课程设计(论文)横向进给系统设计三维设计.doc

上传人:土8路 文档编号:9998439 上传时间:2021-04-09 格式:DOC 页数:42 大小:781KB
返回 下载 相关 举报
课程设计(论文)横向进给系统设计三维设计.doc_第1页
第1页 / 共42页
课程设计(论文)横向进给系统设计三维设计.doc_第2页
第2页 / 共42页
课程设计(论文)横向进给系统设计三维设计.doc_第3页
第3页 / 共42页
课程设计(论文)横向进给系统设计三维设计.doc_第4页
第4页 / 共42页
课程设计(论文)横向进给系统设计三维设计.doc_第5页
第5页 / 共42页
点击查看更多>>
资源描述

《课程设计(论文)横向进给系统设计三维设计.doc》由会员分享,可在线阅读,更多相关《课程设计(论文)横向进给系统设计三维设计.doc(42页珍藏版)》请在三一文库上搜索。

1、目录摘要1、前言2、进给传动系统的计算2.1、设计方案的确定2.2、进给系统的设计2.3、进给系统的设计计算2.3(1)、切削力计算2.3(2)、进给工作台工作载荷计算2.3(3)、丝杠设计计算2.3(4)、齿轮及转矩的有关计算2.3(5)、步进电机的选择3、进给系统的结构设计3.1丝杠螺母副的设计3.2齿轮传动副的设计3.3齿轮箱的设计3.4床身及导轨3.5中间轴的设计3.6轴承端盖的设计总结与体会参考文献摘 要本设计是把普通数控车床改造成经济型数控车床。经济型数控车床就是指价格低廉、操作使用方便、比较适合我国国情的,动化的机床。采用数控机床,可以降低工人的劳动强度,节省劳动力(一个人可以看

2、管多台机床),减少工装,缩短新产品试制周期和生产周期,可对市场需求作出快速反应。在设计的时候具体进行了详细的各部件的选型和计算。比如:导轨的设计选型、丝杠螺母副的选型与计算。还进行了进给传动系统的刚度计算、进给传动系统的误差分析、驱动电机的选型计算、驱动电机与丝杠的联接、驱动电机与进给传动系统的动态特性分析等。【关键词】车床、数控、传动系统一、前言我国目前机床总量380余万台,而其中数控机床总数只有11.34万台,即我国机床数控化率不到3。近10年来,我国数控机床年产量约为0.60.8万台,年产值约为18亿元。机床的数控化率仅为6。这些机床中,役龄10年以上的占60以上;10年以下的机床中,自

3、动/半自动机床不到20,FMC/FMS等自动化生产线更屈指可数(美国和日本自动和半自动机床占60以上)。可见我们的大多数制造行业和企业的生产、加工装备绝大数是传统的机床,而且半数以上是役龄在10年以上的旧机床。用这种装备加工出来的产品国内、外市场上缺乏竞争力,直接影响一个企业的的生存和发展。所以必须大力提高机床的数控化率。 而相对于传统机床,数控机床有以下明显的优越性:1、可以加工出传统机床加工不出来的曲线、曲面等复杂的零件。 2、可以实现加工的柔性自动化,从而效率比传统机床提高37倍。 3、加工零件的精度高,尺寸分散度小,使装配容易,不再需要“修配”。 4、可实现多工序的集中,减少零件在机床

4、间的频繁搬运。 5、拥有自动报警、自动监控、自动补偿等多种自律功能,可实现长时间无人看管加工。 因此,采用数控机床,可以降低工人的劳动强度,节省劳动力(一个人可以看管多台机床),减少工装,缩短新产品试制周期和生产周期,可对市场需求作出快速反应。 此外,机床数控化还是推行FMC(柔性制造单元)、FMS(柔性制造系统)以及CIMS(计算机集成制造系统)等企业信息化改造的基础。数控技术已经成为制造业自动化的核心技术和基础技术。二、进给系统的设计与计算2.1、设计方案的确定利用微机对进给系统进行半闭环控制,脉冲当量为0.01mm/脉冲,驱动元件采用步进电机,传动系统采用丝杠副。采用微机对数据进行计算处

