,Sn为前 n 项之和 ,lga1、lga2、lga4成等差数列,若a5=10, 则 S5 = 30 。 2已知数列an是等差数列 , 且 a2=8,a8=26, 从 an中依次取出第3 项, 第 9 项, 第 27 项 , 第 3 n 项, 按 原来的顺序构成一个新的数

21、列bn, 则 bn=_3 n+1+2_ 3若数列 n a满足:1,2, 1 11 naaa nn ,2,3. 则 n aaa 21 21 n . 【范例导析】 例 1. 已知等比数列 432 ,aaaan中 分别是某等差数列的第5 项、第 3 项、第 2 项,且1,64 1 qa公比 ()求 n a; ()设 nn ab 2 log,求数列.|nnTnb项和的前 解: ( I )依题意032),(3 2244342 aaaaaaa即 032 1 3 1 3 1 qaqaqa 2 1 10132 2 qqqq或 2 1 1qq 1 ) 2 1 (64 n n a故 (II )nb nn n 72

22、log) 2 1 (64log 7 2 1 2 77 77 | nn nn bn 2 )13( 2 )76( ,6| ,7 1 nnnn Tbn n 时当 2 )7)(6( 21 2 )7)(71( , 1| ,7 78 nnnn TTbn n 时当 )7(21 2 )7)(6( )7( 2 )13( n nn n nn Tn 点评: 本题考查了等比数列的基本性质和等差数列的求和,本题还考查了转化的思想。 例 2数列 n a前n项之和 n S满足: * 1 (1)(21)(,0) nn tStSnNt (1)求证:数列 n a是等比数列(2)n; (2)若数列 n a的公比为( )f t, 数

23、列 n b满足: 11 1 1,() n n bbf b ,求数列 n b的通项公式; (3)定义数列 n c为 1 1 n nn c b b ,求数列 n c的前n项之和 n T。 解: ( 1)由 * 1 (1)(21)(,0) nn tStSnNt得: 1 (1)(21)(2) nn tStSn 两式相减得: 1 (21),(2) nn t atan即 1 211 2,(2) n n at n att , 数列 n a是等比数列(2)n。 (2) 1 1 ()2 nn n bfb b ,则有 1 2 nn bb21 n bn。 (3) 1 11111 () (21)(21)22121 n

24、 nn c b bnnnn , 1111111111 (1)(1) 2335572121221 n T nnn 点评:本题考查了 n a与 n S之间的转化问题,考查了基本等差数列的定义,还有裂项相消法求和问题。 例 3已知数列 n a满足 4 1 1 a,),2( 21 1 1 Nnn a a a n n n n ()求数列 n a的通项公式 n a;()设 2 1 n n a b,求数列 n b的前n项和 n S; ()设 2 )12( sin n ac nn ,数列 n c的前n项和为 n T求证:对任意的Nn, 7 4 n T 分析 :本题所给的递推关系式是要分别“取倒”再转化成等比型

25、的数列,对数列中不等式的证明通常是放 缩通项以利于求和。 解: () 1 2 )1( 1 n n n aa ,)1( 1 )2() 1( 1 1 1 n n n n aa , 又3)1( 1 1 a ,数列 n n a 1 1 是首项为3,公比为2的等比数列 1 )2(3)1( 1 nn n a ,即 123 ) 1( 1 1 n n n a. ()12649)123( 1121nnn n b 92643 21 )21(1 6 41 )41(1 9nnS nn nn n () 1 ) 1( 2 )12( sin nn , 123 1 )1()2(3 ) 1( 11 1 nnn n n c 当3

26、n时,则 123 1 123 1 123 1 13 1 12n n T 2 1 2 2 1 12 1 132 1 )(1 28 11 23 1 23 1 23 1 7 1 4 1 n n 7 4 84 48 84 47 6 1 28 11 ) 2 1 (1 6 1 28 112n 321 TTT,对任意的Nn, 7 4 n T 点评: 本题利用转化思想将递推关系式转化成我们熟悉的结构求得数列 n a的通项 n a,第二问分组求和 法是非常常见的方法,第三问不等式的证明要用到放缩的办法,放缩的目的是利于求和,所以通常会放成 等差、等比数列求和,或者放缩之后可以裂项相消求和。 【反馈演练】 1 已

27、知数列 n a的通项公式 * 21() n annN, 其前n项和为 n S, 则数列 n Sn 的前 10 项的和为 75 。 2已知数列 n a的通项公式 1 2(21)* 21(2) () n nk nnnk akN,其前n项和为 n S,则 9 S 377 。 3已知数列 n a的前n项和为 n S,且21 nn Sa,则数列 n a的通项公式为 1 2 n n a。 4已知数列 n a中, 1 1,a且有 * 1 (21)(23)(,2) nn nananNn,则数列 n a的通项公式为 311 () 2 2121 n a nn ,前n项和为 3 21 n n 。 5数列 an满足a

28、1=2,对于任意的nN *都有 an 0, 且 (n+1)an 2+a nan+1nan+1 2=0, 又知数列 bn 的通项为bn=2 n1+1. (1) 求数列 an的通项an及它的前n项和Sn; (2) 求数列 bn的前n项和Tn; 解: (1 )可解得 n n a a n n 1 1 ,从而an=2n,有Sn=n 2+n, (2)Tn=2 n+n 1. 6数列 an中,a1=8,a4=2 且满足an+2=2an+1an,(n N *). (1) 求数列 an的通项公式; (2) 设Sn=a1+a2+an, 求Sn; (3) 设bn= )12( 1 n an (nN *), Tn=b1+

