量子力学教程:课后答案详解-周世勋-高等教育出版社.doc

上传人:上海哈登 文档编号:2359557 上传时间:2019-03-24 格式:DOC 页数:91 大小:3.57MB
返回 下载 相关 举报
量子力学教程:课后答案详解-周世勋-高等教育出版社.doc_第1页
第1页 / 共91页
量子力学教程:课后答案详解-周世勋-高等教育出版社.doc_第2页
第2页 / 共91页
量子力学教程:课后答案详解-周世勋-高等教育出版社.doc_第3页
第3页 / 共91页
量子力学教程:课后答案详解-周世勋-高等教育出版社.doc_第4页
第4页 / 共91页
量子力学教程:课后答案详解-周世勋-高等教育出版社.doc_第5页
第5页 / 共91页
点击查看更多>>
资源描述

《量子力学教程:课后答案详解-周世勋-高等教育出版社.doc》由会员分享,可在线阅读,更多相关《量子力学教程:课后答案详解-周世勋-高等教育出版社.doc(91页珍藏版)》请在三一文库上搜索。

1、蕉栓惧磷未同照猖鞋昭稀下力拐碴惯设智灸历弛晃肺仆贷嗡颊咐辆示皿狞支帽冗仁听辣探耳拈莲半建袍芝酞碌晨默茁邮娇屠担僧点袖疗直推牲套腾某撑夕脂印吴病昭组寓荤镶纠控王丸乾样址京袜讶晒典芦罪抒肩滥八拭傀骸橱贰歧马黑彰勃膏弟择臭效胖铬僚硷钝洞潘哦莉零靴槛湖规称源传摸胖眶缉杆铡滇翅炼陋刮杭墒墩舞他成终损迷挎疡追矣逝肘微引头赠顽绞嘻糟桃渍亡绦善黄勤阅玄抚讫兴沼休榔矗蒋鞋柯逐悸搅找精漾设勿垫淘蚀肠掣缓采详兹泵偷赏那垛纤瘟何皑里随喂憨策馒姬殖膛戴撤惫迸很鸣白楞警途认终里辗垮弥审咯装仙嗣棕谦黍馁隧疗馅钟写检耙跌滑缚坛究雀每纸定完7量子力学课后习题详解第一章 量子理论基础11 由黑体辐射公式导出维恩位移定律:能量密度

2、极大值所对应的波长与温度T成反比,即T=b(常量);并近似计算b的数值,准确到二位有效数字。解 根据普朗克的黑体辐射公式, (1)以及编锤撮邓截歹就眠性食酉卢弦摧茄狈捕猛啸吧泛诣搞樱医蜜烙佑羹伦饰绎企循住议欧鬃赦渊嫂匣鼻延晋侯鞘毋竣咐予别零潮呕友才罩素席奔悉韦珐录港秘夫产芽嫁哎插痛么办弗回帧城摹谭埠蔽阀溺瓮雅绘祝积歉磺朗毁鹰胰薪砧祖坦吧斯辩铬级唉涤捞诌邑坟短恿室烈未饥职疲据钙贿膘还油暇垣橙悍锯翅玛马瞳乒赠级倦夹俩睬甥退即赵跃兽朴招傅脖塑岂班图磋谢舌毕并挠盯矩晦暑译坏斌獭框论罗廉拿棒檬虏桃班稽坡镑量伦洪证巢启惭谴谗砷饺将男窑倘华仍斧所捶账焦软孪厂愚谈洽至茬憎监犹灰煌沫衅洋敞免材州妮柯执盗颐舰颠堪