5、理,由I/O接口输出步进脉冲,经一级齿轮减速丝杠转动,从而实现进给运动。2.2、进给系统的设计采用半闭环机床进给系统,步进电机经一级减速齿轮传动副,丝杆拖动工作台。传感器与电机轴相联,用来检测电机转角和转速,并把它们转换为电信号反馈给数控装置,传感器采用脉冲编码器。2.3、进给系统的设计计算工作台重量: mT=600Kg F=1500N时间常数: T=25 ms丝杠基本导程: Lo=6mm行程: Sw=700mm步距角: /step快速进给速度: (1)切削力计算 由机床设计手册可知,切削功率式中:N-电机功率,查机床说明书,N=7.5 KW;-主传动系统总效率,一般为0.70.85取=0.7

6、;K-进给系统功率系数,取为K=0.96。则有: Nc=7.50.70.96=5.04 kw切向铣削力: F=10 N式中: V-主轴传递全部功率时的最底切削速度(m/s)则有: V=D95/60000=1.7m/s=102m/min F=2964(N)(2)进给工作台工作载荷计算:从数控铣床中表2-1可得知,在一般立式铣削时,工作台进给方向载荷: F=0.4Fz=0.42964=1185 N(3)丝杠设计计算:由数控技术可知,采用燕尾导轨,导轨铣床丝杠的轴向力:采用矩型导轨:式中K=1.1 =0.15则有:1)强度计算:寿命值: 式中:n-为丝杆转速(r/min)v-为最大切削力下的进给速度

7、(m/min),取最高进给速度的1/3T-额定寿命,查表得 T=15000h -丝杆导程,取=6mm则有:v=r/minL最大动负载C :C查表得:运转状态系数 根据最大动负荷C的值,可选则丝杠的型号。查表2-5得,选取丝杠直径为50mm,型号为ND5006,其额定载荷为29350N,所以强度足够。2) 效率计算:根据机械原理的公式,丝杠螺母副的传动效率为:式中:-为丝杆螺旋升角,查得:-为摩擦角,丝杆副的滚动摩擦系数f=0.0030.004,其摩擦角约等于 则有: 3) 刚度验算:丝杠受工作负载F引起的导程的变化量,丝杆的拉压变形量式中:mm=0.6cm; E-为材料弹性模量,对钢A-为丝杠

8、截面积 则有: 与螺纹滚道间的接触变形量 ,有预紧:式中:-为直径,查表得=3.969mmZ圈数列数2513=75-为预紧力则有:则丝杆的总变形量 :查表知E级精度丝杠允许的螺距误差(1m长)为15um/m 故刚度足够。4)稳定性验算失稳时的临界载荷式中:E-为丝杆材料弹性模量,对钢I-为截面惯性矩,对丝杆圆截面-为丝杆底径,=48mm则有: L-为丝杆最大工作长度,取L=375mm -为丝杆支承方式系数,参考图2-13和表2-7,取=2.0则有:稳定安全系数:所选丝杆稳定安全系数,查表得:则有 ,故稳定性不存在问题。(4)齿轮及转矩的有关计算1)有关齿轮计算传动比故取 m=2 mmB=20

9、mm 则有 2)转动惯量计算:工作台质量折算到电机轴上的转动惯量丝杠的转动惯量齿轮的转动惯量电动机转动惯量很少,可以忽略因此,总的转动惯量 所需转动力矩计算快速空载启动时所需力矩 式中 -空载启动时折算到电机轴上的加速度力矩; -折算到电机轴上的摩擦力矩; -由于丝杠预金所引起,折算到电机轴上的附加摩擦力矩;式中:-为传动系统各部件惯量折算到电机轴上的总等效转动惯量( -为电机最大角加速度() -为运动部件最大快进速度对应的电机最大转速() t-为运动部件从静止启动加速到最大快进进给速度所需时间(s),取t=0.025s则有: 空载摩擦力矩:式中: G-运动部件总重力(N) -为导轨摩擦系数,

10、取0.2 i-齿轮传动降速比,i=1.25 -传动系统总效率,取=0.8 -基本导程,取=0.6cm则有:附加摩擦力矩:式中: -为丝杆预加载荷,取的1/3 -为丝杆预紧是的传动效率,取=0.9则有:(5) 步进电机的选择步进电机的名义启动转矩为满足最小步距要求,电机选用五相十拍工作方式,查表知所以,步进电机最大静转矩:步进电机最高工作频率:综合考虑,查表选用 130BF001 型直流步进电机,能满足使用要求。三、进给系统的结构设计3.1丝杠螺母副的设计丝杠螺母副是直线运动与回转运动能相互转换的新型传动装置,在丝杠和螺母上都有半圆弧形的螺旋槽,当他们套装在一起时便形成了的螺旋滚道。螺母上有的回

