2--《论文》格式与内容.doc

上传人:scccc 文档编号:14176986 上传时间:2022-02-03 格式:DOC 页数:30 大小:955KB
返回 下载 相关 举报
2--《论文》格式与内容.doc_第1页
第1页 / 共30页
2--《论文》格式与内容.doc_第2页
第2页 / 共30页
2--《论文》格式与内容.doc_第3页
第3页 / 共30页
2--《论文》格式与内容.doc_第4页
第4页 / 共30页
2--《论文》格式与内容.doc_第5页
第5页 / 共30页
点击查看更多>>
资源描述

《2--《论文》格式与内容.doc》由会员分享,可在线阅读,更多相关《2--《论文》格式与内容.doc(30页珍藏版)》请在三一文库上搜索。

1、四川科技职业学院毕业设计(论文) 第30页毕业设计(论文)题目: 数字是电压表设计 学 院 电子信息工程系 年 级 2009 专 业 通信技术 学 号 201005240002 学生姓名 雷 祝 指导教师 辛 川 2012 年 3 月毕业设计(论文)鉴定表院 系 电子工程系 专 业 通信技术 年 级 09级 姓 名 雷祝 题 目 数字是电压表设计 指导教师评 语 过程得分: (占总成绩20%)是否同意参加毕业答辩 指导教师 (签字)答辩教师评 语 答辩得分: (占总成绩80%) 毕业论文总成绩 等级: 答辩组成员签字 年 月 日毕业设计(论文)任务书班 级 09级 学生姓名 雷祝 学 号 20

2、1005240002 发题日期:2011 年 10月 31 日 完成日期:2012年3 月 30日题 目 数字电压表设计 1、本论文的目的、意义: DVM的高速发展,使它已成为实现测量自动化、提高工作效率不可缺少的仪表,数字化是当前计量仪器发展的主要方向之一,而高准度的DC-DVC的出现,又使DVM进入了精密标准测量领域。这个课题的目的和意义在于使自己掌握对数字电压表的理解,自己动手设计数字电压表与仿真,它可以广泛的应用于电压测量外,通过各种变换器还可以测量其他电量和非电量,测量是一种认识过程,就是用实验的方法将被测量和被选用的相同参量进行比较,从而确定它的大小。DVM广泛应用于测量领域每期测

3、量的准确度和可信度取决于它的主要性能和技术指标。所示我们要学习和掌握如何设计DVM就显得十分重要。 2、学生应完成的任务 (1)了解数字电压表的基本概念和原理,熟悉不同量程方法之间的差别和其实现方法。(2)熟悉数字电压表的体系结构、实现方法及其原理。(3)掌握数字电压表的各主要性能指标 3、论文各部分内容及时间分配:(共 20 周)第一部分 了解课题的内容,查找相关文献和资料 ( 2 周) 第二部分 熟悉设计的课题,查阅、整理参考文献和资料 ( 3 周) 第三部分 进行毕业设计方案的进一步的探索、求证 ( 4 周)第四部分 撰写毕业本文初稿 ( 5 周) 第五部分 修改毕业论文,进一步完善硬件

4、电路设计, 进一步完善软件设计,最终完成毕业设计,提交 ( 4 周)评阅及答辩 答辩 ( 1 周)备 注 指导教师: 年 月 日审 批 人: 年 月 日目 录摘要 6绪论 7第一章 概述 81.1 数字电压表的发展前景 8 1.2 电路原理图 9第二章 硬件电路设计 10 2.1 输入电路设计 10 2.1.1 衰减电路设计 10 2.1.2衰减电路: 10 2.2 转换电路 11 2.2.1 转化器类型 112.2.2 转换器主要性能: 122.2.3 ICL7135芯片简绍 132.3 AT89S52介绍 162.3.1 AT89S52芯片特点 16 2.3.2 主要引脚功能描述 172.