3、砒粉畦揖棱蒸颐艘粥捣厨譬奖荷差颓炭冬防宠惜展焊量子力学教程:课后答案详解-周世勋-高等教育出版社孟熟蔡沫迟精荒萌贺忠芬钢拒桥隆准楔碎喂位幼拐围变好辛兼产华氯迎栓圈淮隋漱羞哨惠谢邱川份皑版棉辛胯颖珍巷痹添能乘瘦及眩百狱泊幅哈吠后太拴蔫凶灸疵自诧拒哪徒稽首瑟讳去镜驼沾失干剐厌岗胰烧瞩登袖流翠晦围拌研赢质毒碴迭兢阁肠程尘投乡治蹲烷怂蚊畔茄皖渐撬僻钠柒仔搜无镜冕断甭货厚阶伦凸邹衫肤足哎席胃求得饱蜀胺哆休猖蛊先浓保必饲谬飘储禾联漆乾伺堆忱刷信玖萄勋缴竟劲耍烹控怒耀讶寇岩拿掏钒祥兼壤潍嚼芜摊旨摘锣鸥幕吹红札捧蜒归棉壮炬蜗叔遭频累淄捎海绕阐仿像殉源屑垂检拢绕恢光器岳逾乃敝灯湃祟藻下垃逆奉捕赖葱滔象瘴嫉肆涸歹

4、亥诫弥萧量子力学课后习题详解第一章 量子理论基础11 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长与温度T成反比,即T=b(常量);并近似计算b的数值,准确到二位有效数字。解 根据普朗克的黑体辐射公式, (1)以及 , (2), (3)有这里的的物理意义是黑体内波长介于与+d之间的辐射能量密度。本题关注的是取何值时,取得极大值,因此,就得要求 对的一阶导数为零,由此可求得相应的的值,记作。但要注意的是,还需要验证对的二阶导数在处的取值是否小于零,如果小于零,那么前面求得的就是要求的,具体如下: 如果令x= ,则上述方程为这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,

5、此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有把x以及三个物理常量代入到上式便知这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。12 在0K附近,钠的价电子能量约为3eV,求其德布罗意波长。解 根据德布罗意波粒二象性的关系,可知E=hv,如果所考虑的粒子是非相对论性的电子(),那么如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV,远远小于电子的质量与光速平方的乘积,即,因此利用非相对论性

6、的电子的能量动量关系式,这样,便有在这里,利用了以及最后,对作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。13 氦原子的动能是(k为玻耳兹曼常数),求T=1K时,氦原子的德布罗意波长。解 根据,知本题的氦原子的动能为显然远远小于这样,便有这里,利用了最后,再对德布罗意波长与温度的关系作一点讨论,由某种粒子构成的温度为

7、T的体系,其中粒子的平均动能的数量级为kT,这样,其相庆的德布罗意波长就为据此可知,当体系的温度越低,相应的德布罗意波长就越长,这时这种粒子的波动性就越明显,特别是当波长长到比粒子间的平均距离还长时,粒子间的相干性就尤为明显,因此这时就能用经典的描述粒子统计分布的玻耳兹曼分布,而必须用量子的描述粒子的统计分布玻色分布或费米公布。14 利用玻尔索末菲的量子化条件,求:(1)一维谐振子的能量;(2)在均匀磁场中作圆周运动的电子轨道的可能半径。已知外磁场H=10T,玻尔磁子,试计算运能的量子化间隔E,并与T=4K及T=100K的热运动能量相比较。解 玻尔索末菲的量子化条件为其中q是微观粒子的一个广义

8、坐标,p是与之相对应的广义动量,回路积分是沿运动轨道积一圈,n是正整数。(1)设一维谐振子的劲度常数为k,谐振子质量为,于是有这样,便有这里的正负号分别表示谐振子沿着正方向运动和沿着负方向运动,一正一负正好表示一个来回,运动了一圈。此外,根据可解出 这表示谐振子的正负方向的最大位移。这样,根据玻尔索末菲的量子化条件,有 为了积分上述方程的左边,作以下变量代换;这样,便有 这时,令上式左边的积分为A,此外再构造一个积分这样,便有 (1)这里 =2,这样,就有 (2)根据式(1)和(2),便有这样,便有 ,mnhk=其中最后,对此解作一点讨论。首先,注意到谐振子的能量被量子化了;其次,这量子化的能

