高一物理机械能守恒定律练习题及答案分析.pdf

上传人:tbuqq 文档编号:4744411 上传时间:2019-12-06 格式:PDF 页数:13 大小:204.67KB
返回 下载 相关 举报
高一物理机械能守恒定律练习题及答案分析.pdf_第1页
第1页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《高一物理机械能守恒定律练习题及答案分析.pdf》由会员分享,可在线阅读,更多相关《高一物理机械能守恒定律练习题及答案分析.pdf(13页珍藏版)》请在三一文库上搜索。

1、第 1 页 共 13 页 机械能守恒定律计算题(基础练习) 班别:姓名: 1如图 5-1-8 所示,滑轮和绳的质量及摩擦不计, 用力 F开始提升原 来静止的质量为m10kg 的物体,以大小为a2ms 2 的加速度匀 加速上升,求头 3s内力 F做的功.(取 g10ms 2) 2.汽车质量 5t,额定功率为60kW,当汽车在水平路面上行驶时,受 到的阻力是车重的0.1 倍, : 求: (1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若 汽车从静止开始,保持以0.5m/s2的加速度作匀加速直线运动,这一 过程能维持多长时间? F 图5-1-8 第 2 页 共 13 页 图 5-3-1 3.

2、质量是 2kg 的物体,受到 24N 竖直向上的拉力,由静止 开始运动,经过 5s;求: 5s 内拉力的平均功率 5s 末拉力的瞬时功率( g 取 10m/s 2) 4.一个物体从斜面上高h 处由静止滑下并紧接着在水平 面上滑行一段距离后停止, 测得停止处对开始运动处 的水平距离为 S,如图 5-3-1,不考虑物体滑至斜面底 端的碰撞作用, 并设斜面与水平面对物体的动摩擦因 数相同求动摩擦因数 F mg 图 5-2-5 第 3 页 共 13 页 h1 h2 图 5-4-4 5. 如图 5-3-2 所示, AB 为 1/4 圆弧轨道,半径 为 R=0.8m,BC 是水平轨道,长S=3m,BC 处

3、 的摩擦系数为 =1/15, 今有质量 m=1kg 的物体, 自 A 点从静止起下滑到C 点刚好停止 .求物体在 轨道 AB 段所受的阻力对物体做的功. 6. 如图 5-4-4所示,两个底面积都是 S的圆桶, 用一根带阀门的很细的管子相连接,放在水平 地面上,两桶内装有密度为的同种液体,阀 门关闭时两桶液面的高度分别为h1和 h2, 现将 连接两桶的阀门打开, 在两桶液面变为相同高度的过程中重力做了多 少功? 图 5-3-2 第 4 页 共 13 页 7.如图 5-4-2使一小球沿半径为 R的圆形轨道从最 低点 B 上升,那么需给它最小速度为多大时,才 能使它达到轨道的最高点A? 8.如图 5

4、-4-8 所示,光滑的水平轨道与光滑半圆弧 轨道相切 .圆轨道半径 R=0.4m, 一小球停放在光滑 水平轨道上,现给小球一个v0=5m/s 的初速度, 求:小球从 C点抛出时的速度( g 取 10m/s2). 图 5-4-2 A B R V0 图 5-4-8 第 5 页 共 13 页 9.如图 5-5-1 所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨 道上由静止释放,要使小球恰能通过圆形轨道的 最高点,小球释放点离圆形轨道最低点多高?通 过轨道点最低点时球对轨道压力多大? 10.如图 5-5-2 长 l=80cm 的细绳上端固定,下端系一个 质量 m100g 的

5、小球 .将小球拉起至细绳与竖立方向成 60 角的位置,然后无初速释放.不计各处阻力,求小球 通过最低点时,细绳对小球拉力多大?取g=10m/s 2. 图 5-5-1 第 6 页 共 13 页 H A B R 图 5-5-11 O A B C D 0 7.8 17.6 31.4 49.0 (mm) 图 5-8-8 11.质量为 m 的小球,沿光滑环形轨道由静止 滑下(如图5-5-11 所示) ,滑下时的高度足够 大.则小球在最低点时对环的压力跟小球在最 高点时对环的压力之差是小球重力的多少倍? 12“ 验证机械能守恒定律 ” 的实验采用重物 自由下落的方法 . (1)用公式 mv2/2=mgh

