1、文档国家安全监管总局关于加强精细化工反响安全风险评估工作的指导意见安监总管三20171号各省、自治区、直辖市与生产建设兵团安全生产监视管理局,有关中央企业:为加强精细化工企业以下简称企业安全生产管理,进一步落实企业安全生产主体责任,强化安全风险辨识和管控,提升本质安全水平,提高企业安全生产保障能力,有效防事故,现就加强精细化工反响安全风险评估工作提出如下指导意见:一、充分认识开展精细化工反响安全风险评估的意义精细化工生产中反响失控是发生事故的重要原因,开展精细化工反响安全风险评估、确定风险等级并采取有效管控措施,对于保障企业安全生产意义重大。开展反响安全风险评估也是企业获取安全生产信息,实施化
2、工过程安全管理的根底工作,加强企业安全生产管理的必然要求。当前精细化工生产多以间歇和半间歇操作为主,工艺复杂多变,自动化控制水平低,现场操作人员多,局部企业对反响安全风险认识不足,对工艺控制要点不掌握或认识不科学,容易因反响失控导致火灾、爆炸、中毒事故,造成群死群伤。通过开展精细化工反响安全风险评估,确定反响工艺危险度,以此改良安全设施设计,完善风险控制措施,能提升企业本质安全水平,有效防事故发生。二、准确把握精细化工反响安全风险评估围和容一企业中涉与重点监管危险化工工艺和金属有机物合成反响包括格氏反响的间歇和半间歇反响,有以下情形之一的,要开展反响安全风险评估:1.国首次使用的新工艺、新配方
3、投入工业化生产的以与国外首次引进的新工艺且未进展过反响安全风险评估的;2.现有的工艺路线、工艺参数或装置能力发生变更,且没有反响安全风险评估报告的;3.因反响工艺问题,发生过生产安全事故的。二精细化工生产的主要安全风险来自于工艺反响的热风险。开展精细化工反响安全风险评估,要根据精细化工反响安全风险评估导如此试行见附件的要求,对反响中涉与的原料、中间物料、产品等化学品进展热稳定测试,对化学反响过程开展热力学和动力学分析。根据反响热、绝热温升等参数评估反响的危险等级,根据最大反响速率到达时间等参数评估反响失控的可能性,结合相关反响温度参数进展多因素危险度评估,确定反响工艺危险度等级。根据反响工艺危
4、险度等级,明确安全操作条件,从工艺设计、仪表控制、报警与紧急干预安全仪表系统、物料释放后的收集与保护,厂区和周边区域的应急响应等方面提出有关安全风险防控建议。三、强化精细化工反响安全风险评估结果运用,完善风险管控措施一涉与的反响工艺危险度被确定为2级与以上的,要根据危险度等级和评估建议,设置相应的安全设施和安全仪表系统;反响工艺危险度被确定为4级与以上的,在全面开展过程危险分析如危险与可操作性分析根底上,通过风险分析如保护层分析确定安全仪表的安全完整性等级,并依据要求配置安全仪表系统;对于反响工艺危险度被确定为5级的,相关装置应设置在由防爆墙隔离的独立空间中,并设计超压泄爆设施,反响过程中操作
5、人员不应进入隔离区域。企业要优先通过开展工艺优化或改变工艺路线降低安全风险。二企业要把反响安全风险评估作为安全管理的重要容,新建项目要以反响安全风险评估结果为依据,开展工艺设计与安全设施设计,保证各项安全控制措施落实到位;相关在役装置要根据反响安全风险评估结果,补充和完善安全管控措施,与时审查和修订操作规程。三企业要保证设备设施满足反响工艺安全要求,根据反响安全风险评估情况,建立关键设备设施清单,定期开展检查、维护和维修,要确保泄放、冷却、降温等设施和安全仪表等系统的完好、可用。要开展有针对性的岗位操作培训,保证岗位操作人员熟练掌握本岗位反响安全风险,严格执行岗位操作规程,不断提升操作技能。要