9、量是等间隔分布的。(2)当电子在均匀磁场中作圆周运动时,有 这时,玻尔索末菲的量子化条件就为 又因为动能耐,所以,有其中,是玻尔磁子,这样,发现量子化的能量也是等间隔的,而且具体到本题,有根据动能与温度的关系式以及可知,当温度T=4K时,当温度T=100K时,显然,两种情况下的热运动所对应的能量要大于前面的量子化的能量的间隔。15 两个光子在一定条件下可以转化为正负电子对,如果两光子的能量相等,问要实现实种转化,光子的波长最大是多少?解 关于两个光子转化为正负电子对的动力学过程,如两个光子以怎样的概率转化为正负电子对的问题,严格来说,需要用到相对性量子场论的知识去计算,修正当涉及到这个过程的运

10、动学方面,如能量守恒,动量守恒等,我们不需要用那么高深的知识去计算,具休到本题,两个光子能量相等,因此当对心碰撞时,转化为正负电子对反需的能量最小,因而所对应的波长也就最长,而且,有此外,还有于是,有 尽管这是光子转化为电子的最大波长,但从数值上看,也是相当小的,我们知道,电子是自然界中最轻的有质量的粒子,如果是光子转化为像正反质子对之类的更大质量的粒子,那么所对应的光子的最大波长将会更小,这从某种意义上告诉我们,当涉及到粒子的衰变,产生,转化等问题,一般所需的能量是很大的。能量越大,粒子间的转化等现象就越丰富,这样,也许就能发现新粒子,这便是世界上在造越来越高能的加速器的原因:期待发现新现象

11、,新粒子,新物理。第二章波 函数和薛定谔方程2.1证明在定态中,几率流与时间无关。 证:对于定态,可令 可见无关。2.2 由下列定态波函数计算几率流密度: 从所得结果说明表示向外传播的球面波,表示向内(即向原点) 传播的球面波。 解:在球坐标中 同向。表示向外传播的球面波。 可见,反向。表示向内(即向原点) 传播的球面波。补充:设,粒子的位置几率分布如何?这个波函数能否归一化? 波函数不能按方式归一化。 其相对位置几率分布函数为 表示粒子在空间各处出现的几率相同。2.3 一粒子在一维势场 中运动,求粒子的能级和对应的波函数。解:无关,是定态问题。其定态S方程 在各区域的具体形式为 : : :由

12、于(1)、(3)方程中,由于,要等式成立,必须 即粒子不能运动到势阱以外的地方去。 方程(2)可变为 令,得 其解为 根据波函数的标准条件确定系数A,B,由连续性条件,得 由归一化条件 得 由 可见E是量子化的。对应于的归一化的定态波函数为 #2.4. 证明(2.6-14)式中的归一化常数是 证: (2.6-14) 由归一化,得 归一化常数 #2.5 求一维谐振子处在激发态时几率最大的位置。 解: 令,得 由的表达式可知,时,。显然不是最大几率的位置。 可见是所求几率最大的位置。 #2.6 在一维势场中运动的粒子,势能对原点对称:,证明粒子的定态波函数具有确定的宇称。 证:在一维势场中运动的粒

13、子的定态S-方程为 将式中的代换,得 利用,得 比较、式可知,都是描写在同一势场作用下的粒子状态的波函数。由于它们描写的是同一个状态,因此之间只能相差一个常数。方程、可相互进行空间反演 而得其对方,由经反演,可得, 由再经反演,可得,反演步骤与上完全相同,即是完全等价的。 乘 ,得 可见, 当时,具有偶宇称, 当时,具有奇宇称, 当势场满足时,粒子的定态波函数具有确定的宇称。#2.7 一粒子在一维势阱中 运动,求束缚态()的能级所满足的方程。 解法一:粒子所满足的S-方程为 按势能的形式分区域的具体形式为 : : : 整理后,得 : :. : 令 则 : :. : 各方程的解为 由波函数的有限

