注塑机液压系统设计.doc

上传人:土8路 文档编号:10227219 上传时间:2021-05-01 格式:DOC 页数:22 大小:745KB
返回 下载 相关 举报
注塑机液压系统设计.doc_第1页
第1页 / 共22页
注塑机液压系统设计.doc_第2页
第2页 / 共22页
注塑机液压系统设计.doc_第3页
第3页 / 共22页
注塑机液压系统设计.doc_第4页
第4页 / 共22页
注塑机液压系统设计.doc_第5页
第5页 / 共22页
点击查看更多>>
资源描述

《注塑机液压系统设计.doc》由会员分享,可在线阅读,更多相关《注塑机液压系统设计.doc(22页珍藏版)》请在三一文库上搜索。

1、 机电课程设计题 目: 注塑机液压系统设计 学院: 机械工程学院 专业: 机械设计制造及其自动化班级: 学号: 学生姓名: 导师姓名: 完成日期: 课程设计任务书设计题目: 注塑机液压系统设计 姓名 系别 机械工程 专业 机械设计及其自动化 班级 学号 指导老师 教研室主任 一、设计要求及任务 1设计要求(1)公称注射量:250 cm3;螺杆直径: d=40mm;螺杆行程:s1=200mm;最大注射压力p=153MPa;注射速度:vw=0.07m/s;螺杆转速:n=60r/min;螺杆驱动功率:Pm=5kW;注射座最大推力:Fz27 (kN);注射座行程:s2=230(mm); 注射座前进速度

2、:vz1=0.06m/s;注射座后退速度:vz2=0.08m/s;最大合模力(锁模力)Fh=900 (kN); 开模力:Fk=49 (kN); 动模板(合模缸)最大行程:s3=350 (mm);快速合模速度:vhG = 0.1m/s;慢速合模速度:vhG =0.02m/s;快速开模速度:vhG =0.13m/s;慢速开模速度:vhG =0.03m/s;(2)注塑机工作参数设计计算;(3)液压系统原理方案设计;液压系统设计计算及元件选择; (4)注塑机及液压系统总图设计。2设计任务(1)绘制注塑机合模缸、注塑装置和液压系统油箱的装配图;(2)绘制液压系统原理图;(3)系统零部件的计算与选型;(4

3、)按照要求编写设计说明书和打印图纸。二、进度安排及完成时间1设计时间:两周,2012年6月 25日至2012年7月6日。2进度安排第19周:布置设计任务,查阅资料,熟悉设计要求及任务,进行系统设计。第20周:整理资料,撰写设计说明书,答辩,交设计作业。(印稿及电子文档)。目 录摘要第1章 绪论 41.1 注塑机概述 41.2 注塑机的工作循环过程 41.3 注塑机对液压系统的要求 4 1.4 液压系统设计参数41.5 注塑机液压系统原理图5第2章 计算执行元件的主要结构参数72.1 各液压缸的载荷力计算72.2 液压系统主要参数计算82.3 制定系统方案和拟定液压系统图10第3章 液压元件的选

4、择 133.1 液压泵的选择133.2 液压阀的选择143.3 液压马达的选择143.4 确定油箱的有效容积15第4章 液压系统性能验算 164.1 验算回路中的压力损失174.2 系统总输出功率184.3 冷却器所需冷却面积的计算18 心得体会19参考文献20 注塑机液压系统摘要:注塑机是一种通用设备,通过它与不同专用注塑模具配套使用,能够生产出多种类型的注塑制品。注塑机主要由机架,动静模板,合模保压部件,预塑、注射部件,液压系统,电气控制系统等部件组成;注塑机的动模板和静模板用来成对安装不同类型的专用注塑模具。合模保压部件有两种结构形式,一种是用液压缸直接推动动模板工作,另一种是用液压缸推

5、动机械机构通过机械机构再驱动动模板工作(机液联合式)。注塑机工作时,按照其注塑工艺要求,要完成对塑料原料的预塑、合模、注射机筒快速移动、熔融塑料注射、保压冷却、开模、顶出成品等一系列动作,因此其工作过程中运动复杂、动作多变、系统压力变化大。关键词:注塑机;通用设备;专用注塑模具。 I第1章 绪论1.1注塑机概述大型塑料注射机目前都是全液压控制。其基本工作原理是:粒状塑料通过料斗进入螺旋推进器中,螺杆转动,将料向前推进,同时,因螺杆外装有电加热器,而将料熔化成粘液状态,在此之前,合模机构已将模具闭合,当物料在螺旋推进器前端形成一定压力时,注射机构开始将液状料高压快速注射到模具型腔之中,经一定时间