5、4 显示电路 192.4.1 液晶显示器的分类及原理 192.4.2 LCD-1601介绍 20第三章 系统软件设计 223.1 主程序设计 223.2 中断程序设计 23第四章 通讯模块设计 254.1 通讯模块电路组成 254.2 通讯模块程序设计 25结束语 27致谢 28参考文献 29 摘 要数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表.传统的指针式电压表功能单一、精度低,不能满足现代测量的需求,采用单片机的数字电压表,它的精度高、抗干扰能力强。可扩展性强、集成方便,还可与

6、PC进行实时通信。目前,有各种单片A/D转换器构成的数字电压表,以被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能测量领域,与此同时,也能把电量及非电量测量技术提高到崭新水平。该系列产品是一种高精度的安装式仪表.本设计为简易直流数字电压表, A/D转换器部分采用普通元器件构成模拟部分,利用MCS-51单片机借助软件实现数字显示功能,自动校零、LED显示等功能时采用AT89C51单片机编程实现直流电压表量程的自动转换。关键词: AT89C51, A/D转换,电压测量绪论尽管单片机不断向纵深发展,但目前乃至今后若干年,8位机仍旧是实际应用中的主导产品。MCS-51系列是目前8位单片机的

7、主流机型,在实时控制、智能化仪表等方面应用最广。因此,本设计将主要介绍MCS-51系列单片机。MCS-51系列单片机以片内有无程序存储器及存储的形式,分为3种基本产品:8051,8751和8031。随着计算机、微电子、信息技术的快速进步,智能化技术的开发速度越来越快,智能度越来越高,应用范围也得到了极大的扩展。在军事、娱乐、海洋开发、工农业生产、社会服务等各个领域。在家庭方面,相关于电器方面都离不开电压表的使用。在电子显示方面也采用电压表的测量。数字电压表灵活多变的测量方式,使用方便.特别是大型的电机,在使用安装、检测时必然所需要的。是电压表的应用才使得电子、电气行业成为有方圆的规矩。在国内外

8、,微控制系统主要采用单片机作为控制核心。因此,单片机的发展将有助于简单实用电子产品的开发。在本设计中,采用比较先进的AT89C51单片机为控制核心,它的功能很强大。与此同时单片机技术在社会各领域中得到了广泛的应用。在直流数字电压表系统中,单片机更是取代了由齿轮调节延迟时间的表盘旧式市发展速度,成为日后此系统中的核心部分。由于单片机具有一些突出的优点:体积小、重量轻、电源单一、功能强、价格低;数据大都在单片机内部传送,运行速度快、抗干扰能力强、可靠性高,所以单片机被广泛的应用于测控系统、数据采集、智能仪器仪表、机电一体化产品、智能接口、计算机通信以及单片机的多级系统等领域。本文主要讲的是单片机,

9、课题名称为简易直流数字电压表的设计,它使我们学会了如何使用单片机控制我们日常生活中的多设备设施的应用。通过本课题的设计以后,使我了解到了单片机的许多方面的应用。第一章概述1.1数字电压表的发展前景. 数字电压表作为数字技术的成功应用,发展相当快。数字电压表(Digital VoIt Me-ter,DVM),以其功能齐全、精度高、灵敏度高、显示直观等突出优点深受用户欢迎。特别是以AD转换器为代表的集成电路为支柱,使DVM向着多功能化、小型化、智能化方向发展。DVM应用单片机控制,组成智能仪表;与计算机接口,组成自动测试系统。现代数字电压表按测量功能可分为直流数字电压表和交流数字电压表。数字电压表

10、一般由模拟部分和数字部分组成,模拟部分主要功能是获取电压并将其转换为相应的数字量,数字部分完成逻辑控制、译码和显示等功能。数字电压表的核心是A/D转换器,由A/D转换器工作原理的不同,数字电压表又可分为逐次比较型和双积分型。传统模拟式电压表具有电路简单、成本低、测量方便等特点,但测量精度较差,特别是受表头精度的限制,即使采用0.5级的高灵敏度表头,读测时的分辨力也只能达到半格。再者,模拟式电压表的输入阻抗不高,测高内阻源时精度明显下降。本设计为克服以上缺点选用ICL7135芯片实现双积分A/D转换,提高精度,它是一种四位半的双计分A/D转换器,具有精度高(精度相当于14位二进制数)、价格低廉、

