IGBT串联用的有源电压控制技术.doc

上传人:scccc 文档编号:11254197 上传时间:2021-07-18 格式:DOC 页数:15 大小:442.50KB
返回 下载 相关 举报
IGBT串联用的有源电压控制技术.doc_第1页
第1页 / 共15页
IGBT串联用的有源电压控制技术.doc_第2页
第2页 / 共15页
IGBT串联用的有源电压控制技术.doc_第3页
第3页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《IGBT串联用的有源电压控制技术.doc》由会员分享,可在线阅读,更多相关《IGBT串联用的有源电压控制技术.doc(15页珍藏版)》请在三一文库上搜索。

1、GBT 串联用的有源电压控制技术ctive Voltage Control Technologies for IGBT Series Connection和巍巍 1, 张学强 1, Patrick R. Palmer 1, 汪之涵 21. 英国剑桥大学工程系 ; 2. 深圳青铜剑电力电子科技有限公司1 1 1 2He Weiwei , Zhang Xueqiang , Patrick R. Palmer , Wang Zhihan1 Engineering Department, Cambridge University2 Shenzhen Bronze Technologies Ltd.摘要

2、:IGBT有源电压控制技术(Active Voltage Control,简称AVC),是在IGBT控制过程中引入多 重闭环反馈,使IGBT开通和关断过程中集电极-发射极电压Vce的轨迹始终跟随预先设定的参考信 号,实现高压应用时 IGBT 器件直接串联的同步工作和有效均压。本文介绍了有源电压控制技术的 基本概念,串联IGBT的实验波形和相应的损耗计算。关键词 : IGBT 串联 驱动 均压 有源电压控制 Active Voltage ControlAbstract: The so-called IGBT AVC technology is something that during the

3、IGBT control process, various layers of closed loop reaction is introduced to ensure that the pathway of collector-emitter voltage VCE during the process of On-Off of the IGBT follows the predefined referential signal, to realize synchronous function and effective voltage-sharing when IGBT component

4、s are connected in series with the high-voltage application. The article introduces basic concepts of AVC, experimental wave of IGBT connected in series and related loss calculation.Keywords: IGBT, Connection in series, Drive, V oltage sharing, Active voltage control1引言缘栅双极晶体管IGBT自上世纪80年代问世以来,由于其输入阻

5、抗高、开关速度快、通态电压低、 阻断电压高、承受电流大的性能,在电力电子领域中得到了广泛的应用。然而,由于半导体器件本身的材料和结构原因,IGBT目前的电压等级最高是 6.5kV,无法达到电力系统中很多场合的电 压等级(如10kV、35kV的电压等级),限制了 IGBT在高压领域的应用。IGBT串联技术有两个用IGBT器件直接串联进而实现电压等级的提升具有巨大的吸引力。然而,难点必须要克服: 第一是要保证控制信号的同步, 并且必须在关断后, 各个信号之间的延迟在一个可以接受的范围内; 第二是要保证在开通和关断过程中,电压被平均的分配在各个器件上,各个器件上的电压差别必须在一个合理的范围之内,否

6、则会造成某些器件被击穿或者过早老化。1列举了几种具有代表性的IGBT串联方案,并根据其采用的方法进行了分类。源缓冲电路,一般是在IGBT器件的C E两端并联缓冲电路1, 2。缓冲电路包括 RC型、RCD型等。无源缓冲电路可以实现 IGBT串联的均压,但是会降低IGBT的开关速度并且增大开关损耗, 而且无源缓冲电路需要较多器件,参数较难设置,会降低系统的可靠性。极控制的方法,可以分为同步控制和有源控制两类。同步控制包括通过控制关断点来实现电压均衡的关断点选择法,以及通过同步控制实现均压的电压均衡法3, 4。但是,由于IGBT的负温度系数特性,同步控制法有一定的局限性,因而在实际应用中并不多见。但

7、是同时会带来额,简称AVC),是通过源控制法,通过对栅极进行注入电流或加减栅极控制电压等方法来实现均压, 外的功率损耗。本文介绍的有源电压控制技术( Active Voltage Co ntrol 引入集电极反馈来控制 IGBT栅极电压以实现串联均压。串联技术栅极控制无源缓冲电路有源控制同步控制关断点选择法电压均衡法(Lee-Seo-Huyn) ( Gerster)有源电压控制法dV/dt控制法(Palmer)( Consoli)过冲电压有源控制法(Gediga)图 1 IGBT串联技术分类中符号改为斜体,文字不用斜体2有源电压控制技术GBT有源电压控制技术,由英国剑桥大学 Patrick P