6、的保压冷却后,开模将成型的塑科制品顶出,便完成了一个动作循环。1.2注塑机的工作循环过程合模注射保压冷却开模顶出螺杆预塑进料其中合模的动作又分为:快速合模、慢速合模、锁模。锁模的时间较长,直到开模前这段时间都是锁模阶段。1.3注塑机对液压系统的要求是1)具有足够的合模力 2)模具的开、合模速度可调 3)注射座整体进退 4)注射压力和注射速度可调 5)保压及压力可调 6)制品顶出速度要平稳顶出速度平稳,以保证成品制品不受损坏。1.4 液压系统设计参数表1.1 液压系统设计参数公称注射量:250 cm3螺杆直径: d=40mm螺杆行程:s1=200mm最大注射压力p=153MPa注射速度:vw=0

7、.07m/s螺杆转速:n=60r/min螺杆驱动功率:Pm=5kW注射座最大推力:Fz27 (kN)注射座行程:s2=230(mm)注射座前进速度:vz1=0.06m/s注射座后退速度:vz2=0.08m/s最大合模力(锁模力)Fh=900 (kN)开模力:Fk=49 (kN)动模板最大行程:s3=350 (mm)快速合模速度:vhG = 0.1m/s慢速合模速度:vhG =0.02m/s快速开模速度:vhG =0.13m/s慢速开模速度:vhG =0.03m/s11YA21推料缸6注塑机液压系统原理图A-大流量液压泵 E-小流量液压泵 1、2-电液换向阀 3-电磁换向阀 4、5-电液换向阀6

8、、21-电磁换向阀 7、8、9-溢流阀 10、11、12-单向阀 13-液控单向阀 14-节流阀15、16-调速阀 17、18-单向顺序阀 19-行程阀 20-液压马达XXXXAB10YA9YA8YA7YA6YA5YA4YA3YA2YA1YA齿轮料斗料筒喷嘴注射座移动缸合模缸增力缸201918171615141312111098754321 表1.5 注塑机液压系统原理图电磁铁动作表动作程序1YA2YA3YA4YA5YA6YA7YA8YA9YA10YA11YA合模启动慢移快速合模增压锁模注射座整体快移注射注射保压减压排气再增压预塑进料注射座后移开模慢速开模快速开模推料顶出缸伸出顶出缸缩回系统卸

9、荷 注:“”表示电磁铁通电;“”表示电磁铁断电。 第2章 负载分析2.1各液压缸的载荷力计算2.1.1合模缸的载荷力合模缸在模具闭合过程中是轻载,其外载荷主要是动模及其连动部件的起动惯性力和导轨的摩擦力。 锁模时,动模停止运动,其外载荷就是给定的锁模力。 开模时,液压缸除要克服给定的开模力外,还克服运动部件的摩擦阻力。2.1.2注射座移动缸的载荷力座移缸在推进和退回注射座的过程中,同样要克服摩擦阻力和惯性力,只有当喷嘴接触模具时,才须满足注射座最大推力。2.1.3注射缸注射阶段负载注射缸的载荷力在整个注射过程中是变化的,计算时,只须求出最大载荷力。 式中,d螺杆直径,由给定参数知:d0.04m

10、;p喷嘴处最大注射压力,已知p153MPa。由此求得Fw192kN。各液压缸的外载荷力计算结果列于表l。取液压缸的机械效率为=0.9,求得相应的作用于活塞上的载荷力,并列于表1中。F=Fw/=213.表2-1 各液压缸的载荷力液压缸名称工况液压缸外载荷/kN活塞上的载荷力合模缸合模90100锁模9001000开模4955座移缸移动2.73预紧2730注射缸注射1922132.1.4 进料液压马达载荷转矩计算 取液压马达的机械效率为0.95,则其载荷转矩 2.2液压系统主要参数计算2.2.1初选系统工作压力 塑料注射机属小型液压机,载荷最大时为锁模工况,此时,高压油用增压缸提供;其他工况时,载荷

11、都不太高,参考设计手册,初步确定系统工作压力为6.5MPa。2.2.2计算液压缸的主要结构尺寸2.2.2.1确定合模缸的活塞及活塞杆直径合模缸最大载荷时,为锁模工况,其载荷力为1000kN,工作在活塞杆受压状态。活塞直径 此时p1是由增压缸提供的增压后的进油压力,初定增压比为5,则p156.5MPa32.5MPa,锁模工况时,回油流量极小,故p20,求得合模缸的活塞直径为 取Dh0.2m。 按表25取d/D0.7,则活塞杆直径dh0.70.2m0.14m,取dh0.15m。 为设计简单加工方便,将增压缸的缸体与合模缸体做成一体(见图1),增压缸的活塞直径也为0.2m。其活塞杆直径按增压比为5,