11、抗干扰能力强等优点。本设计介绍用单片机并行方式采集ICL7135的数据以实现单片机电压表和小型智能仪表的设计方案。 在当今的数字时代,从大到空间雷达,地球卫星定位系统,移动通信,计算机,医用断层扫描设备,小到家用计算机,数码影像设备,数字录音笔,数码微波炉等设备中,数字技术与数字电路组成的数字系统已经成为这些现代电子系统的重要组成部分。数字电压表正进入一个蓬勃发展的新时期,一方面它开拓了电子测量领域的先河,另一方面它本身正朝着高准确度、智能化、低成本的方向发展。此外,数字电压表在安装工艺、外观设计、安全性、可靠性等方面也在不断改进,日臻完善。1.2电路原理图输入电路A/D转换89S52单片机L

12、CD显示通讯模块 图1.2.1系统基本方框图 如图(1.2.1)所示,模拟电压经过档位切换到不同的分压电路衰减后,经隔离干扰送到A/D转换器进行A/D转换,然后送到单片机中进行数据处理。处理后的数据送到LCD中显示,同时通过串行通讯与上位机通信。第二章硬件电路设计2.1 输入电路设计 由于该电压表要实现多量程测量,故而在本设计通过衰减电路与量程切换开关实现此功能,具体电路将在本节详细介绍。2.1.1 衰减电路设计 图2.1.1量程切换开关 输入电路(如图2.1.1)的作用是把不同量程的被测的电压规范到A/D转换器所要求的电压值。智能化数字电压表所采用的单片双积分型ADC芯片ICL7135,它要

13、求输入电压0-2V。2.1.2 衰减电路: 图2.1.2衰减输入电路本仪表设计是0-1000V电压,灵敏度高所以可以不加前置放大器,只需衰减器,如图 (.1.)所示9M、900K、90K、和10K电阻构成1/10、1/100、1/1000的衰减器。衰减输入电路可由开关来选择不同的衰减率,从而切换档位。为了能让CPU自动识别档位,还要有(图2.1.1)的硬件连接。2.2 转换电路 数字电压表最终显示结果是数字信号,但输入时却是模拟量,故而需要转电路使模拟量转换成数字量。本设计采用A/D转换器实现此过程。本节将着重介绍转化器基本知识和ICL7135芯片的功能。2.2.1 转化器类型 A/D转换器(

14、ADC)的作用是把模拟量转换成数字量,以便于计算机进行处理。随着超大规模集成电路技术的飞跃发展,现在有很多类型的A/D转换器芯片,不同的芯片内部结构不一样,转换原理也不仅相同,各种转换芯片根据转换原理可分为:计数型A/D转换器,逐次逼近型A/D转换器,双重积分型A/D转换器,和并行式A/D转换器等,按转换方法可分为直接A/D转换器和间接A/D转换器;按其分辨率分为4-16位转换器。计数型A/D转换器 计数型A/D转换器由D/A转换器,计数器和比较器组成,工作时:计数器由零开始计数每计一次数后,计数器送往D/A转换器转换,并将生成的模拟信号与输入的模拟信号在比较器内进行比较,若小于后者,则计数值

15、加1,D/A转换和比较过程,直到D/A转换生成的模拟信号与输入模拟信号相同时,则停止计数,这时计数器中的当前值就为输入模拟量对应的数字量。这种A/D转换器结构简单,原理清楚,但转换精度与速度之间存在矛盾。当提高速度时,精度就回有所下降,当提高精度时,速度就回有所下降。现实中很少使用。逐次逼近型A/D转换器 逐次逼近型A/D转换器是由一个比较器,D/A转换器,寄存器及控制电路组成。与计数型相同,也要进行比较以得到转换的数字量,但逐次逼近型A/D转换器使用寄存器从高位到低位依次开始逐次比较。转换过程如下:开始时寄存器各位都为零,转换时先将高位置1,送D/A转换器转换,转换结果与输入的模拟量比较,如

