[高考]2013高考物理第二轮专题复习测试题.doc

上传人:音乐台 文档编号:1994761 上传时间:2019-01-29 格式:DOC 页数:61 大小:5.08MB
返回 下载 相关 举报
[高考]2013高考物理第二轮专题复习测试题.doc_第1页
第1页 / 共61页
[高考]2013高考物理第二轮专题复习测试题.doc_第2页
第2页 / 共61页
[高考]2013高考物理第二轮专题复习测试题.doc_第3页
第3页 / 共61页
亲,该文档总共61页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《[高考]2013高考物理第二轮专题复习测试题.doc》由会员分享,可在线阅读,更多相关《[高考]2013高考物理第二轮专题复习测试题.doc(61页珍藏版)》请在三一文库上搜索。

1、6专题二:带电粒子在复合场中的运动一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要二、带电粒子在复合场电运动的基本分析1当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止2当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动3当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动4当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理三、电场力和

2、洛仑兹力的比较1在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用2电场力的大小FEq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsin,与电荷运动的速度大小和方向均有关3电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直4电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小5电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能6匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀

3、强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧四、对于重力的考虑重力考虑与否分三种情况(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单(3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误五、复合场中的特殊物理模型1粒子速度选择器如图所示,粒子经加速电场

4、后得到一定的速度v0,进入正交的电场和磁场,受到的电场力与洛仑兹力方向相反,若使粒子沿直线从右边孔中出去,则有qv0BqE,v0=E/B,若v= v0=E/B,粒子做直线运动,与粒子电量、电性、质量无关若vE/B,电场力大,粒子向电场力方向偏,电场力做正功,动能增加 若vE/B,洛仑兹力大,粒子向磁场力方向偏,电场力做负功,动能减少2磁流体发电机如图所示,由燃烧室O燃烧电离成的正、负离子(等离子体)以高速喷入偏转磁场B中在洛仑兹力作用下,正、负离子分别向上、下极板偏转、积累,从而在板间形成一个向下的电场两板间形成一定的电势差当qvB=qU/d时电势差稳定UdvB,这就相当于一个可以对外供电的电

5、源3电磁流量计电磁流量计原理可解释为:如图所示,一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体向左流动导电液体中的自由电荷(正负离子)在洛仑兹力作用下纵向偏转,a,b间出现电势差当自由电荷所受电场力和洛仑兹力平衡时,a、b间的电势差就保持稳定 由Bqv=Eq=Uq/d,可得v=U/Bd流量Q=Sv=Ud/4B4质谱仪如图所示组成:离子源O,加速场U,速度选择器(E,B),偏转场B2,胶片原理:加速场中qU=mv2选择器中:v=E/B1偏转场中:d2r,qvB2mv2/r比荷:质量作用:主要用于测量粒子的质量、比荷、研究同位素5回旋加速器如图所示.组成:两个D形盒,大型电磁铁,高频振

6、荡交变电压,两缝间可形成电压U作用:电场用来对粒子(质子、氛核,a粒子等)加速,磁场用来使粒子回旋从而能反复加速高能粒子是研究微观物理的重要手段要求:粒子在磁场中做圆周运动的周期等于交变电源的变化周期关于回旋加速器的几个问题:(1)回旋加速器中的D形盒,它的作用是静电屏蔽,使带电粒子在圆周运动过程中只处在磁场中而不受电场的干扰,以保证粒子做匀速圆周运动.(2)回旋加速器中所加交变电压的频率f,与带电粒子做匀速圆周运动的频率相等:(3)回旋加速器最后使粒子得到的能量,可由公式来计算,在粒子电量,、质量m和磁感应强度B一定的情况下,回旋加速器的半径R越大,粒子的能量就越大一、不计重力的带电粒子在电

7、场中的运动1带电粒子在电场中加速当电荷量为q、质量为m、初速度为v0的带电粒子经电压U加速后,速度变为vt,由动能定理得:qUmvt2mv02若v00,则有vt,这个关系式对任意静电场都是适用的对于带电粒子在电场中的加速问题,应突出动能定理的应用2带电粒子在匀强电场中的偏转电荷量为q、质量为m的带电粒子由静止开始经电压U1加速后,以速度v1垂直进入由两带电平行金属板产生的匀强电场中,则带电粒子在匀强电场中做类平抛运动,其轨迹是一条抛物线(如图41所示)图41qU1mv12设两平行金属板间的电压为U2,板间距离为d,板长为L(1)带电粒子进入两板间后粒子在垂直于电场的方向上做匀速直线运动,有:v

