汽车覆盖件成形工艺及模具设计PPT课件.ppt

上传人:rrsccc 文档编号:9493013 上传时间:2021-02-28 格式:PPT 页数:66 大小:4.61MB
返回 下载 相关 举报
汽车覆盖件成形工艺及模具设计PPT课件.ppt_第1页
第1页 / 共66页
汽车覆盖件成形工艺及模具设计PPT课件.ppt_第2页
第2页 / 共66页
汽车覆盖件成形工艺及模具设计PPT课件.ppt_第3页
第3页 / 共66页
汽车覆盖件成形工艺及模具设计PPT课件.ppt_第4页
第4页 / 共66页
汽车覆盖件成形工艺及模具设计PPT课件.ppt_第5页
第5页 / 共66页
点击查看更多>>
资源描述

《汽车覆盖件成形工艺及模具设计PPT课件.ppt》由会员分享,可在线阅读,更多相关《汽车覆盖件成形工艺及模具设计PPT课件.ppt(66页珍藏版)》请在三一文库上搜索。

1、1,概述 6.1覆盖件的结构特征与成形特点 6.2覆盖件冲压成形设计工艺 6.3覆盖件成形模具的典型结构和主要零件的设计,2,覆盖件的含义: 覆盖件主要指覆盖汽车发动机和底盘、构成驾驶室和车身的一些零件,如轿车的挡泥板、顶盖、车门外板、发动机盖、水箱盖、行李箱盖等。由于覆盖件的结构尺寸较大,所以也称为大型覆盖件。 覆盖件成形的特点: 覆盖件的主要冲压工序有:落料、拉深、校形、修边、切断、翻边、冲孔等。其中最关键的工序是拉深工序。,3,6.1覆盖件的结构特征与成形特点,6.1.1覆盖件的结构特征(如图6.1.1) 和一般冲压件相比,覆盖件具有材料薄、形状复杂、多为空间曲面且曲面间有较高的连接要求

2、、结构尺寸较大、表面质量要求高、刚性好等特点。,4,(a) (b) (c) (d) 图6.1.1 覆盖件的基本形状 (a)法兰形状;(b) 轮廓形状;(c) 侧壁形状;(d) 底部形状,5,6.1.2覆盖件的成形特点 1.成形工序多:拉深为关键工序; 2.拉深是复合成形 :常采用一次拉深; 3.拉深时变形不均匀:工艺补充、拉深筋; 4.大而稳定的压边力:双动压床; 5.高强度、高质量、抗腐蚀的钢板; 6. 覆盖件图样和主模型为依据。,6,6.1.3覆盖件的成形分类 汽车覆盖件的冲压成形分类以零件上易破裂或起皱部位材料的主要变形方式为依据,并根据成形零件的外形特征、变形量大小、变形特点以及对材料

3、性能的不同要求,可将汽车覆盖件冲压成形分为五类:深拉深成形类、胀形拉深成形类、浅拉深成形类、弯曲成形类和翻边成形类。,7,6.1.4覆盖件的主要成形障碍及其防止措施 由于覆盖件形状复杂,多为非轴对称、非回转体的复杂曲面形状零件,因而决定了拉深时的变形不均匀,所以拉深时的起皱和开裂是主要成形障碍。 1.起皱及防皱措施 原因: 覆盖件的拉深过程中,当板料与凸模刚开始接触,板面内就会产生压应力,随着拉深的进行,当压应力超过允许值时,板料就会失稳起皱(如图6.1.2)。 防皱措施: 解决的办法是增加工艺补充材料或设置拉深筋。,8,图6.1.2 覆盖件拉深过程示意图 a) 坯料放入;b) 压边;c) 板

4、料与凸模接触;d) 材料拉入; e) 压型;f) 下止点;g) 卸载,9,2.开裂及防裂措施 原因: 是由于局部拉应力过大造成的,由于局部拉应力过大导致局部大的胀形变形而开裂。 位置: 开裂主要发生在圆角部位,开裂部位的厚度变薄很大如凸模与坯料的接触面积过小、拉深阻力过大等都有可能导致材料局部胀形变形过大而开裂 。 防裂措施: 为了防止开裂,应从覆盖件的结构、成形工艺以及模具设计多方面采取相应的措施。,10,(1) 覆盖件的结构上,可采取的措施有: 各圆角半径最好大一些、曲面形状在拉深方向的实际深度应浅一些、各处深度均匀一些、形状尽量简单且变化尽量平缓一些等。 (2)拉深工艺方面,可采取的主要