11、路管道,将几圈螺旋滚道的两端连接起来构成封闭的螺旋滚道,并在滚道内装满,当丝杠旋转时,在滚道内既自转又沿滚道循环转动,因而迫使螺母轴向移动。丝杠螺母副具有以下特点:(1)传动效率高,摩擦损失小。丝杠螺母副的传动效率为0.92-0.96,比普通丝杠高3-4倍。因此,功率消耗只相当于普通丝杠的1/4-/3.(2)若给于适当预紧,可以消除丝杠和螺母之间的螺纹间隙,反向时还可以消除空载死区,从而使丝杠的定位精度高,刚度好。(3)运动平稳,无爬行现象,传动精度高。(4)具有可逆性,既可以从螺旋运动转换成直线运动,也可以从直线运动转换成旋转运动。也就是说,丝杠和螺母可以作为主动件。(5)磨损小,使用寿命长

12、。(6)制造工艺复杂。丝杠和螺母等元件的加工精度要求高,表面粗糙度也要求高,故制造成本高。(7)不能自锁。特别是垂直安装的丝杠,由于其自重和惯性力的不同,下降时当传动切断后,不能立即停止运动,故还需要增加制动装置。本次设计采用的是内循环的丝杠螺母副,精度为3级,两端采用了小圆螺母为轴向定位丝杠螺母副采用的预紧方式为单螺母消除间隙方法。它是在螺母体内的两列循环链之间,使内螺纹滚道在轴向产生一个的导程突变量,从而使两列在轴向错位而实现预紧。这种调隙方法结构简单,但载荷量须预先设定而且不能改变。丝杠中常用的滚动轴承有以下两种:滚针推力圆柱滚子组合轴承和接触角为60角接触轴承,在这两种轴承中,60角接

13、触轴承的摩擦力矩小于后者,而且可以根据需要进行组合,但刚度较后者低,目前在一般中小型数控机床中被广泛应用。滚针圆柱滚子轴承多用于重载和要求高刚度的地方。60角接触轴承的组合配置形式有面对面的组合、背靠背组合、同向组合、一对同向与左边一个面对面组合。由于螺母与丝杠的同轴度在制造安装的过程中难免有误差,又由于面对面组合方式,两接触线与轴线交点间的距离比背对背时小,实现自动调整较易。因此在进给传动中面对面组合用得较多。3.2齿轮传动副的设计本设计采用的是双片齿轮错齿调整法。两片齿轮周向可调弹簧错齿消除间隙结构。两个相同齿数的薄片齿轮与另一个宽齿轮啮合,两薄片齿轮可相对回转。在两个薄片齿轮的端面均匀分

14、布着四个螺孔,分别装上凸耳。通过螺母调节弹簧的拉力,调节完后用螺母锁紧。弹簧的拉力使薄片齿轮错位,从而消除了齿侧间隙。3.3齿轮箱的设计齿轮箱主要把齿轮装入,通过轴连接电动机和丝杠。主要结构是一个方形的箱,然后要加工出一些孔装轴、丝杠、端盖等等。在右侧内壁也要加工一个孔来支承轴承。同时还要通过两个凸耳用螺栓与导轨联接。3.4床身及导轨对于数控机床来说,作为主要支承件的床身至关重要,其结构性能的好坏直接影响着机床的各项性能指标。它支承着数控车床的床头箱,床鞍,刀架,尾座等部件,承受着切削力、重力、摩擦力等静态力和动态力的作用。其结构的合理性和性能的好坏直接影响着数控车床的制造成本;影响着车床各部

15、件之间的相对位置精度和车床在工作中各运动部件的相对运动轨迹的准确性,从而影响着工件的加工质量;还影响着车床所用刀具的耐用度,同时也影响着机床的工作效率和寿命等。因此,床身特别是数控车床的床身具有足够的静态刚度和较高的刚度/质量比;良好的动态性能;较小的热变形和内应力;并易于加工制造,装配等,才能满足数控车床对床身的要求。数控车床工作时,受切削力的作用,床身发生弯曲,其中,影响最大的是床身水平面内的弯曲。因此,在床身不太长的情况下,主要应提高床身在水平面内的弯曲刚度。所以,在设计床身时,采用与水平面倾斜45的斜面床身。这种结构的特点是:(1)在加工工件时,切屑和切削液可以从斜面的前方(即床身的一