8、xv1,Lv1t粒子在平行于电场的方向上做初速度为零的匀加速直线运动,有:vyat,yat2,a(2)带电粒子离开极板时侧移距离yat2轨迹方程为:y(与m、q无关)偏转角度的正切值tan 若在偏转极板右侧D距离处有一竖立的屏,在求电子射到屏上的侧移距离时有一个很有用的推论,即:所有离开偏转电场的运动电荷好像都是从极板的中心沿中心与射出点的连线射出的这样很容易得到电荷在屏上的侧移距离y以上公式要求在能够证明的前提下熟记,并能通过以上式子分析、讨论侧移距离和偏转角度与带电粒子的速度、动能、比荷等物理量的关系二、不计重力的带电粒子在磁场中的运动1匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平

9、行,则粒子做匀速直线运动2匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动质量为m、电荷量为q的带电粒子以初速度v垂直进入匀强磁场B中做匀速圆周运动,其角速度为,轨道半径为R,运动的周期为T,则有:qvBmmR2mvmR()2mR(2f)2RT(与v、R无关),f3对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点(1)粒子圆轨迹的圆心的确定若已知粒子在圆周运动中的两个具体位置及通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图42 所示若已知做圆周运动的粒子通过某两个具体位置的速

10、度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图43所示若已知做圆周运动的粒子通过某一具体位置的速度方向及圆轨迹的半径R,可在该位置上作速度的垂线,垂线上距该位置R处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图44所示图42图43图44(2)粒子圆轨迹的半径的确定可直接运用公式R 来确定画出几何图形,利用半径R与题中已知长度的几何关系来确定在利用几何关系时,要注意一个重要的几何特点,即:粒子速度的偏向角等于对应轨迹圆弧的圆心角,并等于弦切角的2倍,如图45所示图45(3)粒子做圆周运动的周期的确定可直接运用公式T 来确定利用周期T与题中已知时间t的

11、关系来确定若粒子在时间t内通过的圆弧所对应的圆心角为,则有:tT(或tT)(4)圆周运动中有关对称的规律从磁场的直边界射入的粒子,若再从此边界射出,则速度方向与边界的夹角相等,如图46所示在圆形磁场区域内,沿径向射入的粒子必沿径向射出,如图47所示图46图47(5)带电粒子在有界磁场中运动的极值问题刚好穿出磁场边界的条件通常是带电粒子在磁场中运动的轨迹与边界相切三、带电粒子在复合场中的运动1高中阶段所涉及的复合场有四种组合形式,即:电场与磁场的复合场;磁场与重力场的复合场;电场与重力场的复合场;电场、磁场与重力场的复合场2带电粒子在复合场中的运动性质取决于带电粒子所受的合外力及初速度,因此应把

12、带电粒子的运动情况和受力情况结合起来进行分析当带电粒子在复合场中所受的合外力为零时,带电粒子做匀速直线运动(如速度选择器);当带电粒子所受的重力与电场力等值、反向,由洛伦兹力提供向心力时,带电粒子在垂直磁场的平面内做匀速圆周运动;当带电粒子所受的合外力是变力,且与初速度的方向不在一条直线上时,粒子做非匀变速曲线运动,运动轨迹也随之不规范地变化因此,要确定粒子的运动情况,必须明确有几种场,粒子受几种力,重力是否可以忽略3带电粒子所受三种场力的特征(1)洛伦兹力的大小跟速度方向与磁场方向的夹角有关当带电粒子的速度方向与磁场方向平行时,f洛0;当带电粒子的速度方向与磁场方向垂直时,f洛qvB当洛伦兹

13、力的方向垂直于速度v和磁感应强度B所决定的平面时,无论带电粒子做什么运动,洛伦兹力都不做功(2)电场力的大小为qE,方向与电场强度E的方向及带电粒子所带电荷的性质有关电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与其始末位置的电势差有关(3)重力的大小为mg,方向竖直向下重力做功与路径无关,其数值除与带电粒子的质量有关外,还与其始末位置的高度差有关注意:微观粒子(如电子、质子、离子)一般都不计重力;对带电小球、液滴、金属块等实际的物体没有特殊交代时,应当考虑其重力;对未知名的、题中又未明确交代的带电粒子,是否考虑其重力,则应根据题给的物理过程及隐含条件具体分析后作出符合实际的决定4