5、措施有: 拉深方向尽量使凸模与坯料的接触面积大、合理的压料面形状和压边力使压料面各部位阻力均匀适度、降低拉延深度、开工艺孔和工艺切口等 (如图6.1.3)。 (3)模具设计上 可采取设计合理的拉深筋、采用较大的模具圆角、使凸模与凹模间隙合理等措施。,11,图6.1.3工艺孔和工艺切口,12,6. 2覆盖件冲压成形工艺设计 6.2.1确定冲压方向 覆盖件的冲压工艺包括拉深、修边、翻边等多道工序, 确定冲压方向应从拉深工序开始,然后制定以后各工序的冲 压方向。应尽量将各工序的冲压方向设计成一致。 1.拉深方向的选择 (1)拉深冲压方向对拉深成形的影响 (2)拉深方向选择的原则 保证能将拉深件的所有

6、空间形状(包括棱线、肋条、 和鼓包等)一次拉深出来,不应有凸模接触不到的死角或死 区。,13,如图6.1.4a),若选择冲压方向A,则凸模不能全部进人凹模,造成零件右下部的a区成为“死区”,不能成形出所要求的形状。选择冲压方向B后,则可以使凸模全部进人凹模,成形出零件的全部形状。图6.1.4b)是按拉深件底部的反成形部分最有利干成形面确定的拉深方向,若改变拉深方向则不能保证90角。,图6.1.4 拉深方向确定实例,14,有利于降低拉深件的深度。 拉深深度太深,会增加拉深成形的难度,容易产生破裂、起皱等质量问题;拉深深度太浅,则会使材料在成形过程中得不到较大的塑性变形,覆盖件刚度得不到加强。 尽

7、量使拉深深度差最小。 以减小材料流动和变形分布的不均匀性(如图6.1.5)。 保证凸模开始拉深时与拉深毛坯有良好的接触状态。 开始拉深时凸模与拉深毛坯的接触面积要大,接触面应尽量靠近冲模中心(如图6.1.6)。,15,图6.1.5 拉深深度与拉深方向,16,a) b) c) d) 图 6.1.6 凸模开始拉深时与拉深毛坯的接触状态示意图,17,2.修边方向的确定及修边形式 (1)修边方向的确定 所谓修边就是将拉深件修边线以外的部分切掉。 理想的修边方向: 是修边刃口的运动方向和修边表面垂直。 (2)修边形式 修边形式可分为垂直修边、水平修边和倾斜修边三种,如图6.2.6所示。,18,图6.2.

8、6 修边形式示意图 a) 垂直修边 b) 水平修边 c) 倾斜修边,19,3.翻边方向的确定及其翻边形式 (1)翻边方向的确定 翻边工序对于一般的覆盖件来说是冲压工序的最后成形工序,翻边质量的好坏和翻边位置的准确度,直接影响整个汽车车身的装配和焊接的质量。 合理的翻边方向应满足下列两个条件: 翻边凹模的运动方向和翻边凸缘、立边相一致; 翻边凹模的运动方向和翻边基面垂直。 (2)翻边形式 按翻边凹模的运动方向,翻边形式可分为垂直翻边、水平翻边和倾斜翻边三种(如图6.2.8)。,20,21,6.2.2 拉深工序的工艺处理 工艺处理的内容包括:确定压料面形状、工艺补充、翻边的展开、冲工艺孔和工艺切口

9、等内容,是针对拉深工艺的要求对覆盖件进行的工艺处理措施。 1.工艺补充部分的设计 为了实现覆盖件的拉深,需要将覆盖件的孔、开口、压料面等结构根据拉深工序的要求进行工艺处理,这样的处理称为工艺补充。如图6.2.9中的工艺补充。 工艺补充设计的原则: (1)内孔封闭补充原则(为防止开裂采用与冲孔或工艺切口除外); (2)简化拉深件结构形状原则(如图6.2.10); (3)对后工序有利原则(如对修边、翻边定位可靠,模具结构简单)。,22,图6.2.9工艺补充示意图,23,a) b) c) a)简化轮廓形状;b)增加局部侧壁高度;c)简化压料面形状 图6.2.10简化拉深件结构形状,24,2.压料面的