8、almer博士提岀5。此技术通过在IGBT控制过程中引入多重闭环反馈, 使IGBT开通和关断过程中,集电极-发射极电压 Vce的轨迹始终跟随预先设定的参考信号,从而实现高压应用中IGBT器件直接串联的同步工作和有效均压。图2所示,IGBT的集电极-发射极电压Vce经过分压电路分压后再反馈回来,与预先设定好的参 考信号进行比较,两者的差值经过一定的电流放大,加在IGBT的栅极上,控制IGBT开通、关断或工作在有源区,实现Vce电压跟随参考信号。图2有源电压控制技术示意图中符号改为斜体,电阻改为长方形源电压控制技术中,可以控制的IGBT参数很多,包括集电极-发射极电压Vce、集电极-发射极电压变化

9、率dVcE/d t、关断箝位电压 VcLAMPING、IGBT开通和关断的时间等。通过合理的设定参考信 号,既可以控制开通和关断过程中绝缘器件的电压过冲,防止绝缘器件由于过电压而损坏,并减少高电压变化率 dVcE/d t和过电压对绝缘系统的影响,大幅提高设备的可靠性和稳定性,又可以 使同样电压等级的IGBT器件工作在更高的电压,并在保障可靠性的前提下提高器件的利用率, 省去常用的缓冲吸收电路,降低系统成本。更重要的是,有源电压控制技术可以有效解决IGBT器件在中、高压应用场合,直接串联时的电压Vce暂态均压问题。由于串联的每个IGBT器件的电压Vce,在暂态过程中都跟随合理设定的相同参考信号,

10、每个IGBT器件的电压 Vce能够有效保持在合理范围内,达到理想的均压效果。此方法也同样适用于MOSFET等其它绝缘栅器件。2所示的有源电压控制技术,可以实现最基本的IGBT集电极-发射极电压 Vce跟随参考信号。其具体实施方式为:用户输入驱动信号(一般为方波),可编程器件被驱动信号触发,产生集电极发射极参考信号 VreFo IGBT的集电极-发射极电压Vce经过分压电路得到反馈电压Vfb。反馈电压Vfb与参考信号 Vref在一个高速运算放大器中比较,所得的差值再经过电压放大以及缓冲放 大电路,通过栅极电阻RG加在IGBT的栅极上以驱动IGBT。其中,参考信号的设定尤为关键,针对不同IGBT和

11、不同应用有所不同。图3所示为其中一种参考信号的示意图。Turn-off OnnTurn-on Off +irii图3参考信号示意图中符号改为斜体图3所示,参考信号包括tRisE、Gf、tFALL、4四个阶段。四个阶段的时间长度和电压大小的选择都很重要。(VoFF -V RISE) /toFF是设定的dVcE/d t, VoFF是设定的箝位电压。tRisE +toFF是关断时 间,tFALL+toN是开通时间。开通、关断时间的长短影响着电压Vce跟随的精度,也影响开关损耗。了增强反馈系统的稳定性及提高跟随的精度,有源电压控制技术可以引入多重闭环反馈。图4多重反馈有源电压控制技术示意图中符号改为斜

12、体,电阻改为长方形图4所示的多重闭环负反馈有源电压控制电路,与普通的有源电压控制技术基本相同,但是增加了 Vge反馈电路和dVcE/d t反馈电路。Vge反馈电路输岀与IGBT栅极-发射极电压 Vge形成一定 比例关系的反馈电压 Vfb2, dVcE/d t反馈电路输岀与IGBT集电极-发射极电压变化率dVcE/d t形成一定比例关系的反馈电流IFB1。用户输入驱动信号产生集电极-发射极参考电压 Vref,与反馈电压VFB1进行比较,再依次与反馈电压VFB2和dVcE/d t反馈电流比较、叠加,由缓冲放大电路放大后,通过栅极电阻Rg加在IGBT的栅极上驱动IGBT。3实验结果于多重闭环反馈有源