14、带电粒子在复合场中的运动的分析方法(1)当带电粒子在复合场中做匀速运动时,应根据平衡条件列方程求解(2)当带电粒子在复合场中做匀速圆周运动时,往往应用牛顿第二定律和平衡条件列方程联立求解(3)当带电粒子在复合场中做非匀速曲线运动时,应选用动能定理或动量守恒定律列方程求解注意:如果涉及两个带电粒子的碰撞问题,要根据动量守恒定律列方程,再与其他方程联立求解由于带电粒子在复合场中的受力情况复杂,运动情况多变,往往出现临界问题,这时应以题目中的“恰好”、“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,并根据临界条件列出辅助方程,再与其他方程联立求解053带电粒子在复合场中运动1如图所示,在x

15、轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L现有一带电量为十q的粒子,使其从静止开始释放后能经过M点如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画

16、出)故有L2R,L22R,L32R 即 RL2n,(n=1、2、3) 设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv22=qEh 对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:RmvqB 解式得:hB2qL28n2mE (nl、2、3)2如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了角,求此磁场的磁感强度B解析:粒子在电场中运行的时间t lv;加速度 aqEm;它作类平

17、抛的运动有 tg=at/v=qEl/mv2粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB又:sin=l/r=lqB/mv由两式得:B=Ecos/v3初速为零的离子经过电势差为U的电场加速后,从离子枪T中水平射出,经过一段路程后进入水平放置的两平行金属板MN和PQ之间离子所经空间存在一磁感强度为B的匀强磁场,如图所示(不考虑重力作用),离子荷质比q/m(q、m分别是离子的电量与质量)在什么范围内,离子才能打在金属板上?解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹和TQ,分别作出离子在 T、P、Q三点所受的洛仑兹力,分别延长之后相交于O1、O2点,如图所示

18、,O1和O2分别是TP和TQ的圆心,设 R1和 R2分别为相应的半径离子经电压U加速,由动能定理得qUmv2由洛仑兹力充当向心力得qvB=mv2/R 由式得q/m=2U/B2R2由图直角三角形O1CP和O2CQ可得 R12d2(R1一d/2)2,R15d/4R22(2d)2(R2一d/2)2,R217d/4依题意R1RR2 由可解得abcdSo4如图,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的半径为r0在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场一质量为m、带电

19、量为q的粒子,从紧靠内筒且正对狭缝a的s点出发,初速为零如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)abcdSo解析:如图所示,带电粒子从S出发,在两筒之间的电场力作用下加速,沿径向穿出a而进入磁场区,在洛仑兹力作用下做匀速圆周运动。粒子再回到S点的条件是能沿径向穿过狭缝d。只要穿过了d,粒子就会在电场力作用下先减速,再反向加速,经d重新进入磁场区。然后,粒子将以同样方式经过c、d,再经过a回到s点。 设粒子射入磁场区的速度为V,根据能量守恒,有mv2qU 设粒子在洛仑兹力作用下做匀速圆周运动的半径为R,由洛仑兹力公式和牛顿定

20、律得 mv2/R=qvB由前面分析可知,要回到S点,粒子从a到d必经过3/4圆周。所以半径R必定等于筒的外半径r0,则v=qBR/m=qBr0/m,U=mv2/2q=qB2r20/2m。B1回旋加速器是用来加速带电粒子的装置,如图所示.它的核心部分是两个D形金属盒,两盒相距很近,分别和高频交流电源相连接,两盒间的窄缝中形成匀强电场,使带电粒子每次通过窄缝都得到加速两盒放在匀强磁场中,磁场方向垂直于盒底面,带电粒子在磁场中做圆周运动,通过两盒间的窄缝时反复被加速,直到达到最大圆周半径时通过特殊装置被引出如果用同一回旋加速器分别加速氚核()和粒子()比较它们所加的高频交流电源的周期和获得的最大动能