6、根据反响安全风险评估结果,制定岗位应急处置方案和事故专项应急预案,强化定期演练,提高应急处置能力。四、工作要求一反响安全风险评估工作专业性强,技术要求高,各有关企业要高度重视,聘请具备相关专业能力的机构组织开展评估。企业要加大对工艺反响测试分析条件的投入,培育专业工程技术人员,逐步形成自身开展反响安全风险评估工作的能力。二有关企业要确保列入评估围的新建装置在编制可行性研究报告或项目建议书前,完成反响安全风险评估。对相关在役装置要制定计划逐步开展,根据评估结果完善风险控制措施,努力降低安全风险。从2020年开始,凡列入评估围,但未进展反响安全风险评估的精细化工生产装置,不得投入运行。三地方各级安
7、全监管部门要结合本地区实际,指导和督促相关企业开展反响安全风险评估,积极跟踪评估结论,掌握并研判本地区有关企业的风险情况。积极培育具备条件的反响安全风险评估机构,鼓励具备条件的有关科研单位提供技术服务支持,加强技术人才队伍培养,配备完善实验测试设施,规服务工作,提高反响安全风险评估能力和质量。请各省级安全监管局与时将本指导意见精神传达至本辖区各级安全监管部门与有关企业。附件:精细化工反响安全风险评估导如此试行国家安全监管总局2017年1月5日附件精细化工反响安全风险评估导如此试行1 围本导如此给出了精细化工反响安全风险的评估方法、评估流程、评估标准指南,并给出了反响安全风险评估示例。本导如此适
8、用于精细化工反响安全风险的评估。精细化工生产的主要安全风险来自工艺反响的热风险。开展反响安全风险评估,就是对反响的热风险进展评估。2 术语和定义2.1 失控反响最大反响速率到达时间TMRad失控反响体系的最坏情形为绝热条件。在绝热条件下,失控反响到达最大反响速率所需要的时间,称为失控反响最大反响速率到达时间,可以通俗地理解为致爆时间。TMRad是温度的函数,是一个时间衡量尺度,用于评估失控反响最坏情形发生的可能性,是人为控制最坏情形发生所拥有的时间长短。2.2 绝热温升Tad在冷却失效等失控条件下,体系不能进展能量交换,放热反响放出的热量,全部用来升高反响体系的温度,是反响失控可能达到的最坏情
9、形。对于失控体系,反响物完全转化时所放出的热量导致物料温度的升高,称为绝热温升。绝热温升与反响的放热量成正比,对于放热反响来说,反响的放热量越大,绝热温升越高,导致的后果越严重。绝热温升是反响安全风险评估的重要参数,是评估体系失控的极限情况,可以评估失控体系可能导致的严重程度。2.3 工艺温度Tp目标工艺操作温度,也是反响过程中冷却失效时的初始温度。冷却失效时,如果反响体系同时存在物料最大量累积和物料具有最差稳定性的情况,在考虑控制措施和解决方案时,必须充分考虑反响过程中冷却失效时的初始温度,安全地确定工艺操作温度。2.4 技术最高温度MTT技术最高温度可以按照常压体系和密闭体系两种方式考虑。
10、对于常压反响体系来说,技术最高温度为反响体系溶剂或混合物料的沸点;对于密封体系而言,技术最高温度为反响容器最大允许压力时所对应的温度。2.5 失控体系能达到的最高温度MTSR当放热化学反响处于冷却失效、热交换失控的情况下,由于反响体系存在热量累积,整个体系在一个近似绝热的情况下发生温度升高。在物料累积最大时,体系能够达到的最高温度称为失控体系能达到的最高温度。MTSR与反响物料的累积程度相关,反响物料的累积程度越大,反响发生失控后,体系能达到的最高温度MTSR越高。2.6 精细化工产品原化学工业部对精细化工产品分为:农药、染料、涂料包括油漆和油墨、颜料、试剂和高纯物、信息用化学品包括感光材料、
11、磁性材料等能承受电磁波的化学品、食品和饲料添加剂、粘合剂、催化剂和各种助剂、化工系统生产的化学药品原料药和日用化学品、高分子聚合物中的功能高分子材料包括功能膜、偏光材料等等11个大类。根据国民经济行业分类(GB/T 4754-2011),生产精细化工产品的企业中反响安全风险较大的有:化学农药、化学制药、有机合成染料、化学品试剂、催化剂以与其他专业化学品制造企业。3 反响安全风险评估3.1 工艺信息工艺信息包括特定工艺路线的工艺技术信息,例如:物料特性、物料配比、反响温度控制围、压力控制围、反响时间、加料方式与加料速度等工艺操作条件,并包含必要的定性和定量控制分析方法。3.2 实验测试仪器反响安