16、侧)落下,就无需在床身上开排屑孔,这样,床身斜面就可以做成一个完整的斜面。(2)切屑从工件上落到位于床身前面的排屑器中,再由排屑器将切屑排出。这样,机床在工作中,排屑性能和散热性能要好,可以减少床身在工作中吸收由于切削产生的热量,从而减少床身的热变形,使机床更好地保持加工精度。(3)由于在床身上无需开排屑孔,就可以增加与底座连接的床身底面的整体性,从而可增加床身底面的刚性。基于以上特点使得床身抵抗来自切削力在水平和垂直面内的分力所产生的弯曲变形能力,以及它们的合力产生的扭转变形能力显著增强。从而大幅度提高了床身的抗弯和抗扭刚度。床身在弯曲、扭转载荷作用下,床身的变形与床身的截面的抗弯惯性矩和抗

17、扭惯性矩有关。材料、截面相同,但形状不同的床身,截面的惯性矩相差很大。截面积相同时,采用空形截面,加大外轮廓尺寸,在工艺允许的情况下,尽可能减小壁厚,可以大大提高截面的抗弯和抗扭刚度;矩形截面的抗弯刚度高于圆形截面,但圆形截面的抗扭刚度较高;封闭截面的刚度显著高于不封闭截面的刚度。为此,在设计床身截面时,综合考虑以上因素,在满足使用、工艺情况下,采用空心截面,加大轮廓,减小壁厚,采用全封闭的类似矩形的床身截面形式,同时,为了提高床身的抗扭刚度和床身的刚度重量比,在大截面内设计一个较小的类似圆形截面。床身与导轨为一体,床身材料的选择应根据导轨的要求选择。铸铁具有良好的减震性和耐磨性,易于铸造和加

18、工。床身材料采用机械性能优良的HT250,其硬度、强度较高,耐磨性较好,具有很好的减震性。车床的导轨可分为滑动导轨和滚动导轨两种。滑动导轨具有结构简单、制造方便、接触刚度大等优点。但传统滑动导轨摩擦阻力大且磨损快,动、静摩擦系数差别大,低速时易产生爬行现象。目前,数控车床已不采用传统滑动导轨,而是采用带有耐磨粘贴带覆盖层的滑动导轨和新型塑料滑动导轨。它们具有摩擦性能良好和使用寿命长等特点。在动导轨上镶装塑料具有摩擦系数低、耐磨性高、抗撕伤能力强、低速时不易爬行、加工性和化学稳定性好、工艺简单、成本低等优点,在各类机床上都有应用,特别是用在精密、数控和重型机床的动导轨上。塑料导轨可与淬硬的铸造铁

19、支承导轨和镶钢支承导轨组成对偶摩擦副。直线运动滑动导轨截面形状主要有三角形、矩形、燕尾形和圆形,并可互相组合。由于矩形导轨制造简单,刚度高,承载能力大,具有两个相垂直的导轨面。且两个导轨面的误差不会相互影响,便于安装。再将矩形整体倾斜45后,侧面磨损能自动补偿,克服了矩形导轨侧面磨损不能自动补偿的缺陷,使其导向性更好。本次设计我采用的是燕尾槽导轨。镶条是用来调整矩形导轨和燕尾导轨的侧隙,以保证导轨面的正常接触。镶条应放在导轨受力较小的一侧。压板用于调整辅助导轨面的间隙和承受颠覆力矩。如图5.5,是用磨或刮压板3的e面和d面来调整间隙。压板的d面和e面用空刀槽分开,间隙大磨刮d面,太紧时则修e面

20、。这种方式构造简单,应用较多,但调整时比较麻烦。3.5中间轴的设计中间轴上的齿轮是电机输出与丝杠的传力结构,它主要通过键连接齿轮2和齿轮3.所以要设计键槽,可设计一个键槽为两个齿轮传力。两边要留轴颈上轴承。丝杠两端有轴承端盖,它的作用是轴承外圈的轴向定位,和防尘和密封,除它本身可以防尘和密封外,它常和密封件配合以达到密封的作用。左侧端盖因为丝杠要通过所以设计了一个孔用毡垫来封油。右边可以设计成封闭式的端盖可以减小加工难度。总结与体会毕业设计是对我们大学期间所学知识的一次总结与运用,是对以前每门课程设计的综合,是对所学知识的彻底检验。刚开始选择课题的时候,我因为对数控车床比较感兴趣,所以选择了关