21、的大小,有( B )A加速氚核的交流电源的周期较大,氚核获得的最大动能也较大B加速氚核的交流电源的周期较大,氚核获得的最大动能较小C加速氚核的交流电源的周期较小,氚核获得的最大动能也较小D加速氚核的交流电源的周期较小,氚核获得的最大动能较大3如图所示,在直角坐标系的第象限和第象限中的直角三角形区域内,分布着磁感应强度均为B5.0103T的匀强磁场,方向分别垂直纸面向外和向里质量为m6.641027、电荷量为q3.21019C的粒子(不计粒子重力),由静止开始经加速电压为U1205V的电场(图中未画出)加速后,从坐标点M(4,)处平行于x轴向右运动,并先后通过两个匀强磁场区域(1)请你求出粒子在

22、磁场中的运动半径;(2)你在图中画出粒子从直线x4到直线x4之间的运动轨迹,并在图中标明轨迹与直线x4交点的坐标;(3)求出粒子在两个磁场区域偏转所用的总时间解析:(1)粒子在电场中被加速,由动能定理得 粒子在磁场中偏转,则牛顿第二定律得联立解得(m)(2)由几何关系可得,粒子恰好垂直穿过分界线,故正确图象为OM22244x/my/m2vBB(4,)(3)带电粒子在磁场中的运动周期粒子在两个磁场中分别偏转的弧度为,在磁场中的运动总时间(s)1如图所示,竖直平面内存在水平向右的匀强电场,场强大小E=10Nc,在y0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T一带电量、质

23、量的小球由长的细线悬挂于点小球可视为质点,现将小球拉至水平位置A无初速释放,小球运动到悬点正下方的坐标原点时,悬线突然断裂,此后小球又恰好能通过点正下方的N点.(g=10ms),求:(1)小球运动到点时的速度大小;(2)悬线断裂前瞬间拉力的大小;(3)间的距离解:(1)小球从A运到O的过程中,根据动能定理: 则得小球在点速度为: (2)小球运到点绳子断裂前瞬间,对小球应用牛顿第二定律: 由、得: (3)绳断后,小球水平方向加速度 小球从点运动至点所用时间 间距离 2两块平行金属板MN、PQ水平放置,两板间距为d、板长为l,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC

24、与PQ在同一水平线上,顶点A与MN在同一水平线上,如图所示一个质量为m、电量为+q的粒子沿两板中心线以初速度v0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB边从D点进入磁场,BD=AB,并垂直AC边射出(不计粒子的重力)求:(1)两极板间电压;(2)三角形区域内磁感应强度;(3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外要使粒子进入磁场区域后能从AB边射出,试求所加磁场的磁感应强度最小值解:垂直AB边进入磁场,由几何知识得:粒子离开电场时偏转角为30 由几何关系得: 在磁场中运动半径 方向垂直纸面向里 当粒子刚好与BC边相切时,磁感应强度最小,由几何知识知粒子的运动半径

25、r2为: ( 2分 ) 即:磁感应强度的最小值为3如图甲所示,竖直挡板MN左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度E=40N/C,磁感应强度B随时间t变化的关系图象如图乙所示,选定磁场垂直纸面向里为正方向t=0时刻,一质量m=810-4kg、电荷量q=+210-4C的微粒在O点具有竖直向下的速度v=0.12m/s,O是挡板MN上一点,直线OO与挡板MN垂直,取g=10m/s2求:(1)微粒再次经过直线OO时与O点的距离;(2)微粒在运动过程中离开直线OO的最大高度;(3)水平移动挡板,使微粒能垂直射到挡板上,挡板与O点间的距离应满足的条件M

26、NOOv图甲BE图乙Ot/sB/T0.8-0.85152535102030MNOOPv0BE解:(1)由题意可知,微粒所受的重力G=mg=810-3N电场力大小F=Eq=810-3N因此重力与电场力平衡 微粒先在洛伦兹力作用下做匀速圆周运动,则 解得 R =0.6m 由 解得T=10s 则微粒在5s内转过半个圆周,再次经直线OO时与O点的距离l= 2R =1.2m (2)微粒运动半周后向上匀速运动,运动的时间为t=5s,轨迹如图所示,位移大小 s=vt=0.6m=1.88m 因此,微粒离开直线OO的最大高度h=s+R=2.48m (3)若微粒能垂直射到挡板上的某点P,P点在直线OO下方时,由图