10、设计 压料面是工艺补充部分组成的一个重要部分,即凹模圆角半径以外的部分。压料面的形状不但要保证压料面上的材料不皱,而且应尽量造成凸模下的材料能下凹以降低拉深深度,更重要的是要保证拉入凹模里的材料不皱不裂。因此,压料面形状应由平面、圆柱面、双曲面等可展面组成,如图6.2.12、6.2.13所示。 确定压料面形状必须考虑以下几点: (1)降低拉深深度 图6.2.14所示是降低拉深深度的示意图。 (2)凸模对毛坯一定要有拉伸作用 只有使毛坯各部分在拉深过程中处于拉伸状态,并能均匀地紧贴凸模,才能避免起皱,如图6.2.15。,25,图6.2.12压料面形状 1-平面;2-圆柱面;3-圆锥面;4-直曲面

11、,26,图6.2.13 压料面与冲压方向的关系 1-压边圈;2-凹模;3-凸模,27,28,3.工艺孔和工艺切口 在制件上压出深度较大的局部突起或鼓包,有时靠从外部流入材料已很困难,继续拉深将产生破裂。这时,可考虑采用冲工艺孔或工艺切口,以从变形区内部得到材料补充。如图6.1.3所示。 工艺孔或工艺切口必须设在拉应力最大的拐角处,因此冲工艺孔或工艺切口的位置、大小、形状和时间应在调整拉深模时现场试验确定。,29,30,4.覆盖件拉深件图的绘制 (1)拉深件图的要求 按照拉深件的冲压位置绘制,而不是像产品图那样按照零件在车身上的装配位置来绘制。 拉深件图上不仅要标注拉深件的轮廓尺寸、不同位置的深

12、度等。而且要标注拉深件在汽车坐标系中的定位尺寸,拉深方向与坐标系的关系,后面工序示意线及尺寸等。有时还标注后面工序的冲压方向,但不标注拉深件外轮廓尺寸。 当拉深件的法兰面为复杂曲面形状时,还可以在法兰面上标注上凸、凹模和压料圈型面按工艺模型仿制、配研的技术要求。,31,6.2.3 拉深、修边和翻边工序间的关系 覆盖件成形各工序间不是相互独立而是相互关联的,在确定覆盖件冲压方向和加工艺补充部分时,还要考虑修边、翻边时工序件的定位和各工序件的其它相互关系等问题。 拉深件在修边工序中的定位有三种: (1)用拉深件的侧壁形状定位。 (2)用拉深筋形状定位。 (3)用拉深时冲压的工艺孔定位。 修边件在翻

13、边工序中的定位,一般用工序件的外形、侧壁或覆盖件本身的孔定位。,32,6.3覆盖件成形模具的典型结构和主要零件的设计 6.3.1覆盖件拉深模 1.拉深模的典型结构 覆盖件拉深设备有单动压力机和双动压力机,形状复杂的覆盖件必须采用双动压力机拉深 根据设备不同,覆盖件拉深模也可分为单动压力机上覆盖件拉深模和双动压力机上覆盖件拉深模。(如图所示)所示分别为单动压力机上和双动压力机上覆盖件拉深模的典型结构示意图。,33,2.拉深模主要零件的设计 (1)拉深模结构尺寸 教材表6.3.1是拉深模壁厚尺寸。由于覆盖件拉深模形状复杂,结构尺寸一般都较大,所以凸模、凹模、压边圈和固定座等主要零件都采用带加强肋的

14、空心铸件结构,材料一般合金铸铁、球墨铸铁和高强度的灰铸铁(HT250、HT300)。 (2)凸模设计 除工艺补充、翻边面的展开等特殊工艺要求部分外,凸模的外轮廓就是拉深件的内轮廓,其轮廓尺寸和深度即为产品图尺寸。凸模工作表面和轮廓部位处的模壁厚比其它部位的壁厚要大一些,一般为7090(如图6.3.1、6.3.2)。为了保证凸模的外轮廓尺寸,在凸模上沿压料面有一段4080的直壁必须加工(如图6.3.3)。为了减少轮廓面的加工量,直壁向上用45斜面过渡,缩小距离为1540。,34,35,图6.3.3凸模外轮廓,36,(3)凹模设计 拉深毛坯是通过凹模圆角逐步进入凹模型腔,直至拉深成凸模的形状。 凹