21、于数控车床方面的课题。我所在的组设计的是一台数控车床,我主要对其中的进给系统及纵向进给系统进行设计。开始设计之前,我首先上网搜索了有关车床方面的知识,对数控车床的发展现状和发展趋势有了进一步的了解,也让我学习到了很多新的知识。设计的时候,我们对学校的一些数控车床进行了观察,我主要观察了机床的进给系统结构,同时并结合自己的课题对机床的总体布局做了进一步的研究,并通过查阅资料和相关图册,设计出了满足数控车床需要的进给系统及纵向进给系统。毕业设计是我们走向工作岗位的最后一次练兵,是一次理论和实践完美结合的过程。在近三个月的毕业设计当中,使我更加认识到理论联系实际的重要性,只有理论而不去进行实践是不行

22、的。在设计过程中,我参考了一些图纸,在参考的基础上,理解并分析其优缺点,取长补短,对自己其中不合理的部分进行了充分改进。通过这次设计,自己在查阅资料、运用资料、中英文翻译、运用专业知识及CAD绘图等方面的能力有了较大地提高,对如何将机、电互相结合起来有了较深刻的认识,弥补了原来学习中的很多不足之处,为以后从事机械方面的工作打下了一定的基础,积累了一定的经验,对设计工作有了一定的认识。总之,这次设计顺利完成使我受益匪浅,不但巩固了我以前学习的东西,而且学到了很多新东西,为我走向社会打下了深厚的基础。同时也使我懂得了一个真正设计的步骤以及方法。目录摘要1、前言2、进给伺服系统概述3、横向进给系统的

23、计算3.1、设计方案的确定3.2、纵向进给系统的设计3.3、纵向进给系统的设计计算3.3(1)、切削力计算3.3(2)、进给工作台工作载荷计算3.3(3)、滚珠丝杠设计计算3.3(4)、齿轮及转矩的有关计算3.3(5)、步进电机的选择4、进给系统的结构设计4.1滚珠丝杠螺母副的设计4.2齿轮传动副的设计4.3齿轮箱的设计4.4床身及导轨4.5中间轴的设计4.6轴承端盖的设计总结与体会参考文献摘 要本设计是把普通数控车床改造成经济型数控车床。经济型数控车床就是指价格低廉、操作使用方便、比较适合我国国情的,动化的机床。采用数控机床,可以降低工人的劳动强度,节省劳动力(一个人可以看管多台机床),减少

24、工装,缩短新产品试制周期和生产周期,可对市场需求作出快速反应。在设计的时候具体进行了详细的各部件的选型和计算。比如:导轨的设计选型、滚珠丝杠螺母副的选型与计算。还进行了进给传动系统的刚度计算、进给传动系统的误差分析、驱动电机的选型计算、驱动电机与滚珠丝杠的联接、驱动电机与进给传动系统的动态特性分析等。【关键词】车床、数控、传动系统一、前言我国目前机床总量380余万台,而其中数控机床总数只有11.34万台,即我国机床数控化率不到3。近10年来,我国数控机床年产量约为0.60.8万台,年产值约为18亿元。机床的数控化率仅为6。这些机床中,役龄10年以上的占60以上;10年以下的机床中,自动/半自动

25、机床不到20,FMC/FMS等自动化生产线更屈指可数(美国和日本自动和半自动机床占60以上)。可见我们的大多数制造行业和企业的生产、加工装备绝大数是传统的机床,而且半数以上是役龄在10年以上的旧机床。用这种装备加工出来的产品国内、外市场上缺乏竞争力,直接影响一个企业的的生存和发展。所以必须大力提高机床的数控化率。 而相对于传统机床,数控机床有以下明显的优越性:1、可以加工出传统机床加工不出来的曲线、曲面等复杂的零件。 2、可以实现加工的柔性自动化,从而效率比传统机床提高37倍。 3、加工零件的精度高,尺寸分散度小,使装配容易,不再需要“修配”。 4、可实现多工序的集中,减少零件在机床间的频繁搬

26、运。 5、拥有自动报警、自动监控、自动补偿等多种自律功能,可实现长时间无人看管加工。 因此,采用数控机床,可以降低工人的劳动强度,节省劳动力(一个人可以看管多台机床),减少工装,缩短新产品试制周期和生产周期,可对市场需求作出快速反应。 此外,机床数控化还是推行FMC(柔性制造单元)、FMS(柔性制造系统)以及CIMS(计算机集成制造系统)等企业信息化改造的基础。数控技术已经成为制造业自动化的核心技术和基础技术。二、进给伺服系统概述数控机床伺服系统的一般结构如下图所示:由于各种数控机床所完成的加工任务不同,它们对进给伺服系统的要求也不尽相同,但通常可概括为以下几方面:可逆运行;速度范围宽;具有足