12、求得 ,取dz0.09m。2.2.2.2注射座移动缸的活塞和活塞杆直径座移动缸最大载荷为其顶紧之时,此时缸的回油流量虽经节流阀,但流量极小,故背压视为零,则其活塞直径为,取Dy0.1m 由给定的设计参数知,注射座往复速比为0.080.061.33,查表26得d/D0.5,则活塞杆直径为: dy0.50.1m0.05m2.2.2.3确定注射缸的活塞及活塞杆直径当液态塑料充满模具型腔时,注射缸的载荷达到最大值213kN,此时注射缸活塞移动速度也近似等于零,回油量极小;故背压力可以忽略不计,这样,取Ds0.22m;活塞杆的直径一般与螺杆外径相同,取ds0.04m。2.2.3计算液压马达的排量液压马达

13、是单向旋转的,其回油直接回油箱,视其出口压力为零,机械效率为0.95,这样 2.2.4计算注射缸在注射阶段的流量A1=/2 *(Dy/2)-( dy /2)=0.038m2Q=A1 *v=2.72.2.5计算液压执行元件实际工作压力2.2.5.1计算注射缸在注射阶段的压力P1=F+P2A2/A1=5.9Mpa.P1=2 T/q=0.3 Mpa.按最后确定的液压缸的结构尺寸和液压马达排量,计算出各工况时液压执行元件实际工作压力,见表2。表2 液压缸的结构尺寸和液压马达排量表2-2 液压执行元件实际工作压力工况执行元件名称载荷背压力工作压力计算公式合模行程合模缸1000.33.3锁模增压缸1000

14、6.4座前进座移缸30.50.76座顶紧303.8注射注射缸2130.35.9预塑进料液压马达8386.02.2.6计算液压执行元件实际所需流量根据最后确定的液压缸的结构尺寸或液压马达的排量及其运动速度或转速,计算出各液压执行元件实际所需流量,见表3。表3 液压缸的结构尺寸或液压马达的排量及其运动速度或转速工况执行元件名称运动速度结构参数流量/()计算公式慢速合模合模缸0.020.6快速合模0.13座前进座移缸0.060.48座后退0.080.48注射注射缸0.072.7预塑进料液压马达0.87慢速开模合模缸0.030.42快速开模0.131.82.3制定系统方案和拟定液压系统图2.3.1制定

15、系统方案执行机构的确定 本机动作机构除螺杆是单向旋转外,其他机构均为直线往复运动。各直线运动机构均采用单活塞杆双作用液压缸直接驱动,螺杆则用液压马达驱动。从给定的设计参数可知,锁模时所需的力最大,为900kN。为此设置增压液压缸,得到锁模时的局部高压来保证锁模力。合模缸动作回路 合模缸要求其实现快速、慢速、锁模,开模动作。其运动方向由电液换向阀直接控制。快速运动时,需要有较大流量供给。慢速合模只要有小流量供给即可。锁模时,由增压缸供油。液压马达动作回路 螺杆不要求反转,所以液压马达单向旋转即可,由于其转速要求较高,而对速度平稳性无过高要求,故采用旁路节流调速方式。注射缸动作回路 注射缸运动速度

16、也较快,平稳性要求不高,故也采用旁路节流调速方式。由于预塑时有背压要求,在无杆腔出口处串联背压阀。注射座移动缸动作回路 注射座移动缸,采用回油节流调速回路。工艺要求其不工作时,处于浮动状态,故采用Y型中位机能的电磁换向阀。安全联锁措施本系统为保证安全生产,设置了安全门,在安全门下端装一个行程阀,用来控制合模缸的动作。将行程阀串在控制合模缸换向的液动阀控制油路上,安全门没有关闭时,行程阀没被压下,液动换向阀不能进控制油,电液换向阀不能换向,合模缸也不能合模。只有操作者离开,将安全门关闭,压下行程阀,合模缸才能合模,从而保障了人身安全。液压源的选择该液压系统在整个工作循环中需油量变化较大,另外,闭

17、模和注射后又要求有较长时间的保压,所以选用双泵供油系统。液压缸快速动作时,双泵同时供油,慢速动作或保压时由小泵单独供油,这样可减少功率损失,提高系统效率。2.3.2拟定液压系统图液压执行元件以及各基本回路确定之后,把它们有机地组合在一起。去掉重复多余的元件,把控制液压马达的换向阀与泵的卸荷阀合并,使之一阀两用。考虑注射缸同合模缸之间有顺序动作的要求,两回路接合部串联单向顺序阀。再加上其他一些辅助元件便构成了250克塑料注射机完整的液压系统图,其动作循环表,见表4。表4 动作循环表电磁铁动作1YA2 YA3 YA4 YA5 YA6 YA7 YA8 YA9 YA10 YA快速合模慢速合模增压锁模注