12、全风险评估需要的设备种类较多,除了闪点测试仪、爆炸极限测试仪等常规测试仪以外,必要的设备还包括差热扫描量热仪、热稳定性筛选量热仪、绝热加速度量热仪、高性能绝热加速度量热仪、微量热仪、常压反响量热仪、高压反响量热仪、最小点火能测试仪等;配备水分测试仪、液相色谱仪、气相色谱仪等分析仪器设备;具备动力学研究手段和技术能力。反响安全风险评估包括但不局限于上述设备。3.3 实验能力反响安全风险评估单位需要具备必要的工艺技术、工程技术、热安全和热动力学技术团队和实验能力,具备中国合格评定国家认可实验室AS认可实验室资质,保证相关设备和测试方法与时得到校验和比对,保证测试数据的准确性。4 反响安全风险评估方
13、法4.1 单因素反响安全风险评估依据反响热、失控体系绝热温升、最大反响速率到达时间进展单因素反响安全风险评估。4.2 混合叠加因素反响安全风险评估以最大反响速率到达时间作为风险发生的可能性,失控体系绝热温升作为风险导致的严重程度,进展混合叠加因素反响安全风险评估。4.3 反响工艺危险度评估依据四个温度参数即工艺温度、技术最高温度、最大反响速率到达时间为24小时对应的温度,以与失控体系能达到的最高温度进展反响工艺危险度评估。对精细化工反响安全风险进展定性或半定量的评估,针对存在的风险,要建立相应的控制措施。反响安全风险评估具有多目标、多属性的特点,单一的评估方法不能全面反映化学工艺的特征和危险程
14、度,因此,应根据不同的评估对象,进展多样化的评估。5 反响安全风险评估流程5.1 物料热稳定性风险评估对所需评估的物料进展热稳定性测试,获取热稳定性评估所需要的技术数据。主要数据包括物料热分解起始分解温度、分解热、绝热条件下最大反响速率到达时间为24小时对应的温度。比照工艺温度和物料稳定性温度,如果工艺温度大于绝热条件下最大反响速率到达时间为24小时对应的温度,物料在工艺条件下不稳定,需要优化已有工艺条件,或者采取一定的技术控制措施,保证物料在工艺过程中的安全和稳定。根据物质分解放出的热量大小,对物料潜在的燃爆危险性进展评估,分析分解导致的危险性情况,对物料在使用过程中需要防止受热或超温,引发
15、危险事故的发生提出要求。5.2 目标反响安全风险发生可能性和导致的严重程度评估实验测试获取反响过程绝热温升、体系热失控情况下工艺反响可能达到的最高温度,以与失控体系达到最高温度对应的最大反响速率到达时间等数据。考虑工艺过程的热累积度为100%,利用失控体系绝热温升,按照分级标准,对失控反响可能导致的严重程度进展反响安全风险评估;利用最大反响速率到达时间,对失控反响触发二次分解反响的可能性进展反响安全风险评估。综合失控体系绝热温升和最大反响速率到达时间,对失控反响进展复合叠加因素的矩阵评估,判定失控过程风险可承受程度。如果为可承受风险,说明工艺潜在的热危险性是可以承受的;如果为有条件承受风险,如
16、此需要采取一定的技术控制措施,降低反响安全风险等级;如果为不可承受风险,说明常规的技术控制措施不能奏效,已有工艺不具备工程放大条件,需要重新进展工艺研究、工艺优化或工艺设计,保障化工过程的安全。5.3 目标反响工艺危险度评估实验测试获取包括目标工艺温度、失控后体系能够达到的最高温度、失控体系最大反响速率到达时间为24小时对应的温度、技术最高温度等数据。在反响冷却失效后,四个温度数值大小排序不同,根据分级原如此,对失控反响进展反响工艺危险度评估,形成不同的危险度等级;根据危险度等级,有针对性地采取控制措施。应急冷却、减压等安全措施均可以作为系统安全的有效保护措施。对于反响工艺危险度较高的反响,需