27、够的传动刚度和高的速度稳定性;快速响应并无超调;高精度;低速大转矩。伺服系统对伺服电机的要求:(1)从最低速到最高速电机都能平稳运转,转矩波动要小,尤其在低速如0.1r /min或更低速时,仍有平稳的速度而无爬行现象。(2)电机应具有大的较长时间的过载能力,以满足低速大转矩的要求。一般直流伺服电机要求在数分钟内过载4-6倍而不损坏。(3)为了满足快速响应的要求,电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压。电机应具有耐受4000rad/s2以上的角加速度的能力,才能保证电机可在0.2s以内从静止启动到额定转速。(4)电机应能随频繁启动、制动和反转。 进给伺服系统按其

28、控制方式不同可分为开环系统和闭环系统。闭环控制方式通常是具有位置反馈的伺服系统。根据位置检测装置所在位置的不同,闭环系统又分为半闭环系统和全闭环系统。半闭环系统具有将位置检测装置装在丝杠端头和装在电机轴端两种类型。前者把丝杠包括在位置环内,后者则完全置机械传动部件于位置环之外。全闭环系统的位置检测装置安装在工作台上,机械传动部件整个被包括在位置环之内。 开环系统的定位精度比闭环系统低,但它结构简单、工作可靠、造价低廉。由于影响定位精度的机械传动装置的磨损、惯性及间隙的存在,故开环系统的精度和快速性较差。 全闭环系统控制精度高、快速性能好,但由于机械传动部件在控制环内,所以系统的动态性能不仅取决

29、于驱动装置的结构和参数,而且还与机械传动部件的刚度、阻尼特性、惯性、间隙和磨损等因素有很大关系,故必须对机电部件的结构参数进行综合考虑才能满足系统的要求。因此全闭环系统对机床的要求比较高,且造价也较昂贵。闭环系统中采用的位置检测装置有:脉冲编码器、旋转变压器、感应同步器、磁尺、光栅尺和激光干涉仪等。 数控车床的进给伺服系统中常用的驱动装置是伺服电机。伺服电机有直流伺服电机和交流伺服电机之分。交流伺服电机由于具有可靠性高、基本上不需要维护和造价低等特点而被广泛采用。三、横向进给系统的设计与计算3.1、设计方案的确定利用微机对进给系统进行半闭环控制,脉冲当量为0.01mm/脉冲,驱动元件采用步进电

30、机,传动系统采用滚珠丝杠副。采用微机对数据进行计算处理,由I/O接口输出步进脉冲,经一级齿轮减速滚珠丝杠转动,从而实现横向进给运动。3.2、横向进给系统的设计采用半闭环机床进给系统,步进电机经一级减速齿轮传动副,滚珠丝杆拖动工作台。传感器与电机轴相联,用来检测电机转角和转速,并把它们转换为电信号反馈给数控装置,传感器采用脉冲编码器。3.3、横向进给系统的设计计算工作台重量: W=889.2Kgf=8892N时间常数: T=25 ms滚珠丝杠基本导程: Lo=6mm行程: S=375mm步距角: /step快速进给速度: (1)切削力计算 由机床设计手册可知,切削功率式中:N-电机功率,查机床说

31、明书,N=7.5 KW;-主传动系统总效率,一般为0.70.85取=0.7;K-进给系统功率系数,取为K=0.96。则有: Nc=7.50.70.96=5.04 kw切向铣削力: F=10 N式中: V-主轴传递全部功率时的最底切削速度(m/s)则有: V=D95/60000=1.7m/s=102m/min F=2964(N)(2)进给工作台工作载荷计算:从数控铣床中表2-1可得知,在一般立式铣削时,工作台横向进给方向载荷: F=0.4Fz=0.42964=1185 N(3)滚珠丝杠设计计算:由数控技术可知,采用燕尾导轨,导轨铣床丝杠的轴向力:采用矩型导轨:式中K=1.1 =0.15则有:1)

32、强度计算:寿命值: 式中:n-为丝杆转速(r/min)v-为最大切削力下的进给速度(m/min),取最高进给速度的1/3T-额定寿命,查表得 T=15000h -滚珠丝杆导程,取=6mm则有:v=r/minL最大动负载C :C查表得:运转状态系数 根据最大动负荷C的值,可选则滚珠丝杠的型号。查表2-5得,选取滚珠丝杠直径为50mm,型号为ND5006,其额定载荷为29350N,所以强度足够。2) 效率计算:根据机械原理的公式,丝杠螺母副的传动效率为:式中:-为丝杆螺旋升角,查得:-为摩擦角,滚珠丝杆副的滚动摩擦系数f=0.0030.004,其摩擦角约等于 则有: 3) 刚度验算:滚珠丝杠受工作