27、象可知,挡板MN与O点间的距离应满足 L=(2.4n+0.6)m(n=0,1,2) 若微粒能垂直射到挡板上的某点P,P点在直线OO上方时,由图象可知,挡板MN与O点间的距离应满足 L=(2.4n+1.8) m (n=0,1,2) 若两式合写成 L=(1.2n+0.6) m (n=0,1,2)同样给分1如图所示,在倾角为30的斜面OA的左侧有一竖直档板,其上有一小孔P,OP=0.5m.现有一质量m=41020kg,带电量q=+21014C的粒子,从小孔以速度v0=3104m/s水平射向磁感应强度B=0.2T、方向垂直纸面向外的一圆形磁场区域且在飞出磁场区域后能垂直打在OA面上,粒子重力不计求:3

28、0OPAv0(1)粒子在磁场中做圆周运动的半径;(2)粒子在磁场中运动的时间;(3)圆形磁场区域的最小半径;(4)若磁场区域为正三角形且磁场方向垂直向里,粒子运动过程中始终不碰到挡板,其他条件不变,求:此正三角形磁场区域的最小边长30OPAv0abco160egf解:(1)由,得: (2)画出粒子的运动轨迹如图,可知,得: (3)由数学知识可得: 得: 4、如图所示,第四象限内有互相正交的匀强电场E与匀强磁场B1,匀强电场E的电场强度大小为E=500V/m,匀强磁场B1的磁感应强度大小B1=0.5T。第一象限的某个区域内,有方向垂直纸面向里的匀强磁场B2,磁场的下边界与x轴重合。一质量m=11

29、0-14kg、电荷量q=110-10C的带正电微粒以某一速度v沿与y轴正方向成60角从M点沿直线,经P点进入处于第一象限内的矩形匀强磁场B2区域。一段时间后,微粒经过y轴上的N点并与y轴正方向成60角的方向飞出。M点的坐标为(0,-10),N点的坐标为(0,30),不计微粒的重力,g取10m/s2。(1)请分析判断匀强电场E的方向并求出微粒的运动速度v;(2)匀强磁场B2的大小为多大;(3)匀强磁场B2区域的最小面积为多大?解析:(1)由于不计重力,微粒在第四象限内仅受电场力和洛伦兹力,且微粒做直线运动,速度的变化会引起洛伦兹力的变化,所以微粒一定做匀速直线运动。这样,电场力和洛伦兹力大小相等

30、,方向相反,电场E的方向与微粒运动方向垂直,即与y轴负方向成60角斜向下,由力的平衡条件有qE=qvB1,所以v=E/B1=1.0103m/s。(2)画出微粒的运动轨迹如图所示。由几何关系可知PM=0.2m,y轴与图中虚线圆相切,由tan30=可得微粒在第一象限内做圆周运动的半径为: R=PMtan30=0.2m=m。来源:Z|xx|k.Com微粒做圆周运动的向心力由洛伦兹力提供,即qvB2=m解得。(3)由图可知,磁场B2的最小区域应该分布在图示的矩形PACD内。由几何关系易得:PD=2Rsin60=0.2m,PA=R(1-cos60)=,所以,匀强磁场B2区域最小面积为:。6、如图所示,光

31、滑且足够长的平行金属导轨MN和PQ固定在同一水平面上,两导轨间距l = 0.2m,电阻R1 = 0.4,导轨上静止放置一质量m = 0.1kg、电阻R2 = 0.1的金属杆,导轨电阻忽略不计,整个装置处在磁感应强度B1 = 0.5T的匀强磁场中,磁场的方向竖直向下,现用一外力F沿水平方向拉杆,使之由静止起做匀加速运动并开始计时,若5s末杆的速度为2.5m/s,求:(1)5s末时电阻R上消耗的电功率;(2)5s末时外力F的功率.(3)若杆最终以8 m/s的速度作匀速运动, 此时闭合电键S , 射线源Q释放的粒子经加速电场C加速后从a孔对着圆心O进入半径r = m的固定圆筒中(筒壁上的小孔a只能容