29、b2+ +bn(nN * ), 是否存在最大的整数m,使得对任意nN *均有 Tn 32 m 成立?若存在,求出m的值;若不存在,说明理由. 解: (1 )由an+2=2an+1anan+2an+1=an+1an可知 an d= 14 14 aa =2, an=102n. (2) 由an=102n0 可得n5,当n5 时,Sn=n 2+9n,当 n5 时,Sn=n 29n+40, 故Sn= 5409 519 2 2 nnn nnn (3)bn=) 1 11 ( 2 1 )22( 1 )12( 1 nnnnan n )1(2 ) 1 11 () 3 1 2 1 () 2 1 1( 2 1 21

30、n n nn bbbT nn ;要使Tn 32 m 总成立, 需 32 m T1= 4 1 成立,即m8 且mZ,故适合条件的m的最大值为7. 第 4 课数列的应用 【考点导读】 1能在具体的问题情景中发现数列的等差、等比关系,并能用有关知识解决相应的问题。 2注意基本数学思想方法的运用,构造思想:已知数列构造新数列,转化思想:将非等差、等比数列转 化为等差、等比数列。 【基础练习】 1若数列 n a中, 3 1 1 a,且对任意的正整数p、q都有 qpqp aaa,则 n a 1 3 n . 2设等比数列 n a的公比为q,前n项和为 n S,若 12 , nnn SSS 成等差数列,则 q

31、的值为2 。 3已知等差数列 n a的公差为2,若 134 ,a aa成等比数列,则 2 a6。 【范例导析】 例 1已知正数组成的两个数列, nn ba,若 1 , nn aa是关于x的方程02 1 22 nnnn bbaxbx的两根 ( 1)求证: n b为等差数列; ( 2)已知,6,2 21 aa分别求数列, nn ba的通项公式; ( 3)求数 n n n sn b 项和的前 2 。 (1)证明:由02, 1 22 1nnnnnn bbaxbxxaa的方程是关于 的两根得: 11 2 1 ,2 nnnnnnnn bbaaabaa,2 11 2 nnnnn bbbbb 0 n b)1(

32、2 11 2 nbbb nnn n b是等差数列 (2)由( 1)知, 82 21 2 1 aab,2 1 b nbnbbbba n12212 , 1,3, ) 1)(1( 1 nnnbba nnn 又2 1 a也符合该式, )1(nnan (3) n n n s 2 1 2 4 2 3 2 2 32 132 2 1 2 4 2 3 2 1 n n n s 得 1432 2 1 2 1 2 1 2 1 2 1 1 2 1 nn n n s 1 1 2 1 2 1 1 ) 2 1 1 ( 4 1 1 n n n 11 2 1 ) 2 1 1 ( 2 1 1 nn n n n n s 2 3 3.

33、 点评: 本题考查了等差、等比数列的性质,数列的构造,数列的转化思想,乘公比错项相减法求和等。 例 2设数列 nnba, 满足3,4,6 332211bababa ,且数列Nnaa nn 1 是等差数 列,数列Nnbn2 是等比数列。 (I )求数列 n a和 n b的通项公式; (II )是否存在*Nk,使 2 1 ,0 kk ba,若存在,求出k,若不存在,说明理由。 解:由题意得:)()()( 113121nnn aaaaaaaa)4(0)1()2(6n 2 )1()4()2( 6 nn 2 187 2 nn ; 由已知22,42 21 bb得公比 2 1 q 11 1 2 1 4 2

34、1 22 nn n bb n n b 2 1 82 (2) kk bakf)( k 2 171 928 222 kk 2k 17491 87 2242 k ,所以当 4k 时,)(kf是增函数。 又 2 1 )4(f,所以当4k时 2 1 )(kf, 又0)3()2()1 (fff,所以不存在k,使 2 1 ,0)(kf。 【反馈演练】 1制造某种产品,计划经过两年要使成本降低36%,则平均每年应降低成本20%。 2等比数列 n a的前n项和为 n S, 510 2,6SS,则 1617181920 aaaaa 54 。 3设 n a为等差数列, n S为数列 n a的前n项和,已知 715

35、7,75SS, n T为数列 n Sn 的前n项 和,则 n T 2 9 4 nn 4. 已知数列.4 ,3, 422 SSanSa nn 且项和为其前为等差数列 (1)求数列 n a的通项公式;(2)求证数列2 n a 是等比数列; (3)求使得nSS nn 的成立的2 2 的集合 . 解: ( 1)设数列daan公差为的首项为, 1 ,由题意得: dada da 64)2(4 3 11 1 解得:122, 1 1 nada n (2)由题意知:4 2 2 2 2 32 12 1 n n a a n n , 2 na 数列为首项为2,公比为4 的等比数列 (3)由 2 1 ,12,2,1nSnada nn 得 4, 3 ,2 ,1: 4, 3, 2, 1 8)2(2)2(2 222 2 的集合为故n n nnnSS nn 5. 已知数列 n a的各项均为正数, n S为其前n项和,对于任意*Nn,满足关系22 nn aS. 证明: n a是等比数列; 证明:*)(22NnaS nn *)(22 11 NnaS nn ,得*)(22 11 Nnaaa nnn *)(2,0 1 Nn a a a n n n 故: 数列 an是等比数列

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1