33、负载F引起的导程的变化量,丝杆的拉压变形量式中:mm=0.6cm; E-为材料弹性模量,对钢A-为滚珠丝杠截面积 则有: 滚珠与螺纹滚道间的接触变形量 ,有预紧:式中:-为滚珠直径,查表得=3.969mmZ圈数列数2513=75-为预紧力则有:则丝杆的总变形量 :查表知E级精度丝杠允许的螺距误差(1m长)为15um/m 故刚度足够。4)稳定性验算失稳时的临界载荷式中:E-为丝杆材料弹性模量,对钢I-为截面惯性矩,对丝杆圆截面-为丝杆底径,=48mm则有: L-为丝杆最大工作长度,取L=375mm -为丝杆支承方式系数,参考图2-13和表2-7,取=2.0则有:稳定安全系数:所选丝杆稳定安全系数

34、,查表得:则有 ,故稳定性不存在问题。(4)齿轮及转矩的有关计算1)有关齿轮计算传动比故取 m=2 mmB=20 mm 则有 2)转动惯量计算:工作台质量折算到电机轴上的转动惯量丝杠的转动惯量齿轮的转动惯量电动机转动惯量很少,可以忽略因此,总的转动惯量 所需转动力矩计算快速空载启动时所需力矩 式中 -空载启动时折算到电机轴上的加速度力矩; -折算到电机轴上的摩擦力矩; -由于丝杠预金所引起,折算到电机轴上的附加摩擦力矩;式中:-为传动系统各部件惯量折算到电机轴上的总等效转动惯量( -为电机最大角加速度() -为运动部件最大快进速度对应的电机最大转速() t-为运动部件从静止启动加速到最大快进进

35、给速度所需时间(s),取t=0.025s则有: 空载摩擦力矩:式中: G-运动部件总重力(N) -为导轨摩擦系数,取0.2 i-齿轮传动降速比,i=1.25 -传动系统总效率,取=0.8 -基本导程,取=0.6cm则有:附加摩擦力矩:式中: -为滚珠丝杆预加载荷,取的1/3 -为滚珠丝杆预紧是的传动效率,取=0.9则有:(5) 步进电机的选择步进电机的名义启动转矩为满足最小步距要求,电机选用五相十拍工作方式,查表知所以,步进电机最大静转矩:步进电机最高工作频率:综合考虑,查表选用 130BF001 型直流步进电机,能满足使用要求。四、进给系统的结构设计4.1滚珠丝杠螺母副的设计滚珠丝杠螺母副是

36、直线运动与回转运动能相互转换的新型传动装置,在丝杠和螺母上都有半圆弧形的螺旋槽,当他们套装在一起时便形成了滚珠的螺旋滚道。螺母上有滚珠的回路管道,将几圈螺旋滚道的两端连接起来构成封闭的螺旋滚道,并在滚道内装满滚珠,当丝杠旋转时,滚珠在滚道内既自转又沿滚道循环转动,因而迫使螺母轴向移动。滚珠丝杠螺母副具有以下特点:(1)传动效率高,摩擦损失小。滚珠丝杠螺母副的传动效率为0.92-0.96,比普通丝杠高3-4倍。因此,功率消耗只相当于普通丝杠的1/4-/3.(2)若给于适当预紧,可以消除丝杠和螺母之间的螺纹间隙,反向时还可以消除空载死区,从而使丝杠的定位精度高,刚度好。(3)运动平稳,无爬行现象,

37、传动精度高。(4)具有可逆性,既可以从螺旋运动转换成直线运动,也可以从直线运动转换成旋转运动。也就是说,丝杠和螺母可以作为主动件。(5)磨损小,使用寿命长。(6)制造工艺复杂。滚珠丝杠和螺母等元件的加工精度要求高,表面粗糙度也要求高,故制造成本高。(7)不能自锁。特别是垂直安装的丝杠,由于其自重和惯性力的不同,下降时当传动切断后,不能立即停止运动,故还需要增加制动装置。本次设计采用的是内循环的丝杠螺母副,精度为3级,两端采用了小圆螺母为轴向定位丝杠螺母副采用的预紧方式为单螺母消除间隙方法。它是在滚珠螺母体内的两列循环滚珠链之间,使内螺纹滚道在轴向产生一个的导程突变量,从而使两列滚珠在轴向错位而