13、电压控制技术的“ IGBT智能有源驱动电路”如图5所示。此驱动电路可接受电驱动信号和光驱动信号,内置的FPGA (现场可编程门阵列)可根据驱动信号生成参考信号。通过Vce反馈、Vge反馈及dVcE/dt反馈控制IGBT的开关过程,实现 IGBT串联均压图5 AVC驱动电路试电路示意图如图 6所示,为一个升压电路。串联后的IGBT充当开关器件,采用双脉冲触发方式。通过调节输入直流电压以及占空比,可以使串联的IGBT两端电压达到4000V以上,能满足多个IGBT串联的测试需要。图7是测试平台的照片。测试所用IGBT为英飞凌的FF800R17KF6C_B2,其额定电压为 1700V,额定电流为 80

14、0A图6 测试电路示意图中符号改为斜体,电阻改为长方形注为小写正体,二极管中间通直线图7测试平台照片3.1单个IGBT测试结果8是有源电压控制下的单个IGBT关断和开通时的参考信号、Vce电压、lc电流以及 Vge电压波形。8( a)中系统电压为 500V,设定的IGBT箝位电压为1000V。从图中可以看岀,IGBT的Vce电 压跟随参考信号的效果很好,两者非常接近,数值相差100倍(由驱动电路设定)。因为箝位电压是1000V,所以图中没有电压箝位的现象。8 ( b)中系统电压为 850V。在IGBT关断过程中,Vce电压岀现过冲,但是被箝位在 1000V,随 后进入稳态850V。在这个过冲的

15、时候,可以看到 Vge的电压保持在 Vge(th)之上,使得IGBT工作 在有源区,从而保证电压不会超过设定的箝位电压。8 ( C)中系统电压仍为 850V。从图中可以看岀,在参考信号开始下降,即开通过程开始后不久, 集电极-发射极电压 Vce就开始跟随参考信号,此时IGBT工作在有源区,并逐渐进入开通状态。之后参考信号岀现一个转折点,其dV/dt增大,目的是加快 IGBT开通速度。Vce电压仍然试图跟随参考信号,但是由于参考信号的电压变化率过高,超岀IGBT所能达到的最大值,因此IGBT的Vce电压无法紧密跟随参考信号,但是,还是以IGBT能达到的最大电压变化率下降。宀、II i u1 1訂

16、 111I I i|iq 1丨E 1/ -JIf * 十讣3iLr: .l-:( C )图8单个IGBT开通、关断波形:(a)关断波形(Vdc=500V) ; (b)关断波形(Vdc=850V);(C )开通波形(Vdc =850V)(黄:参考信号,红:Vce,绿:lc,蓝:Vge)3.2多个IGBT串联的测试结果9所示为有源电压控制下的两个IGBT串联的关断波形,其中红色和绿色为两个IGBT各自的集电极-发射极电压 Vce,蓝色为串联IGBT的电流。图10所示为三个IGBT串联的关断波形,其中 红色黄色和灰色分别为 3个IGBT的Vce电压。可以看岀,在关断阶段, IGBT的动态均压效果很

17、好,电压差别很小。在关断过程结束后,由于IGBT的拖尾电流特性不同,使得Vce电压波形有分歧。这可以通过并联稳态均压电阻来解决,当IGBT彻底进入关断稳态后,其Vce电压将趋于一致7。lek JL 湎Mhx: PrtfceCH2 SUM MUOOjus014 200V MATH 200VCH1璽SOMHihverl-14:32:33 2009-图9有源电压控制下的两个 IGBT串联关断波形(红:VCE1,绿:VcE2,监:Ic )Tek JL topMPoeMATH*OperationSourcesMI.DOjujRefA 300V 1 加ABTDS 2DD4B 15 57:3 20-fr6图

18、10有源电压控制下的三个IGBT串联关断波形(红:VcE1,黄:VcE2,灰:VcE3 )3.3 IGBT开关损耗GBT的开关损耗是IGBT应用的重要指标。图11所示为有源电压控制下的单个IGBT关断的波形,其中的红色波形为电压与电流的乘积,即损耗功率。图11( a的参考信号较慢,因此相应的损耗也较大,而图 11 (b)中的参考信号缩短了tRISE和tOFF的时间,也即增大了dVCE/d t,IGBT损耗也相应较小。传统的传统开关方式相比,图11( b)中的损耗主要是 tRISE部分多岀来的,而其损耗大小占关断的总损耗的比例并不大。事实上,采用有源电压控制法,使用者可以在IGBT的损耗和dVC