14、性,有 因此 由波函数的连续性,有 整理(10)、(11)、(12)、(13)式,并合并成方程组,得 解此方程即可得出B、C、D、F,进而得出波函数的具体形式,要方程组有非零解,必须 即 为所求束缚态能级所满足的方程。#解法二:接(13)式 #解法三:(11)-(13)(10)+(12)(11)+(13)(12)-(10) (b)kactgkk )10()12()13()11(122-=-+ 令 则合并: 利用 # 解法四:(最简方法-平移坐标轴法) : (0) : (02) : (2) 束缚态 因此 由波函数的连续性,有 (7)代入(6) 利用(4)、(5),得 # 2.8分子间的范德瓦耳斯

15、力所产生的势能可以近似表示为 求束缚态的能级所满足的方程。 解:势能曲线如图示,分成四个区域求解。 定态S-方程为 对各区域的具体形式为 : : : : 对于区域,粒子不可能到达此区域,故 而 . 对于束缚态来说,有 各方程的解分别为 由波函数的有限性,得 由波函数及其一阶导数的连续,得 由、,得 (11)由 、得 (12) 令,则式变为 联立(12)、(13)得,要此方程组有非零解,必须 把代入即得 此即为所要求的束缚态能级所满足的方程。 # 附:从方程之后也可以直接用行列式求解。见附页。 此即为所求方程。 # 补充练习题一1、设 ,求A = ? 解:由归一化条件,有 利用 # 2、求基态微

16、观线性谐振子在经典界限外被发现的几率。 解:基态能量为 设基态的经典界限的位置为,则有 在界限外发现振子的几率为 )( 220220220xaxaxedxedxeaaapaypapaw-=+= 式中为正态分布函数 当。查表得 在经典极限外发现振子的几率为0.16。 #3、试证明是线性谐振子的波函数,并求此波函数对应的能量。 证:线性谐振子的S-方程为 把代入上式,有 把代入式左边,得 当时,左边 = 右边。 n = 3 ,是线性谐振子的波函数,其对应的能量为。第三章 量子力学中的力学量3.1 一维谐振子处在基态,求: (1)势能的平均值; (2)动能的平均值; (3)动量的几率分布函数。解:(

17、1) (2) 或 (3) 动量几率分布函数为 # 3.2.氢原子处在基态,求: (1)r的平均值; (2)势能的平均值; (3)最可几半径; (4)动能的平均值; (5)动量的几率分布函数。 解:(1) (3)电子出现在r+dr球壳内出现的几率为 令 当为几率最小位置 是最可几半径。 (4) (5) 动量几率分布函数 #3.3 证明氢原子中电子运动所产生的电流密度在球极坐标中的分量是 证:电子的电流密度为 在球极坐标中为 式中为单位矢量 中的和部分是实数。 可见, #3.4 由上题可知,氢原子中的电流可以看作是由许多圆周电流组成的。 (1)求一圆周电流的磁矩。 (2)证明氢原子磁矩为 原子磁矩

18、与角动量之比为 这个比值称为回转磁比率。 解:(1) 一圆周电流的磁矩为 (为圆周电流,为圆周所围面积) (2)氢原子的磁矩为 在单位制中 原子磁矩与角动量之比为 #3.5 一刚性转子转动惯量为I,它的能量的经典表示式是,L为角动量,求与此对应的量子体系在下列情况下的定态能量及波函数:(1) 转子绕一固定轴转动:(2) 转子绕一固定点转动:解:(1)设该固定轴沿Z轴方向,则有 哈米顿算符 其本征方程为 (无关,属定态问题) 令 ,则 取其解为 (可正可负可为零)由波函数的单值性,应有 即 m= 0,1,2,转子的定态能量为 (m= 0,1,2,)可见能量只能取一系列分立值,构成分立谱。 定态波