38、实现预紧。这种调隙方法结构简单,但载荷量须预先设定而且不能改变。丝杠中常用的滚动轴承有以下两种:滚针推力圆柱滚子组合轴承和接触角为60角接触轴承,在这两种轴承中,60角接触轴承的摩擦力矩小于后者,而且可以根据需要进行组合,但刚度较后者低,目前在一般中小型数控机床中被广泛应用。滚针圆柱滚子轴承多用于重载和要求高刚度的地方。60角接触轴承的组合配置形式有面对面的组合、背靠背组合、同向组合、一对同向与左边一个面对面组合。由于螺母与丝杠的同轴度在制造安装的过程中难免有误差,又由于面对面组合方式,两接触线与轴线交点间的距离比背对背时小,实现自动调整较易。因此在进给传动中面对面组合用得较多。下图为滚珠丝杠

39、螺母及其支承结构图。4.2齿轮传动副的设计本设计采用的是双片齿轮错齿调整法。两片齿轮周向可调弹簧错齿消除间隙结构。两个相同齿数的薄片齿轮与另一个宽齿轮啮合,两薄片齿轮可相对回转。在两个薄片齿轮的端面均匀分布着四个螺孔,分别装上凸耳。通过螺母调节弹簧的拉力,调节完后用螺母锁紧。弹簧的拉力使薄片齿轮错位,从而消除了齿侧间隙。齿轮传动副的零件图见下图:4.3齿轮箱的设计齿轮箱主要把齿轮装入,通过轴连接电动机和丝杠。主要结构是一个方形的箱,然后要加工出一些孔装轴、丝杠、端盖等等。在右侧内壁也要加工一个孔来支承轴承。同时还要通过两个凸耳用螺栓与导轨联接。齿轮箱结构如下图: 4.4床身及导轨对于数控机床来

40、说,作为主要支承件的床身至关重要,其结构性能的好坏直接影响着机床的各项性能指标。它支承着数控车床的床头箱,床鞍,刀架,尾座等部件,承受着切削力、重力、摩擦力等静态力和动态力的作用。其结构的合理性和性能的好坏直接影响着数控车床的制造成本;影响着车床各部件之间的相对位置精度和车床在工作中各运动部件的相对运动轨迹的准确性,从而影响着工件的加工质量;还影响着车床所用刀具的耐用度,同时也影响着机床的工作效率和寿命等。因此,床身特别是数控车床的床身具有足够的静态刚度和较高的刚度/质量比;良好的动态性能;较小的热变形和内应力;并易于加工制造,装配等,才能满足数控车床对床身的要求。数控车床工作时,受切削力的作

41、用,床身发生弯曲,其中,影响最大的是床身水平面内的弯曲。因此,在床身不太长的情况下,主要应提高床身在水平面内的弯曲刚度。所以,在设计床身时,采用与水平面倾斜45的斜面床身。这种结构的特点是:(1)在加工工件时,切屑和切削液可以从斜面的前方(即床身的一侧)落下,就无需在床身上开排屑孔,这样,床身斜面就可以做成一个完整的斜面。(2)切屑从工件上落到位于床身前面的排屑器中,再由排屑器将切屑排出。这样,机床在工作中,排屑性能和散热性能要好,可以减少床身在工作中吸收由于切削产生的热量,从而减少床身的热变形,使机床更好地保持加工精度。(3)由于在床身上无需开排屑孔,就可以增加与底座连接的床身底面的整体性,

42、从而可增加床身底面的刚性。基于以上特点使得床身抵抗来自切削力在水平和垂直面内的分力所产生的弯曲变形能力,以及它们的合力产生的扭转变形能力显著增强。从而大幅度提高了床身的抗弯和抗扭刚度。床身在弯曲、扭转载荷作用下,床身的变形与床身的截面的抗弯惯性矩和抗扭惯性矩有关。材料、截面相同,但形状不同的床身,截面的惯性矩相差很大。截面积相同时,采用空形截面,加大外轮廓尺寸,在工艺允许的情况下,尽可能减小壁厚,可以大大提高截面的抗弯和抗扭刚度;矩形截面的抗弯刚度高于圆形截面,但圆形截面的抗扭刚度较高;封闭截面的刚度显著高于不封闭截面的刚度。为此,在设计床身截面时,综合考虑以上因素,在满足使用、工艺情况下,采用空心截面,加大轮廓,减小壁厚,采用全封闭的类

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 社会民生


经营许可证编号:宁ICP备18001539号-1