17、要对工艺进展优化或者采取有效的控制措施,降低危险度等级。常规控制措施不能奏效时,需要重新进展工艺研究或工艺优化,改变工艺路线或优化反响条件,减少反响失控后物料的累积程度,实现化工过程安全。6 评估标准6.1 物质分解热评估对物质进展测试,获得物质的分解放热情况,开展风险评估,评估准如此参见表1。表1 分解热评估等级分解热J/g说明1分解热400潜在爆炸危险性。2400分解热1200分解放热量较大,潜在爆炸危险性较高。31200分解热3000分解放热量大,潜在爆炸危险性高。4分解热3000分解放热量很大,潜在爆炸危险性很高。分解放热量是物质分解释放的能量,分解放热量大的物质,绝热温升高,潜在较高
18、的燃爆危险性。实际应用过程中,要通过风险研究和风险评估,界定物料的安全操作温度,防止超过规定温度,引发爆炸事故的发生。6.2 严重度评估严重度是指失控反响在不受控的情况下能量释放可能造成破坏的程度。由于精细化工行业的大多数反响是放热反响,反响失控的后果与释放的能量有关。反响释放出的热量越大,失控后反响体系温度的升高情况越显著,容易导致反响体系中温度超过某些组分的热分解温度,发生分解反响以与二次分解反响,产生气体或者造成某些物料本身的气化,而导致体系压力的增加。在体系压力增大的情况下,可能致使反响容器的破裂以与爆炸事故的发生,造成企业财产人员损失、伤害。失控反响体系温度的升高情况越显著,造成后果
19、的严重程度越高。反响的绝热温升是一个非常重要的指标,绝热温升不仅仅是影响温度水平的重要因素,同时还是失控反响动力学的重要影响因素。绝热温升与反响热成正比,可以利用绝热温升来评估放热反响失控后的严重度。当绝热温升达到200 K或200 K以上时,反响物料的多少对反响速率的影响不是主要因素,温升导致反响速率的升高占据主导地位,一旦反响失控,体系温度会在短时间发生剧烈的变化,并导致严重的后果。而当绝热温升为50 K或50 K以下时,温度随时间的变化曲线比拟平缓,表现的是一种体系自加热现象,反响物料的增加或减少对反响速率产生主要影响,在没有溶解气体导致压力增长带来的危险时,这种情况的严重度低。利用严重
20、度评估失控反响的危险性,可以将危险性分为四个等级,评估准如此参见表2。表2 失控反响严重度评估等级TadK后果150且无压力影响单批次的物料损失250Tad200工厂短期破坏3200Tad400工厂严重损失4400工厂消灭性的损失绝热温升为200 K或200 K以上时,将会导致剧烈的反响和严重的后果;绝热温升为50 K或50 K以下时,如果没有压力增长带来的危险,将会造成单批次的物料损失,危险等级较低。6.3 可能性评估可能性是指由于工艺反响本身导致危险事故发生的可能概率大小。利用时间尺度可以对事故发生的可能性进展反响安全风险评估,可以设定最危险情况的报警时间,便于在失控情况发生时,在一定的时
21、间限度,与时采取相应的补救措施,降低风险或者强制疏散,最大限度地防止爆炸等恶性事故发生,保证化工生产安全。对于工业生产规模的化学反响来说,如果在绝热条件下失控反响最大反响速率到达时间大于等于24小时,人为处置失控反响有足够的时间,导致事故发生的概率较低。如果最大反响速率到达时间小于等于8小时,人为处置失控反响的时间不足,导致事故发生的概率升高。采用上述的时间尺度进展评估,还取决于其他许多因素,例如化工生产自动化程度的上下、操作人员的操作水平和培训情况、生产保障系统的故障频率等,工艺安全管理也非常重要。利用失控反响最大反响速率到达时间TMRad为时间尺度,对反响失控发生的可能性进展评估,评估准如