19、E/d t 等参数中选择平衡点,获得理想的性能。同时,由于有源电压控制法不需要缓冲电路来实现动态 均压,又减小了一部分损耗。因此,采用合理的参考信号,有源电压控制法的损耗可以控制到与传统的传统开关方式相近的程度。即使是在特殊的情况下,需要较小的dVCE/d t,损耗的增加一般也不会超过50%。TDS 2004B 16:01:27 200&-6(a)Tbk JUTDS 2DD4B - 15:42:10 200&-9-GTROQERTypeurce waiStop*w(b)图11有源电压控制下单个 IGBT开关波形及损耗:(a )较慢参考信号;(b):较快参考信号(黄:参考信号,绿:VCE,紫:l

20、C,红:损耗)4讨论以上实验结果可以看岀,有源电压控制法在 IGBT开通和关断过程中, 可以有效的实现动态均压,两个串联的IGBT的集电极-发射极电压差别很小。同时,有源电压控制法也可以实现IGBT关断过程中过冲电压的有效箝位,使其不超过预先设定的箝位电压值,保证器件不会由于过压造成损坏。有源电压控制法还可以实现对电压变化率dVcE/dt的控制,这样可以根据系统的要求来设定相应的电压变化率参数,防止电压变化率过大对系统造成危害。是从波形和分析中我们也可以看到,由于有源电压控制法可以控制dVcE/d t,在需要较慢的dVcE/d t时,会增加开关损耗。对于此,我们可以通过优化参考波形来减小损耗。

21、同时,由于有 源电压控制法不需要缓冲电路来实现动态均压,又减小了一部分损耗。外,在相同工作条件下,工作在较高频率时,通过低耐压IGBT串联实现高电压所产生的开关损耗,要比使用单只高耐压IGBT所产生的开关损耗小,具体比较见表1。行比较的 3种英飞凌IGBT分别为1700V/1200A 的器件FZ1200R17KF6C,3300V/1200A 的器 件 FZ1200R33KF2C 以及 6500V/600A 的器件 FZ600R65KF2 (英飞凌 6500V 的 IGBT 没有 1200A 的,因此只能采用两个 600A IGBT并联实现1200A电流等级)。1中进行比较的3种方案分别是:4个

22、1700V器件串联,2个3300V器件串联和2个6500V器 件并联。数据完全来自于3个IGBT相应的手册。串、并联后的测试条件包括:电流 Ic=1200A ;电压Vce=3600V ;(每个1700V器件承受900V,每个3300V器件承受1800V,每个6500V器 件承受3600V );栅极电压Vge= 士 15V温度 Tvj=125C;占空比50%。1中的数据计算公式见附录。表1中可以看岀,随着 IGBT的耐压的 升高,开关损耗和导通损耗等相应增 大。其中导通损耗增大的幅度相对不 大,而开关损耗增大的幅度则相当大。IGBT等级1700V/1200A3300V/1200A6500V/60

23、0AEon+E off0.81J3.7J9.4JPs (500Hz)0.405kW1.85kW4.7kWPs (1kHz)0.81kW3.7kW9.4kWPs (2kHz)1.62kW7.4kW18.8kWPs (5kHz)4.05kW18.5kW47kWPs (10kHz)8.1kW37kW94kW表1单个IGBT与串联IGBT的损耗比较1700V/1200A IGBT 一个开关周期消耗的能量仅为0.81J , 3300V/1200A IGBT 一个开关周期消耗的能量增加为 3.7J,而6500V/600A IGBT 一个开关周期消耗的能量达到了9.4J。如果用两个6500V/600A IG