32、一个粒子通过),圆筒内有垂直水平面向下的磁感应强度为B2的匀强磁场。粒子每次与筒壁发生碰撞均无电荷迁移, 也无机械能损失,粒子与圆筒壁碰撞5次后恰又从a孔背离圆心射出 , 忽略粒子进入加速电场的初速度, 若粒子质量= 6.61027 kg , 电量= 3.21019 C, 则磁感应强度B2 多大?若不计碰撞时间, 粒子在圆筒内运动的总时间多大?解:(1)5s末杆产生的电动势 E =B l v = 0.5 0.2 2.5 V = 0.25 V A = 0.5 A 电阻上消耗的电功率 PR = I 2 R1 = 0.1 W(2)金属棒的加速度由牛顿定律 F F安 = ma 杆受的安培力 F安 =

33、B I l外力F的功率 P =Fv 由以上各式得 P = ( B I l + ma ) v = 0.25W(3)此时回路电流强度为 A = 1.6A 加速电场的电压为 U = IR 1= 1.60.4 V = 0.64 V 根据动能定理:= 粒子从C孔进入磁场的速度v =m/s 8.0103 m/s 由题意知:粒子与圆筒壁碰撞5次后从a孔离开磁场, 由几何关系求得d O b = 60, 轨迹半径R = 1.0 m 又: 故: = T =1.65105 T 又:d Ob = , 粒子作圆周运动转过的圆心角为 根据 及 v = 得 T = = s = 7.8510-3 s来源:学科网粒子在圆筒内运

34、动的总时间 t = 2T = 27.8510-3 s = 1.5710 -2 s 一 、如图410甲所示,在真空中,有一半径为R的圆形区域内存在匀强磁场,磁场方向垂直纸面向外在磁场右侧有一对平行金属板M和N,两板间距为R,板长为2R,板间的中心线O1O2与磁场的圆心O在同一直线上有一电荷量为q、质量为m的带正电的粒子以速度v0从圆周上的a点沿垂直于半径OO1并指向圆心O的方向进入磁场,当从圆周上的O1点水平飞出磁场时,给M、N两板加上如图410乙所示的电压,最后粒子刚好以平行于N板的速度从N板的边缘飞出(不计粒子所受到的重力、两板正对面之间为匀强电场,边缘电场不计)图410(1)求磁场的磁感应

35、强度B(2)求交变电压的周期T和电压U0的值(3)当t时,该粒子从M、N板右侧沿板的中心线仍以速度v0射入M、N之间,求粒子从磁场中射出的点到a点的距离【解析】(1)粒子自a点进入磁场,从O1点水平飞出磁场,则其运动的轨道半径为R由qv0Bm,解得:B(2)粒子自O1点进入电场后恰好从N板的边缘平行极板飞出,设运动时间为t,根据类平抛运动规律有:2Rv0t2n()2又tnT (n1,2,3)解得:T (n1,2,3)U0 (n1,2,3)图410丙(3)当t时,粒子以速度v0沿O2O1射入电场,该粒子恰好从M板边缘以平行于极板的速度射入磁场,进入磁场的速度仍为v0,运动的轨迹半径为R设进入磁场

36、时的点为b,离开磁场时的点为c,圆心为O3,如图410丙所示,四边形ObO3c是菱形,所以OcO3b,故c、O、a三点共线,ca即为圆的直径,则c、a间的距离d2R答案(1)(2) (n1,2,3) (n1,2,3)(3)2R 【点评】带电粒子在匀强电场中偏转的运动是类平抛运动,解此类题目的关键是将运动分解成两个简单的直线运动,题中沿电场方向的分运动就是“受力周期性变化的加速运动”例3如图411甲所示,空间存在匀强电场和匀强磁场,电场方向为y轴正方向,磁场方向垂直于xy平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样一带正电荷的粒子从P(0,h)点以一定的速

37、度平行于x轴正向入射这时若只有磁场,粒子将做半径为R0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动现在只加电场,当粒子从P点运动到xR0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x轴交于M点,不计重力,求:图411甲(1)粒子到达xR0平面时的速度方向与x轴的夹角以及粒子到x轴的距离(2)M点的横坐标xM【解析】(1)粒子做直线运动时,有:qEqBv0做圆周运动时,有:qBv0只有电场时,粒子做类平抛运动,则有:qEmaR0v0tvyat解得:vyv0粒子的速度大小为:vv0速度方向与x轴的夹角为:粒子与x轴的距离为:Hhat2h(2)撤去电场加上磁场后,