6、时,对纸带上 起点的要求是,为此目的,所选择的纸带一、 二两点间距应接近. (2)若实验中所用的重锤质量M = 1kg ,打点纸带如图5-8-8所 示, 打点时间间隔为 0.02s, 则记录 B点时,重锤的速度 vB = , 重锤动能 E KB = .从开始下落起至B点,重锤的重力势能减少 量是,因此可得结论是 . (3)根据纸带算出相关各点速度V,量出下落距离 h,则以 2 v 2 为 纵轴,以 h 为横轴画出的图线应是图5-8-9中的. 2 v 2 h 0 h 0 A B 2 v 2 h 0 h 0 C D 2 v 2 2 v 2 图 5-8-9 第 7 页 共 13 页 答案 1如图 5

7、-1-8 所示,滑轮和绳的质量及摩擦不计,用力F 开始提升原来静止的质量为m10kg 的物体,以大小为a2m s 2 的加速度匀加速上升,求头3s 内力 F 做的功 .(取 g10ms2) 【解析】 利用 wFscosa 求力 F的功时, 要注意其中的s 必须是力F作用的 质点的位移 .可以利用等效方法求功,要分析清楚哪些力所做的功具有等效 关系 .物体受到两个力的作用:拉力F 和重力mg,由牛顿第二定律得 mamgF 所以mamgF1010+102=120N 则力 2 F F=60N 物体从静止开始运动,3s 内的位移为 2 2 1 ats= 2 1 23 2=9m 解法一:力 F 作用的质

8、点为绳的端点,而在物体发生9m 的位移的过程中,绳的端点的位 移为 s / 2s 18m,所以,力F 做的功为 sFsFW260 18=1080J 解法二:本题还可用等效法求力F的功 . 由于滑轮和绳的质量及摩擦均不计,所以拉力F做的功和拉力F 对物体做的功相等. 即sFWW FF 1209=1080J 2.汽车质量5t,额定功率为60kW,当汽车在水平路面上行驶时,受到的阻力是车重的0.1 倍, 问: (1)汽车在此路面上行驶所能达到的最大速度是多少? (2)若汽车从静止开始,保持以0.5m/s 2 的加速度作匀加速直线运动,这一过程能维持多 长时间? 【解析】(1) 当汽车达到最大速度时,

9、加速度a=0,此时 mgfF m FvP 由 、 解得sm mg P vm/12 (2) 汽车作匀加速运动,故F牵- mg =ma,解得 F牵=7.5 10 3N 设汽车刚达到额定功率时的速度为v,则 P = F牵 v,得 v=8m/s 设汽车作匀加速运动的时间为t,则 v=at F 图5-1-8 第 8 页 共 13 页 图 5-3-1 得 t=16s 3.质量是 2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s;求: 5s 内拉力的平均功率 5s 末拉力的瞬时功率(g 取 10m/s 2) 【解析】 物体受力情况 如图 5-2-5 所示,其中F为拉力, mg 为重力由牛

10、顿第二定律有 Fmg=ma 解得 a 2m/s 2 5s 内物体的位移 2 2 1 ats=2.5m 所以 5s 内拉力对物体做的功 W=FS =24 25=600J 5s 内拉力的平均功率为 5 600 t W P =120W 5s 末拉力的瞬时功率 P=Fv=Fat=24 2 5=240W 4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对 开始运动处的水平距离为S,如图5-3-1,不考虑物体滑至斜面底端的 碰撞作用, 并设斜面与水平面对物体的动摩擦因数相同求动摩擦因数 【解析】设该斜面倾角为 ,斜坡长为l,则物体沿斜面下滑时,重力和 摩擦力在斜面上的