18、射座前进注射注射保压减压(放气)再增压预塑进料注射座后退慢速开模快速开模系统卸荷第3章 液压元件的选择3.1液压泵的选择3.1.1液压泵工作压力的确定 pPplppl是液压执行元件的最高工作压力,对于本系统,最高压力是增压缸锁模时的入口压力,pl6.4MPa;p是泵到执行元件间总的管路损失。由系统图可见,从泵到增压缸之间串接有一个单向阀和一个换向阀,取p0.5MPa。液压泵工作压力为 pP(6.40.5)MPa6.9MPa3.1.2液压泵流量的确定 qPK(qmax)由工况图看出,系统最大流量发生在快速合模工况,qmax3L/s。取泄漏系数K为1.2,求得液压泵流量 qP3.6L/s (216

19、L/min)选用YYB-BCl71/48B型双联叶片泵,当压力为7 MPa时,大泵流量为157.3L/min,小泵流量为44.1L/min。3.1.3电动机功率的确定注射机在整个动作循环中,系统的压力和流量都是变化的,所需功率变化较大,为满足整个工作循环的需要,按较大功率段来确定电动机功率。 从工况图看出,快速注射工况系统的压力和流量均较大。此时,大小泵同时参加工作,小泵排油除保证锁模压力外,还通过顺序阀将压力油供给注射缸,大小泵出油汇合推动注射缸前进。 前面的计算已知,小泵供油压力为pP16.9MPa,考虑大泵到注射缸之间的管路损失,大泵供油压力应为pP2(5.90.5)MPa6.4MPa,

20、取泵的总效率P0.8,泵的总驱动功率为 27.313 kW 考虑到注射时间较短,不过3s,而电动机一般允许短时间超载25%,这样电动机功率还可降低一些。P27.313100/12521.85 kW验算其他工况时,液压泵的驱动功率均小于或近于此值。查产品样本,选用22kW的电动机。3.2液压阀的选择选择液压阀主要根据阀的工作压力和通过阀的流量。本系统工作压力在7MPa左右,所以液压阀都选用中、高压阀。所选阀的规格型号见表5。表2-5 250克塑料注射机液压阀名细表序号名称实际流量选用规格1三位四通电液换向阀2.6234DYM-B32H-T2三位四通电液换向阀3.3634DYY-B32H-T 3三

21、位四通电液换向阀0.5034DY-B10H-T4三位四通电液换向阀3.3634DYO-B32H-T5二位四通电液换向阀0.7424DYO-B32H-T6二位四通电液换向阀0.5024DO-H10H-T7溢流阀0.74YF-B20C8溢流阀2.62YF-B20C9溢流阀2.62YF-B20C10单向阀0.74DF-B20K11液控单向阀3.36AY-H32B12单向阀0.50DF-B10K13单向阀2.62DF-B32K14节流阀0.65LF-B10C15调速阀0.70QF-B10C16调速阀1.70QF-B20C17单向顺序阀0.74XDIF-B20F18单向顺序阀2.70XDIF-B32F1

22、9行程滑阀0.5024C-10B3.3液压马达的选择 在3.3节已求得液压马达的排量为0.8Lr,正常工作时,输出转矩769N.m,系统工作压力为7MPa。选SZM0.9双斜盘轴向柱塞式液压马达。其理论排量为0.873L/r,额定压力为20 MPa,额定转速为8l00r/min,最高转矩为3057Nm,机械效率大于0.90。 3.4确定油箱的有效容积按下式来初步确定油箱的有效容积 VaqV已知所选泵的总流量为201.4L/min,这样,液压泵每分钟排出压力油的体积为0.2m3。参照表43取a5,算得有效容积为 V50.2m31 m3表2-6主要管路内径管路名称通过流量允许流速管路内径实际取值大

23、泵吸油管2.620.850.0630.065小泵吸油管0.73510.0310.032大泵排油管2.624.50.0270.032小泵排油管0.7354.50.0140.015双泵并联后管路3.364.50.0310.032注射缸进油管路2.664.50.0280.032第4章 液压系统性能验算4.1验算回路中的压力损失 本系统较为复杂,有多个液压执行元件动作回路,其中环节较多,管路损失较大的要算注射缸动作回路,故主要验算由泵到注射缸这段管路的损失。4.1.1沿程压力损失沿程压力损失,主要是注射缸快速注射时进油管路的压力损失。此管路长 5m,管内径0.032m,快速时通过流量2.7L/s;选用