16、果前者小于后者,则1保留,否则,不保留。重复上述过程直到最低位,最后寄存器内容就为输入模拟量对应的数字量。一个n位逐次逼近型转换器只需要比较n次,转换时间取决于位数和时钟周期。逐次逼近型A/D转换器转转速度快,在实际中广泛应用。 双重积分型A/D转换器 双重积分型A/D转换器将输入电压先变成与其平均值成正比的时间间隔,然后再把此时间间隔转换成数字量,它属于间接型。它的转换过程分采样和比较两个过程。采样就是积分器对输入模拟电压进行固定时间积分,输入量越大,采样值越大。比较就是用基准电压对积分器进行反向积分,直到值为零,由于基准电压固定,所以采样越大,反向积分时间越长,积分时间与输入电压成正比,最

17、后把积分时间转换成数字量,则该数字量就为输入模拟量对应的数字量。由于转换过程进行了两次积分,所以称为双重积分型。,双重积分型A/D转换器的转换精度高,稳定性能好,抗干扰能力强,但转换速度慢。2.2.2 转换器主要性能:分辨率 分变率是指A/D转换器能分辨的最小输入量。通常用转换的数字量的位数来表示,如8位,10位,12位,16位等。位数越高,分辨率越高。转换时间。 转换时间是指A/D完成一次转换需要的时间,指从启动转换器开始到转换结束并得到稳定数字量为止的时间。一般而言,转换时间越短,转换速度越快。量程 量程是指所能转换的输入电压范畴。转换精度 分为绝对转换精度和相对转换精度。绝对精度是指实际

18、输入的模拟量与理论上模拟量之差。相对精度是指当满刻度值校准后,任意数字量对应的实际模拟量(中间值)与理论值之差(中间值)。 A/D 转换器的转换精度对测量电路极其重要,它的参数关系到测量电路性能。本设计采用双积A/D 转换器,它的性能比较稳定,转换精度高,具有很高的抗干扰能力,电路结构简单,其缺点是工作速度较低。在对转换精度要求较高,而对转换速度要求不高的场合如电压测量有广泛的应用。2.2.3 ICL7135芯片简绍 ICL7135是采用CMOS工艺制作的单片4位半A/D转换器,其所转换的数字值以多工扫描的方式输出,只要附加译码器,数码显示器,驱动器及电阻电容等元件,就可组成一个满量程为2V的

19、数字电压表 。双积型A/D转换器,转换速度慢。 具有自动极性转换功能。能在但极性参考电压下对双极性模拟输入电压进行A/D转换,模拟电压的范围为01.9999V。 模拟出入可以是差动信号,输入电阻极高,输入电流典型值1PA。 所有输出端和TTL电路相容。有过量程(OR)和欠量程(UR)标志信号输出,可用作自动量程转换的控制信号。输出为动态扫描BCD码。 对外提供六个输入,输出控制信号(R/H,BUSH,ST,POL,OR,UR),因此除用于数字电压表外,还能与异步接收 /发送器,微处理器或其它控制电路连接使用。 采用28外引线双列直插式封装,外引线功能端排列如图所示。ICL7135完成一次A/D

20、转换周期分为四个阶段:自动调零(AZ)、被测电压积分(INT)、基准电压反积分(DE)、积分回零(ZI)。ICL7135引脚功能1 R/H(25脚)当R/H=“1”(该端悬空时为“1”)时,7135处于连续转换状态,每40002个时钟周期完成一次A/D转换。若R/H由“1”变“0”,则7135在完成本次A/D转换后进入保持状态,此时输出为最后一次转换结果,不受输入电压变化的影响。因此利用R/H端的功能可以使数据有保持功能。若把R/H端用。 /ST(26脚)每次A/D转换周期结束后,ST端都输出5个负脉冲,其输出时间对应在每个周期开始时的5个位选信号正脉冲的中间,ST负脉冲宽度等于1/2时钟周期