38、有:qBvm解得:RR0此时粒子的运动轨迹如图411乙所示圆心C位于与速度v方向垂直的直线上,该直线与x轴和y轴的夹角均为由几何关系可得C点的坐标为:图411乙xC2R0yCHR0h过C点作x轴的垂线,在CDM中,有:lCMRR0,lCDyCh解得:lDMM点的横坐标为:xM2R0答案(1)h(2)2R0【点评】无论带电粒子在匀强电场中的偏转还是在匀强磁场中的偏转,偏转角往往是个较关键的量例4如图412甲所示,质量为m、电荷量为e的电子从坐标原点O处沿xOy平面射入第一象限内,射入时的速度方向不同,但大小均为v0现在某一区域内加一方向向外且垂直于xOy平面的匀强磁场,磁感应强度大小为B,若这些

39、电子穿过磁场后都能垂直地射到与y轴平行的荧光屏MN上,求:图412甲(1)荧光屏上光斑的长度(2)所加磁场范围的最小面积【解析】(1)如图412乙所示,要求光斑的长度,只要找到两个边界点即可初速度沿x轴正方向的电子沿弧OA运动到荧光屏MN上的P点;初速度沿y轴正方向的电子沿弧OC运动到荧光屏MN上的Q点图412乙设粒子在磁场中运动的半径为R ,由牛顿第二定律得:ev0Bm,即R由几何知识可得:PQR(2)取与x轴正方向成角的方向射入的电子为研究对象,其射出磁场的点为E(x,y),因其射出后能垂直打到屏MN上,故有:xRsin yRRcos 即x2(yR)2R2又因为电子沿x轴正方向射入时,射出

40、的边界点为A点;沿y轴正方向射入时,射出的边界点为C点,故所加最小面积的磁场的边界是以(0,R)为圆心、R为半径的圆的一部分,如图乙中实线圆弧所围区域,所以磁场范围的最小面积为:SR2R2R2(1)()2答案(1)(2)(1)()2【点评】带电粒子在匀强磁场中偏转的试题基本上是年年考,大概为了求新求变,在2009年高考中海南物理卷(第16题)、浙江理综卷(第25题)中都出现了应用这一推论的题型同类拓展2如图413甲所示,ABCD是边长为a的正方形质量为m、电荷量为e的电子以大小为v0的初速度沿纸面垂直于BC边射入正方形区域在正方形内适当区域中有匀强磁场电子从BC边上的任意点入射,都只能从A点射

41、出磁场不计重力,求:图413甲(1)此匀强磁场区域中磁感应强度的方向和大小(2)此匀强磁场区域的最小面积2009年高考海南物理卷【解析】(1)若要使由C点入射的电子从A点射出,则在C处必须有磁场,设匀强磁场的磁感应强度的大小为B,令圆弧是自C点垂直于BC入射的电子在磁场中的运行轨道,电子所受到的磁场的作用力fev0B,方向应指向圆弧的圆心,因而磁场的方向应垂直于纸面向外圆弧的圆心在CB边或其延长线上依题意,圆心在A、C连线的中垂线上,故B点即为圆心,圆半径为a按照牛顿定律有:fm联立解得:B(2)由(1)中决定的磁感应强度的方向和大小,可知自C点垂直于BC入射的电子在A点沿DA方向射出,且自B

42、C边上其他点垂直于入射的电子的运动轨道只能在BAEC区域中,因而,圆弧是所求的最小磁场区域的一个边界为了决定该磁场区域的另一边界,我们来考察射中A点的电子的速度方向与BA的延长线交角为(不妨设0)的情形该电子的运动轨迹QPA如图413乙所示图中,圆弧的圆心为O,PQ垂直于BC边,由上式知,圆弧的半径仍为a过P点作DC的垂线交DC于G,由几何关系可知DPG,在以D为原点、DC为x轴、DA为y轴的坐标系中,P点的坐标(x,y)为:xasin ,yacos 图413乙这意味着,在范围0内,P点形成以D为圆心、a为半径的四分之一圆周,它是电子做直线运动和圆周运动的分界线,构成所求磁场区域的另一边界因此,所求的最小匀强磁场区域是分别以B和D为圆心、a为半径的两个四分之一圆周 和 所围成的,其面积为:S2(a2a2)a2答案

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1