11、功分别为: mghmglWGsin cos 1 mglWf 物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则 22 mgSWf 对物体在全过程中应用动能定理: W= Ek所以mglsin mgl cos mgS 2=0 得hS1S2=0 式中 S1为斜面底端与物体初位置间的水平距离故 F mg 图 5-2-5 第 9 页 共 13 页 h1 h2 图 5-4-4 S h SS h 21 【点拨】本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀 加速运动和匀减速运动依据各阶段中动力学和运动学关系也可求解本题比较上述两种研究问 题的方法,不难显现动能定理解题的

12、优越性 5. 如图 5-3-2 所示, AB 为 1/4 圆弧轨道,半径为R=0.8m,BC 是水 平轨道,长S=3m,BC 处的摩擦系数为 =1/15,今有质量m=1kg 的物体,自A 点从静止起下滑到C 点刚好停止 .求物体在轨道AB 段所受的阻力对物体做的功. 【解析】 物体在从 A 滑到 C 的过程中, 有重力、 AB 段的阻力、 BC 段的摩擦力共三个力做功,WG=mgR ,fBC=umg,由于物体在AB 段受的阻力是变力,做的功不 能直接求 .根据动能定理可知:W外=0,所以 mgR-umgS-WAB=0 即 WAB=mgR-umgS=1 10 0.8-1 10 3/15=6J 【

13、点拨】 如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而 且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就 可以求出这个变力所做的功. 6. 如图 5-4-4 所示,两个底面积都是S的圆桶, 用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装 有密度为的同种液体,阀门关闭时两桶液面的高度分别为h1 和 h2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过 程中重力做了多少功? 【解析】 取水平地面为零势能的参考平面,阀门关闭时两桶内液 体的重力势能为: 2 )( 2 )( 2 2 1 11 h sh h shEP )(

14、2 1 2 2 2 1 hhgs 阀门打开,两边液面相平时,两桶内液体的重力势能总和为 图 5-3-2 第 10 页 共 13 页 22 1 )( 21 212 hh ghhsEP 由于重力做功等于重力势能的减少,所以在此过程中重力对液体做功 2 2121 )( 4 1 hhgsEEW PPG 7.如图 5-4-2 使一小球沿半径为R 的圆形轨道从最低点B 上升,那么 需给它最小速度为多大时,才能使它达到轨道的最高点A? 【错解】 如图 5-4-2 所 示,根据机械能守恒,小球在圆形轨道最高点A 时的势能等于它在 圆形轨道最低点B 时的动能(以B 点作为零势能位置),所以为 2 2 1 2 B

15、 mvRmg 从而得 gRvB2 【错因】 小球到达最高点A 时的速度 vA不能为零,否则小球早在到达A 点之前就离开了圆形轨 道.要使小球到达A 点(自然不脱离圆形轨道),则小球在A 点的速度必须满足 R v mNmg A A 2 式中,NA为圆形轨道对小球的弹力.上式表示小球在A 点作圆周运动所需要的向心力由轨道对它 的弹力和它本身的重力共同提供.当 NA=0 时, vA最小 ,vA= gR.这就是说 ,要使小球到大 A 点,则应使小球在A 点具有速度vA gR 【正解】 以小球为研究对象.小球在轨道最高点时,受重力和轨道给的弹力. 小球在圆形轨道最高点A 时满足方程 R v mNmg A

16、 A 2 (1) 根据机械能守恒,小球在圆形轨道最低点B 时的速度满足方程 22 2 1 2 2 1 BAmvRmgmv (2) 解(1) ,(2)方程组得 图 5-4-2 第 11 页 共 13 页 ABN m R gRv5 当 NA=0 时,vB为最小 ,vB= gR5. 所以在 B 点应使小球至少具有vB= gR5 的速度 ,才能使小球到达圆形轨道的最高点A. 8.如图 5-4-8 所示, 光滑的水平轨道与光滑半圆弧轨道相切.圆轨道半径R=0.4m,一小球停放在光 滑水平轨道上,现给小球一个v0=5m/s 的初速度,求:小球从 C 点抛 出时的速度(g 取 10m/s 2). 【解析】