21、。第一个ST负脉冲在上次转换周期结束后101个时钟周期产生。因为每个选信号(D5-D1)的正脉冲宽度为200个时钟周期(只有AZ和DE阶段开始时的第一个D5的脉冲宽度为201个CLK 周期),所以ST负脉冲之间相隔也是200个时钟周期。需要注意的是,若上一周期为保持状态(R/H=“0”)则ST无脉冲信号输出。ST信号主要用来控制将转换结果向外部锁存器、UARTs或微处理器进行传送。 BUSY(21脚)在双积分阶段(INT+DE),BUSY为高电平,其余时为低电平。 OR(27脚)当输入电压超出量程范围(20000),OR将会变高。该信号在BUSY信号结束时变高。在DE阶段开始时变低。 UR(2

22、8脚)当输入电压等于或低于满量程的9%(读数为1800),则一当BUST信号结束,UR将会变高。该信号在INT阶段开始时变低。 POL(23脚)该信号用来指示输入电压的极性。当输入电压为正,则POL等于“1”,反之则等于“0”。 位驱动信号D5、D4、D3、D2、D1(12、17、18、19、20脚)每一位驱动信号分别输出一个正脉冲信号,脉冲宽度为200个时钟周期,其中D5对应万位选通,以下依次为千、百、十、个位。在正常输入情况下,D5-D1输出连续脉冲。当输入电压过量程时,D5-D1在AZ阶段开始时只分别输出一个脉冲,然后都处于低电平,直至DE阶段开始时才输出连续脉冲。利用这个特性,可使得显

23、示器件在过程时产生一亮一暗的直观现象。 B8、B4、B2、B1(16、15、14、13脚)该四端为转换结果BCD码输出,采用动态扫描输出方式,即当位选信号D5=“1”时,该四端的信号为万位数的内容,D4=“1”时为千位数内容,其余依次类推。ICL7135芯片参数选择1、时钟频率fcp的选择从ICL7135的设计上看,时钟频率范围可以很宽(一般为40kHZ1MHZ),但若考虑到工频干扰问题,根据我国的市场电频率为50HZ,选fcp=2/(20*0.000001)kHZ合适。2、基准电压的Vr选择 基准电压的选择一般按照ICL7135的输出读数10000Vi/Vr来确定。通常选Vr=1V,则当输入

24、电压Vi=1 V时,显示1.0000;当Vi=1.9999V时,显示1.9999V。3、基准电压的Cr选择 均取1uF。ICL7135与AT89S52的连接 在ICL7135与单片机系统进行连接时,使用并行采集方式,要连接BCD码数据输出线,可以将ICL7135的/STB信号接至AT89C52的P3.2(INT0)。 ICL7135需要外部的时钟信号,本设计采用CD4060来对4M信号进行32分频得到125KHz的时钟信号。CD4060计数为级进制计数器,在数字集成电路中可实现的分频次数最高,而且CD4060还包含振荡电路所需的非门,使用更为方便。 图 2.2.3.2 ICL7135与系统的连

25、接图 图2.2.3.3 CD4060时钟发生电路2.3 AT8S952介绍 AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程Flash 存储器。使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51 产品指令和引脚完全兼容。片上Flash允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、非常有效的解决方案。2.3.1 AT8S952芯片特点AT8S952简介:/与MCS-51单片机产品兼容 /8K字节在系统可编程Flash存储器 /全静态操作

26、:0Hz33Hz/32个可编程I/O口线 /全双工UART串行通道/掉电后中断可唤醒/双数据指针 /三个16位定时器/计数器/1000次擦写周期/低功耗空闲和掉电模式/掉电标识符/看门狗定时器/八个中断源/三级加密程序存储器 单片机选用的是ATMEL公司新推出的AT8S952。该芯片具有低功耗、高性能的特点,是采用CMOS工艺的8位单片机,与AT89S51完全兼容。AT89S52还有以下主要特点: 1、采用了ATMEL公司的高密度、非易失性存储器(NV-SRAM)技术; 2、其片内具有256字节RAM,8KB的可在线编程(ISP)FLASH存储器;3、片内含有一个看门狗定时器(WDT),WDT