15、模结构可分为闭口式凹模结构和通口式凹模结构。 闭口式凹模结构的凹模底部是封闭的,在拉深模中,绝大多数是闭口式凹模结构。如图6.3.4所示为微型汽车后围拉深模,该模具采用的是闭口式凹模结构,在凹模的型腔上直接加工出成形的凸、凹槽部分。 图6.3.5是汽车门里板拉深模。模具的凹模底部是通的,通孔下面加模座,反成形凸模紧固在模座上。这种凹模底部是通的凹模结构称为通口式凹模结构。,37,1、7-起重棒;2-定位块;3、11-通气孔;4-凸模;5-导板;6-压边圈; 8-凹模;9-顶件装置;10-定位键;12-到位标记;13-耐磨板;14-限位板 图6.3.4 采用闭口式凹模结构的微型汽车后围拉深模,3

16、8,1、7-耐磨板;2-凹模;3-压边圈;4-固定板;5-凸模;6-通气孔;8-下底板; 9-拉深筋;10-反成形凸模镶块;11-反成形凹模镶块;12-顶出器 图6.3.5 采用通口式凹模结构的汽车门里板拉深模,39,(4)拉深筋设计 拉深筋的作用是增大全部或局部材料的变形阻力,以控制材料的流动,提高制件的刚性。同时利用拉深筋控制变形区毛坯的变形的大小和变形的分布,控制破裂、起皱、曲面畸变等质量问题。 如图6.3.6所示,设置在压料面上的筋状结构就是拉深筋。 拉深筋有圆形、半圆形和方形三种结构,如图6.3.7。,40,图6.3.6,41,图6.3.7,42,(5)覆盖件拉深模具的导向 导柱、导

17、套导向 导柱导套导向不能承受较大的侧向力,常用于中小型模具的导向。 导向块导向 导块导向与导板导向的使用方式相同。导块设置在模具对称中心线上时,导块应为三面导向;如设置在模具的转角部位时,导块应为两面导向。导块模适用于平面尺寸大深度小的拉深件及中大批量生产(图6.3.8、图6.3.9)。 导板导向 导板导向常用于覆盖件拉深、弯曲、翻边等成形模具。其结构相对简单、造价低,常安装在凸模、凹模、压边圈上,应用比较广泛。(图6.3.10、图6.3.11)。,43,44,图6.3.10导板导向布置图,a) 凸模导板结构;b)压边圈导板结构 6.3.11 凸模和压边圈之间的导向,45,凹模和压边圈之间的导

18、向(图6.3.12)。这种导向方式称为外导向,它的结构特点是凸台与凹槽的配合。其作用与一般冲模导柱与导套相似,但间隙较大,一般为0.3 mm。导板材料为T8A或T10A,其淬火硬度为5256HRC,为使导板能容易的进入导向面,其一端制成30,导板可根据标准选用(图6.3.13)。 (6)拉深模具的排气 上模排气设置时要加出气管或加盖板以防止杂质落入,如图6.3.14。,46,图6.3.12 凹模和压边圈之间的导向 a) 凸台在凹模上;b)凸台在压边圈上,47,图6.3.13 导板结构尺寸,48,图6.3.14 排气孔的设置,49,6.3.2覆盖件修边模 覆盖件修边模就是特殊的冲裁模,与一般冲孔

19、、落料模的主要区别是:所要修边的冲压件形状复杂,模具分离刃口所在的位置可能是任意的空间曲面;冲压件通常存在不同程度的弹性变形;分离过程通常存在较大的侧向压力等。 1.修边模具的结构 (1)修边模具的分类 覆盖件修边模可分为垂直修边模(图6.3.15)、水平修边模和倾斜修边模(图6.3.16)。 (2)典型的修边模具 图 6.3.17是汽车后门柱外板垂直修边冲孔模。,50,图6.3.15垂直修边模 1-下模;2-凸模镶块;3-上模; 4-凹模镶块;5-卸件器,51,6.3.16水平修边模和倾斜修边模 1、15-复位弹簧;2-下模;3-、16滑块;4、17-修边凹模; 5、12-斜楔;6、13凸模

20、镶块;7-上模;8-卸件器; 10-螺钉; 9-弹簧;11、14防磨板;18-背靠快,52,图 6.3.17汽车后门柱外板 垂直修边冲孔模 1-上模座;2-卸料螺钉; 3-弹簧;4-卸料板; 5-导板;6-凹模镶块组; 7-导柱; 8-导套; 9-下模座;10-顶出器; 11-顶出气缸;12-凸模镶块组; 13-废料刀组;14-限位器,53,2.修边凸模与凹模镶件 修边凸模和凹模刃口结构形式有两种:一是采用堆焊形式,即在主模体或模板上堆焊修出刃口,二是采用凸模、凹模镶件拼合而成。按修边制件图绘制凸模和凹模镶件图时,不标注整体尺寸。在凸模镶件图上注明“按修边样板加工”;在凹模镶件图上,则注明“按