17、由于轨道光滑,只有重力做功,小球运动时机械能守恒. 即 22 0 2 1 2 2 1 C mvRmghmv 解得 C v 3m/s 9.如图 5-5-1 所示, 光滑的倾斜轨道与半径为R的圆形轨道相连接, 质量为 m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形 轨道的最高点, 小球释放点离圆形轨道最低点多高?通过轨道点最 低点时球对轨道压力多大? 【解析】小球在运动过程中,受到重力和轨道支持力,轨道支持 力对小球不做功,只有重力做功,小球机械能守恒取轨道最低点 为零重力势能面 因小球恰能通过圆轨道的最高点C,说明此时,轨道对小球作用力为零,只有重力提供向心 力,根据牛顿第二定律可列 R

18、 v mmg c 2 得 gR m R v m c 22 1 2 在圆轨道最高点小球机械能: mgRmgREC2 2 1 在释放点,小球机械能为: mghEA 根据机械能守恒定律 AC EE列等式:RmgmgRmgh2 2 1 解得 Rh 2 5 同理,小球在最低点机械能 2 2 1 BB mvE gRvEE BCB 5 小球在 B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列 图 5-5-1 A B R V0 图 5-4-8 第 12 页 共 13 页 H A B R 图 5-5-11 mgF R v mmgF B 6 2 据牛顿第三定律,小球对轨道压力为6mg方向竖直向下

19、10.如图 5-5-2 长 l=80cm 的细绳上端固定,下端系一个质量m 100g 的小球 . 将小球拉起至细绳与竖立方向成60 角的位置,然后无初速释放.不计各处阻 力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s 2. 【解析】小球运动过程中, 重力势能的变化量 )60cos1 ( 0 mglmghEp , 此过程中动能的变化量2 2 1 mvEk .机械能守恒定律还可以表达为 0 kpEE 即 0)60cos1 ( 2 1 02 mglmv 整理得 )60cos1(2 0 2 mg l v m 又在最低点时,有 l v mmgT 2 在最低点时绳对小球的拉力大小 NNmg

20、mgmg l v mmgT 2101 .022 )60cos1(2 0 2 通过以上各例题,总结应用机械能守恒定律解决问题 的基本方法 . 11.质量为m 的小球,沿光滑环形轨道由静止滑下(如图5-5-11 所示),滑下时的高度足够大.则小球在最低点时对环的压力跟小 球在最高点时对环的压力之差是小球重力的多少倍? 【解析】 以小球和地球为研究对象,系统机械能守恒,即 2 2 1 AmvmgH RmgmvmgH B2 2 12 小球做变速圆周运动时,向心力由轨道弹力和重力的合力提供 在最高点 A: R v mmgF A A 2 在最高点 B: R v mmgF B B 2 由解得: R H mg

21、mgF A 2 由解得: )5 2 ( R H mgFB mgFF BA 6 第 13 页 共 13 页 O A B C D 0 7.8 17.6 31.4 49.0 (mm) 图 5-8-8 6 mg FF BA 12 “ 验证机械能守恒定律” 的实验采用重物自由下落的方法. (1)用公式mv2/2=mgh 时,对纸带上起点的要求是 ,为此目的,所 选择的纸带一、二两点间距应接近. (2)若实验中所用的重锤质量M = 1kg,打点纸带如图5-8-8 所示,打点时间间隔为0.02s, 则记录 B 点时,重锤的速度vB = ,重锤动能EKB = .从开始下落起至B点,重锤 的重力势能减少量是,因此可得结论是 . (3)根据纸带算出相关各点速度V,量出下落距离h,则以 2 v 2 为纵轴,以h 为横轴画出的 图线应是图5-8-9 中的. 【解析】 (1)初速度为0, 2mm. (2)0.59m/s, 0.174J, 0.176J, 在实验误差允许的范围内机械能守恒. (3)C.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1