22、此参见表3。表3 失控反响发生可能性评估等级TMRadh后果1TMRad24很少发生28TMRad24偶尔发生31TMRad8很可能发生4TMRad1频繁发生6.4 矩阵评估风险矩阵是以失控反响发生后果严重度和相应的发生概率进展组合,得到不同的风险类型,从而对失控反响的反响安全风险进展评估,并按照可承受风险、有条件承受风险和不可承受风险,分别用不同的区域表示,具有良好的辨识性。以最大反响速率到达时间作为风险发生的可能性,失控体系绝热温升作为风险导致的严重程度,通过组合不同的严重度和可能性等级,对化工反响失控风险进展评估。风险评估矩阵参见图1。图1风险评估矩阵失控反响安全风险的危险程度由风险发生
23、的可能性和风险带来后果的严重度两个方面决定,风险分级原如此如下:I级风险为可承受风险:可以采取常规的控制措施,并适当提高安全管理和装备水平。II级风险为有条件承受风险:在控制措施落实的条件下,可以通过工艺优化、工程、管理上的控制措施,降低风险等级。III级风险为不可承受风险:应当通过工艺优化、技术路线的改变,工程、管理上的控制措施,降低风险等级,或者采取必要的隔离方式,全面实现自动控制。6.5 反响工艺危险度评估反响工艺危险度评估是精细化工反响安全风险评估的重要评估容。反响工艺危险度指的是工艺反响本身的危险程度,危险度越大的反响,反响失控后造成事故的严重程度就越大。温度作为评价基准是工艺危险度
24、评估的重要原如此。考虑四个重要的温度参数,分别是工艺操作温度Tp、技术最高温度MTT、失控体系最大反响速率到达时间TMRad为24小时对应的温度TD24,以与失控体系可能达到的最高温度MTSR,评估准如此参见表4。表4 反响工艺危险度等级评估等级温度后果1TpMTSRMTTTD24反响危险性较低2TpMTSRTD24MTT潜在分解风险3TpMTTMTSRTD24存在冲料和分解风险4TpMTTTD24MTSR冲料和分解风险较高,潜在爆炸风险5TpTD24MTSRMTT爆炸风险较高针对不同的反响工艺危险度等级,需要建立不同的风险控制措施。对于危险度等级在3级与以上的工艺,需要进一步获取失控反响温度
25、失控反响体系温度与压力的关系、失控过程最高温度、最大压力、最大温度升高速率、最大压力升高速率与绝热温升等参数,确定相应的风险控制措施。6.6 措施建议综合反响安全风险评估结果,考虑不同的工艺危险程度,建立相应的控制措施,在设计中表现,并同时考虑厂区和周边区域的应急响应。对于反响工艺危险度为1级的工艺过程,应配置常规的自动控制系统,对主要反响参数进展集中监控与自动调节DCS或PLC。对于反响工艺危险度为2级的工艺过程,在配置常规自动控制系统,对主要反响参数进展集中监控与自动调节DCS或PLC的根底上,要设置偏离正常值的报警和联锁控制,在非正常条件下有可能超压的反响系统,应设置爆破片和安全阀等泄
26、放设施。根据评估建议,设置相应的安全仪表系统。对于反响工艺危险度为3级的工艺过程,在配置常规自动控制系统,对主要反响参数进展集中监控与自动调节,设置偏离正常值的报警和联锁控制,以与设置爆破片和安全阀等泄放设施的根底上,还要设置紧急迫断、紧急终止反响、紧急冷却降温等控制设施。根据评估建议,设置相应的安全仪表系统。对于反响工艺危险度为4级和5级的工艺过程,尤其是风险高但必须实施产业化的项目,要努力优先开展工艺优化或改变工艺方法降低风险,例如通过微反响、连续流完成反响;要配置常规自动控制系统,对主要反响参数进展集中监控与自动调节;要设置偏离正常值的报警和联锁控制,设置爆破片和安全阀等泄放设施,设置紧
27、急迫断、紧急终止反响、紧急冷却等控制设施;还需要进展保护层分析,配置独立的安全仪表系统。对于反响工艺危险度达到5级并必须实施产业化的项目,在设计时,应设置在防爆墙隔离的独立空间中,并设置完善的超压泄爆设施,实现全面自控,除装置安全技术规程和岗位操作规程中对于进入隔离区有明确规定的,反响过程中操作人员不应进入所限制的空间。7 反响安全风险评估过程示例7.1 工艺描述标准大气压下,向反响釜中参加物料A和B,升温至60,滴加物料C,体系在75时沸腾。滴完后60保温反响1小时。此反响对水敏感,要求体系含水量不超过0.2%。7.2 研究与评估容根据工艺描述,采用联合测试技术进展热特性和热动力学研究,获得