21、凸模镶件配制,考虑冲裁间隙”。 (1)镶件分块的原则 小圆弧部分单独作为一块,接合面距切点510mm。大圆弧、长直线可以分成几块,接合面与刃口垂直,并且不宜过长,一般取1215mm.; 凸模上和凹模上的接合面应错开510 mm,以免产生毛剌;,54,易磨损比较薄弱的局部刃口,应单独做成一块,以便于更换; 凸模的局部镶块用于转角、易磨损和易损坏的部位,凹模的局部镶块装在转角和修边线带有突出和凹槽的地方。各镶块在模座组装好后,再进行仿形加工,以保证修边形状和刃口间隙的配做要求。 (2)镶件固定与定位 图6.3.18所示为修边镶件的一般结构。 图 6.3.19所示是两种常用的镶件固定形式的示意图。,

22、55,图6.3.18修边镶件结构及刃口拼合面,图 6.3.19 镶件的固定形式,56,3.废料刀的设计 覆盖件的废料外形尺寸大,修边线形状复杂,不可能采用一般卸料圈卸料,需要先将废料切断后卸料才方便和安全。有些零件在修边时不能用制件本身形状定位的零件,则可用废料刀定位。 (1)废料刀的结构: 废料刀也是修边镶块的组成部分,镶块式废料刀是利用修边凹模镶块的接合面作为一个废料刀刃口,相应地在修边凸模镶块外面装废料刀作为另一个废料刀刃口组成镶块式废料刀 (如图6.3.20、图6.3.21所示)。,57,58,59,(2)废料刀的布置 为了使废料容易落料下,废料刀的刃口开口角通常取10,且应顺向布置,

23、如图6.3.22所示。 为了使废料容易落下,废料刀的垂直壁应尽量避免相对布置。当不得不相对布置时,可改变刃口角度,如图 6.3.23所示。 另外修边线上有凸起部分时,为了防止废料卡住,要在凸起部位配置切刀,如图6.3.22所示。,60,1-废料刀;2-凸模图 6.3.22废料刀顺向布置,图 6.3.23 废料刀相对布置,61,6.3.3覆盖件翻边模 根据翻边模的结构特点和复杂程度,覆盖件的翻边模 可分为以下六种类型。 (1)垂直翻边模 (2)斜楔翻边模 (3)斜模两面开花翻边模 (4)斜楔圆周开花翻边模 (5)斜楔两面向外翻边模 (6)内外全开花翻边模,62,2.翻边模结构设计示例 (1)双斜

24、楔窗口插入式翻边凸模扩张模具结构 图6.3.25所示为利用覆盖件上的窗口,插入凸模扩张斜楔。 (2)翻边凸模缩小与翻边凹模扩张的模具结构 图6.3.26所示为覆盖件窗口向外翻边的模具结构。 (3)斜楔两面开花翻边模 图6.3.27翻边模属两面开花式结构。 (4)气缸复位的翻边模 图6.3.28所示为气缸复位的翻边模。,63,图6.3.25 窗口插入式翻边凸模扩张结构 1、4-斜楔座;2、13-滑板;3、6-斜楔块;5-限位板; 7、12-复位弹簧; 8、11-滑块;9-翻边凸模;10-翻边凹模,64,图6.3.26 翻边凸模收缩与翻边凹模扩张结构 1、15-限位块;2-压块;3、4-斜楔块;5-滑块;6、12-弹簧;7-顶杆;8-翻边凸模; 9-压板;10-斜楔;11-翻边凹模;13-活动底板;14-下模座,65,图6.3.27斜楔两面开花式结构 1、7、9-斜楔;2-滑板;3-滑块;4、5、16-弹簧;6-轴销;8-活动翻边凸模; 10-键;11-导套;12固定块;13-压件器;14-凸模座;15-定位块; 17-螺钉;18-导柱;19上模座;20-翻边凹模,66,图6.3.28气缸复位的翻边模 1-压件器;2-翻边凸模;3-翻边凹模;4-滑块;5-滑块座; 6-气缸固定板;7-气缸;8-斜楔,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 社会民生


经营许可证编号:宁ICP备18001539号-1