24、20号机械系统损耗油,正常运转后油的运动粘度27mm2/s,油的密度918kg/m3。油在管路中的实际流速为 油在管路中呈紊流流动状态,其沿程阻力系数为: 求得沿程压力损失为: 4.1.2局部压力损失 局部压力损失包括通过管路中折管和管接头等处的管路局部压力损失p2,以及通过控制阀的局部压力损失p3。其中管路局部压力损失相对来说小得多,故主要计算通过控制阀的局部压力损失。 参看图2,从小泵出口到注射缸进油口,要经过顺序阀17,电液换向阀2及单向顺序阀18。 单向顺序伺17的额定流量为50L/min,额定压力损失为0.4MPa。电液换向阀2的额定流量为190L/min,额定压力损失0.3 MPa

25、。单向顺序阀18的额定流量为150L/min,额定压力损失0.2 MPa。通过各阀的局部压力损失之和为 从大泵出油口到注射缸进油口要经过单向阀13,电液换向阀2和单向顺序阀18。单向阀13的额定流量为250L/min,额定压力损失为0.2 MPa。通过各阀的局部压力损失之和为: 由以上计算结果可求得快速注射时,小泵到注射缸之间总的压力损失为 p1(0.030.88)MPa0.91MPa 大泵到注射缸之间总的压力损失为 p 2(0.030.65)MPa0.68MPa由计算结果看,大小泵的实际出口压力距泵的额定压力还有一定的压力裕度,所选泵是适合的。 另外要说明的一点是:在整个注射过程中,注射压力

26、是不断变化的,注射缸的进口压力也随之由小到大变化,当注射压力达到最大时,注射缸活塞的运动速度也将近似等于零,此时管路的压力损失随流量的减小而减少。泵的实际出口压力要比以上计算值小一些。 综合考虑各工况的需要,确定系统的最高工作压力为6.8MPa,也就是溢流阀7的调定压力。 4.2系统总输出功率4.2.1求系统的输出有效功率: 由前面给定参数及计算结果可知:合模缸的外载荷为90kN,行程0.35m;注射缸的外载荷为192kN,行程0.2m;预塑螺杆有效功率5kW,工作时间15s;开模时外载荷近同合模,行程也相同。注射机输出有效功率主要是以上这些。 总的发热功率为: Phr(15.33)kW12.

27、3kW4.2.2计算散热功率 前面初步求得油箱的有效容积为1m3,按V0.8abh求得油箱各边之积: abh1/0.8m31.25m3 取a为1.25m,b、h分别为1m。求得油箱散热面积为: At1.8h(ab)1.5ab (1.8l(1.251) 1.51.25)m2 5.9m2 油箱的散热功率为: PhcK1AtT式中 K1油箱散热系数,查表51,K1取16W/(m2); T油温与环境温度之差,取T35。 Phc165.935kW3.3kWPhr12.3kW由此可见,油箱的散热远远满足不了系统散热的要求,管路散热是极小的,需要另设冷却器。4.3冷却器所需冷却面积的计算 冷却面积为: 式中

28、 K传热系数,用管式冷却器时,取K116W(m2); tm平均温升();取油进入冷却器的温度T160,油流出冷却器的温度T250,冷却水入口温度tl25,冷却水出口温度t230。则: 所需冷却器的散热面积为: 考虑到冷却器长期使用时,设备腐蚀和油垢、水垢对传热的影响,冷却面积应比计算值大30,实际选用冷却器散热面积为:A1.32.8m23.6m2 心得体会通过此次课程设计,使我更加扎实的掌握了液压系统原理、液压元件、液压缸结构、液压系统设计方面的知识,在设计过程中虽然遇到了一些问题,但是通过同学们之间互相讨论,终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。实践出真知,通过亲自动手制作,使我们掌握的知识不再是纸上谈兵。在今后社会的发展和学习实践过程中,一定要不懈努力,不能遇到问题就想到要退缩,一定要不厌其烦的发现问题所在,然后一一进行解决,只有这样,才能成功的做成想做的事。 参考文献1 胡竟湘.液压与气压传动.大连理工大学出版社,2009.102 王昆.机械设计课程设计.高等教育出版社,1995 .93 徐灏.机械设计手册.机械工业出版社,1988.114 杨培元,朱福元.液压系统设计简明手册.机械工业出版社,1995.5

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 社会民生


经营许可证编号:宁ICP备18001539号-1