28、安全性数据,开展反响安全风险评估,同时还考虑了反响体系水分偏离为1%时的安全性研究。7.3 研究结果1反响放热,最大放热速率为89.9 W/kg,物料C滴加完毕后,反响热转化率为75.2%,摩尔反响热为-58.7 kJmol-1,反响物料的比热容为2.5 kJkg-1K-1,绝热温升为78.2 K。2目标反响料液起始放热分解温度为118,分解放热量为130 J/g。放热分解过程中,最大温升速率为5.1 /min,最大压升速率为6.7 bar/min。含水达到1%时,目标反响料液起始放热分解温度为105,分解放热量为206 J/g。放热分解过程最大温升速率为9.8 /min,最大压升速率为12.
29、6 bar/min。3目标反响料液自分解反响初期活化能为75 kJ/mol,中期活化能为50 kJ/mol。目标反响料液热分解最大反响速率到达时间为2小时对应的温度TD2为,TD4为,TD8为,TD24为,TD168为。7.4 反响安全风险评估根据研究结果,目标反响安全风险评估结果如下:1此反响的绝热温升Tad为78.2 K,该反响失控的严重度为“2级。2最大反响速率到达时间为小时对应的温度为,失控反响发生的可能性等级为3级,一旦发生热失控,人为处置时间不足,极易引发事故。3风险矩阵评估的结果:风险等级为II级,属于有条件承受风险,需要建立相应的控制措施。4反响工艺危险度等级为4级TpMTTT
30、D24MTSR。合成反响失控后体系最高温度高于体系沸点和反响物料的TD24,意味着体系失控后将可能爆沸并引发二次分解反响,导致体系发生进一步的温升。需要从工程措施上考虑风险控制方法。5自分解反响初期活化能大于反响中期活化能,样品一旦发生分解反响,很难被终止,分解反响的危险性较高。该工艺需要配置自动控制系统,对主要反响参数进展集中监控与自动调节,主反响设备设计安装爆破片和安全阀,设计安装加料紧急迫断、温控与加料联锁自控系统,并按要求配置独立的安全仪表保护系统。建议:进一步开展风险控制措施研究,为紧急终止反响和泄爆口尺寸设计提供技术参数。8 参考文献1Stoessel Francis. Therm
31、al Safety of Chemical Processes:Risk Assessment and Process DesignM. 2008. 2Guidelines for Chemical Reactivity Evaluation andApplication to Process DesignM. AIChE, 1995.3Lucerne. Loss of ContainmentJ. ESCIS, 1996(12).4“Zurich Hazard Analysis, A brief introduction to the “Zurich method of Hazard Anal
32、ysis M. Zurich Insurance, 1987.5Stoessel Francis. What is your thermal risk?J. ChemicalEngineering Progress, 1993:68-75.6Designing and Operating Safe Chemical ReactionProcessesM. Health and Safety Executive, 2000.7Transport of Dangerous GoodM. United Nations, 2009.8Lucerne. Thermal Process Safety, Data Assessment, Criteria,MeasuresJ. ESCIS, 1993(8). 21 / 21