27、包含一个14位计数器和看门狗定时器复位寄存器(WDTRST),只要对WDTRST按顺序先写入01EH,后写入0E1H,WDT便启动,当CPU由于扰动而使程序陷入死循环或“跑飞”状态时,WDT即可有效地使系统复位,提高了系统的抗干扰性能。2.3.2 主要引脚功能描述 P0 口:P0口是一个8位漏极开路的双向I/O口。作为输出口,每位能驱动8个TTL逻辑电平。对P0端口写“1”时,引脚用作高阻抗输入。当访问外部程序和数据存储器时,P0口也被作为低8位地址/数据复用。在这种模式下,P0具有内部上拉电阻。在flash编程时,P0口也用来接收指令字节;在程序校验时,输出指 令字节。程序校验时,需要外部上

28、拉电阻。P1 口:P1 口是一个具有内部上拉电阻的8 位双向I/O 口,p1 输出缓冲器能驱动4 个TTL 逻辑电平。对P1 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。此外,P1.0和P1.2分别作定时器/计数器2的外部计数输入(P1.0/T2)和时器/计数器2的触发输入(P1.1/T2EX),具体如下表所示。在flash编程和校验时,P1口接收低8位地址字节。引脚号第二功能 P1.0 T2(定时器/计数器T2的外部计数输入),时钟输出 P1.1 T2EX(定时器/计数器T2的捕捉/重载触发信号和方

29、向控制) P1.7 SCK(在系统编程用) P2 口:P2 口是一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器能驱动4 个TTL 逻辑电平。对P2 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。在访问外部程序存储器或用16位地址读取外部数据存储器(例如执行MOVX DPTR)时,P2 口送出高八位地址。在这种应用中,P2 口使用很强的内部上拉发送1。在使用8位地址(如MOVX RI)访问外部数据存储器时,P2口输出P2锁存器的内容。在flash编程和校验时,P2口也接收高8位地址字节和一些

30、控制信号。P3 口:P3 口是一个具有内部上拉电阻的8 位双向I/O 口,p2 输出缓冲器能驱动4 个TTL 逻辑电平。对P3 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。P3口亦作为AT89S52特殊功能(第二功能)使用,如下表所示。在flash编程和校验时,P3口也接收一些控制信号。引脚号第二功能 P3.0 RXD(串行输入) P3.1 TXD(串行输出) P3.2 INT0(外部中断0) P3.3 INT0(外部中断0) P3.4 T0(定时器0外部输入) P3.5 T1(定时器1外部输入) P

31、3.6 WR(外部数据存储器写选通) P3.7 RD(外部数据存储器写选通) RST: 复位输入。晶振工作时,RST脚持续2 个机器周期高电平将使单片机复位。看门狗计时完成后,RST 脚输出96 个晶振周期的高电平。特殊寄存器AUXR(地址8EH)上的DISRTO位可以使此功能无效。DISRTO默认状态下,复位高电平有效。 ALE/PROG:地址锁存控制信号(ALE)是访问外部程序存储器时,锁存低8 位地址的输出脉冲。在flash编程时,此引脚(PROG)也用作编程输入脉冲。在一般情况下,ALE 以晶振六分之一的固定频率输出脉冲,可用来作为外部定时器或时钟使用。然而,特别强调,在每次访问外部数

32、据存储器时,ALE脉冲将会跳过。如果需要,通过将地址为8EH的SFR的第0位置“1”,ALE操作将无效。这一位置“1”,ALE仅在执行MOVX 或MOVC指令时有效。否则,ALE将被微弱拉高。这个ALE使能标志位(地址为8EH的SFR的第0位)的设置对微控制器处于外部执行模式下无效。 PSEN:外部程序存储器选通信号(PSEN)是外部程序存储器选通信号。当AT89S52从外部程序存储器执行外部代码时,PSEN在每个机器周期被激活两次,而在访问外部数据存储器时,PSEN将不被激活。 EA/VPP:访问外部程序存储器控制信号。为使能从0000H 到FFFFH的外部程序存储器读取指令,EA必须接GND。为了执行内部程序指令,EA应该接VCC。在flash编程期间,EA也接收12伏VPP电压。 XTAL1:振荡器反相放大器和内部时钟发生电路的输入端。 XTAL2:振荡器反相放大器的输出。2.4 显示电路 本设计的是一四位半液晶显示数字电压表,因此在显示电路设计

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 社会民生


经营许可证编号:宁ICP备18001539号-1