24、BT 并联,实现1200A的电流等级,则一个开关周期消耗的能量达到了18.8J。如此大的差距,在高频情况下,将产生极大的损耗差别。过串并联实现相同的电压、电流等级后,在开关频率为500Hz时,3种方式的损耗相近,其中3300V/1200A IGBT的损耗最小。随着频率的升高,高耐压IGBT的开关损耗越来越高。当工作频率为10kHz时,采用6500V IGBT方案的总损耗已达到191.18kW,而采用 4个1.7kV IGBT串联的总损耗仅为 39.84kW,相差4.8倍,而采用3300V IGBT的方案总损耗居中。使考虑到增加冗余量,通过使用5个1700V IGBT来实现一个6500V IGB

25、T的应用,损耗仍然小很多,但是增加的冗余量,使得在有一个IGBT损坏的情况下,将其短路后,系统仍然能够正常工作。考虑到使用有源电压控制技术,基于控制dVcE/dt的考虑,而相比传统开关方式多甚至50%的损耗,采用多个低耐压 IGBT串联的损耗仍然比使用高耐压IGBT要低很多。了损耗和冗余度的优势外,在价格方面采用串联低耐压IGBT的方案,也往往具有优势。并且低耐压IGBT由于需求量大,渠道畅通,供货周期也相对较短。5结论过以上实验结果和分析,表明了有源电压控制技术是实现IGBT可靠串联的一种良好的方案。另一方面,在较高工作频率下,采用低耐压器件串联比采用单只高耐压器件具有多种好处,包括低损耗、

26、低成本、高冗余度等。考虑到在目前的技术条件下,单个IGBT器件的耐压值再继续提高难度很大,所以能够实现IGBT器件可靠串联的有缘电压控制技术具有广泛的应用空间。附录V ce,o n3.1V4.3V5.3VIc1200A1200A600APc1.86kW2.58kW1.59kWPts (500Hz)2.265kW4.43kW6.29kWPts (1kHz)2.67kW6.28kW10.99kWPts (2kHz)3.48kW12.56kW20.39kWPts (5kHz)5.91kW21.08kW48.59kWPts (10kHz)9.96kW39.58kW95.59kW串并联个数4个串联2个串

27、联2个并联Pt (500Hz)9.06kW8.86kW12.58kWPt (1kHz)10.68kW12.56kW21.98kWPt (2kHz)13.92kW25.12kW40.78kWPt (5kHz)23.64kW42.16kW97.18kWPt (10kHz)39.84kW79.16kW191.18kWc 即 Pconduction ,是单个IGBT 的导通损耗:p/*i *rjconduction CE,on c中 D 为占空比,设定为50% ,则平均的 Pconduction 应为:t即Ptotal,是串、并联后每个方案中IGBT的功率损耗:Ptotal = Ptotal,sing

28、le *N中 N 是串、并联个数。参考文献1. Letor, R. Series connection of MOSFET, Bipolar and IGBT devices. SGS-Thomson Designers Guide to Power Products 1992.2. K. Okamura, Y .W., K. Yokokura and I. Ohshima, High repetition rated semiconductor switch for excimer laser , in Proc. 19th IEEE Power Modulator Symp. . 1990

29、: San Diego, CA. p. 407-410.3. Beom-Seok, S., L. Toeck-Kie, and H. Dong-Seok. Synchronization on the points of turn-off time of series-connected power semiconductor devices using Miller effect. in Industrial Electronics, Control, Instrumentation, and Automation, 1992. Power Electronics and Motion Co

30、ntrol., Proceedings of the 1992 International Conference on . 1992.4. Gerster, C., P. Hofer, and N. Karrer. Gate-control strategies for snubberless operation of series connected IGBTs. in Power Electronics Specialists Conference, 1996. PESC 96 Record., 27th Annual IEEE . 1996.5. Palmer, P.R. and A.N

31、. Githiari, The series connection of IGBTs with active voltage sharing. Power Electronics, IEEE Transactions on, 1997. 12(4): p. 637-644.6. Palmer, P.R., A.N. Githiari, and R.J. Leedham. Some scaling issues in the active voltage control of IGBT modules for high power applications . in Power Electronics Specialists Conference, 1997. PESC 97 Record., 28th Annual IEEE . 1997.7. Githiari, A.N. and P.R. Palmer, Analysis of IGBT modules connected in series. Circuits, Devices and Systems, IEE Proceedings, 1998. 145(5): p. 354-360.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 社会民生


经营许可证编号:宁ICP备18001539号-1