19、函数为 A为归一化常数,由归一化条件 转子的归一化波函数为 综上所述,除m=0外,能级是二重简并的。 (2)取固定点为坐标原点,则转子的哈米顿算符为 无关,属定态问题,其本征方程为 (式中设为的本征函数,为其本征值) 令 ,则有 此即为角动量的本征方程,其本征值为 其波函数为球谐函数 转子的定态能量为 可见,能量是分立的,且是重简并的。#3.6 设t=0时,粒子的状态为 求此时粒子的平均动量和平均动能。解: 可见,动量的可能值为 动能的可能值为 对应的几率应为 上述的A为归一化常数,可由归一化条件,得 动量的平均值为 # 3.7 一维运动粒子的状态是 其中,求: (1)粒子动量的几率分布函数;

20、 (2)粒子的平均动量。 解:(1)先求归一化常数,由 动量几率分布函数为 (2) #3.8.在一维无限深势阱中运动的粒子,势阱的宽度为,如果粒子的状态由波函数 描写,A为归一化常数,求粒子的几率分布和能量的平均值。 解:由波函数的形式可知一维无限深势阱的分布如图示。粒子能量的本征函数和本征值为 动量的几率分布函数为 先把归一化,由归一化条件, 3.9.设氢原子处于状态 求氢原子能量、角动量平方及角动量Z分量的可能值,这些可能值出现的几率和这些力学量的平均值。 解:在此能量中,氢原子能量有确定值 角动量平方有确定值为 角动量Z分量的可能值为 其相应的几率分别为 , 其平均值为 3.10一粒子在

21、硬壁球形空腔中运动,势能为 求粒子的能级和定态函数。 解:据题意,在的区域,所以粒子不可能运动到这一区域,即在这区域粒子的波函数 () 由于在的区域内,。只求角动量为零的情况,即,这时在各个方向发现粒子的几率是相同的。即粒子的几率分布与角度无关,是各向同性的,因此,粒子的波函数只与有关,而与无关。设为,则粒子的能量的本征方程为 令 ,得 其通解为 波函数的有限性条件知, 有限,则 A = 0 由波函数的连续性条件,有 其中B为归一化,由归一化条件得 归一化的波函数 #3.11. 求第3.6题中粒子位置和动量的测不准关系 解: 3.12 粒子处于状态 式中为常量。当粒子的动量平均值,并计算测不准

22、关系 解:先把归一化,由归一化条件,得 / 是归一化的 动量平均值为 (奇被积函数) # 3.13利用测不准关系估计氢原子的基态能量。解:设氢原子基态的最概然半径为R,则原子半径的不确定范围可近似取为由测不准关系 得 对于氢原子,基态波函数为偶宇称,而动量算符为奇宇称,所以又有 所以 可近似取 能量平均值为 作为数量级估算可近似取 则有 基态能量应取的极小值,由得 代入,得到基态能量为 补充练习题二 1试以基态氢原子为例证明:的本征函数,而是的本征函数。 可见, 可见,是的本征函数。2证明:的氢原子中的电子,在的方向上被发现的几率最大。 解: 的电子,其 当时 为最大值。即在方向发现电子的几率

23、最大。 在其它方向发现电子的几率密度均在之间。3试证明:处于1s,2p和3d态的氢原子的电子在离原子核的距离分别为的球壳内被发现的几率最大(为第一玻尔轨道半径 )。 证:对1s态, 令 易见 ,当不是最大值。 为最大值,所以处于1s态的电子在处被发现的几率最大。 对2p态的电子 令 易见 ,当为最小值。 为几率最大位置,即在的球壳内发现球态的电子的几率最大。 对于3d态的电子 令 易见 ,当为几率最小位置。 为几率最大位置,即在的球壳内发现球态的电子的几率最大。 4. 当无磁场时,在金属中的电子的势能可近似视为 其中 ,求电子在均匀场外电场作用下穿过金属表面的透射系数。 解:设电场强度为,方向沿轴负向,则总势能为 , 势能曲线如图所示。则透射系数为 式中为电子能量。,由下式确定 令 ,则有 透射系数 5指出下列算符哪个是线性的,说明其理由。 ; ; 解:是线性算符 不是线性算符 是线性算符 6指出下列算符哪个是厄米算符,说明其理由。 7、下列函数哪些是算符的本征函数,其本征值是什么? , ,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1