光电检测c9.ppt

上传人:本田雅阁 文档编号:2981490 上传时间:2019-06-17 格式:PPT 页数:84 大小:5.54MB
返回 下载 相关 举报
光电检测c9.ppt_第1页
第1页 / 共84页
光电检测c9.ppt_第2页
第2页 / 共84页
光电检测c9.ppt_第3页
第3页 / 共84页
光电检测c9.ppt_第4页
第4页 / 共84页
光电检测c9.ppt_第5页
第5页 / 共84页
点击查看更多>>
资源描述

《光电检测c9.ppt》由会员分享,可在线阅读,更多相关《光电检测c9.ppt(84页珍藏版)》请在三一文库上搜索。

1、光电检测技术,第8章 固体成像器件,固体摄像器件的功能: 把入射到传感器光敏面上按空间分布的光强信息(可见光、红外辐射等),转换为按时序串行输出的电信号 视频信号。其视频信号能再现入射的光辐射图像。,二、光电成像器件的类型,光电成像器件(成像原理),扫描型,非扫描型,真空电子束扫描,固体自扫描:CCD,光电型,热电型:热释电摄像管,光电发射式摄像管,光电导式摄像管,变像管(完成图像光谱变换),红外变像管,紫外变像管,X射线变像管,像增强管(图像强度的变换),串联式,级联式,微通道板式,负电子亲和势阴极,常由像敏面,电子透镜显像面构成,60年代末期,美国贝尔实验宝WS波涅尔、GE史密斯等人在研究

2、磁泡时,发现电荷通过半导体势阱发生转移的现象,提出了电荷耦合这一新概念和一维CCD器件模型。同时预言了CCD器件在信号处理、信号储存及图像传感中的应用前景。鉴于美国MOS器件工艺及硅材料研究的雄厚基础,这种新型器件的设想很快得到了实现,,Charge Coupled Device(CCD),至1974年,美国Rch公司的(512320)象元面阵CCD摄像机问世。随着大规模集成电路工艺的不断完善和推广其它一些国家也相继赶上、纷纷研制成功CCD器件。 美国是世界上芯片(IC)设计、制造、加工工艺高度发达的国家。在CCD传感器和应用电视技术方面,以高清晰度、特大靶面、低照度、超高动态范围、红外波段等

3、的CCD摄像机占有绝对优势。 日本是一个电子工业产业化最发达的国家之一。在民用消费型光电产品的开发和生产上堪称世界第一位,尤其是CCD摄像机、摄录一体化和广播数字化电视摄录设备基本上包揽了全世界的大部分市场。由于日本本国的新产品更新换代速度很快,所以无论在产品的产量上还是在产品的质量上都占据世界首位。,Charge Coupled Device(CCD),CCD的单元结构,a) CCD单元 b) CCD线阵列,CCD单元部分,就是一个由金属-氧化物-半导体组成的电容器,简称MOS(Metal -Oxide -Semiconductor)结构。,如果衬底接地,突然给金属极板加一个正的电压UG(栅

4、极电压),则金属极板和衬底之间就会产生一个电场。 这个电场就要迫使半导体表面部分的空穴离开表面入地,从而在表面附近形成一个带负电荷的耗尽区,这个耗尽区也称为表面势阱。,表面势阱的深度,近似地与极板上所加的电压成正比(在形成反型层之前)。 这时,电子在表面处的势能为EpqUs,其中的Us称为表面势,即半导体表面对于衬底的电势差。 如果以某种方式(电注入或光注入)向势阱中注入电子,则这些电子将要聚集于表面附近,称为电荷包。,电荷包的储存,因为每个CCD单元都是一个电容器,所以它能储存电荷。但是,当有电荷包注入时,势阱深度将随之变浅,因为它始终要保持极板上的正电荷总量恒等于势阱中自由电荷加上负离子的

5、总和。,每个极板下的势阱中所能储存的最大信息电荷量Q为:,QCoxUG Cox:单位面积氧化层的电容,电荷包的光注入机构,MOS电容器的耦合,当两个金属栅彼此足够靠近时,其间隙下的表面势将由两个金属栅极的电位决定,从而就能够形成两个MOS电容器下面耗尽层的耦合,使一个MOS电容器中存储的信号电荷转移到下一个MOS电容器中去。,电荷包的转移,CCD中电荷包的转移是由各极板下面的势阱不对称和势阱耦合引起的。 将线阵列各极板分为三组,然后分别加以相位不同的时钟脉冲驱动,这即是所谓的三相CCD。 这时,由于同一时刻三相脉冲的电平不同,各极板下面所造成的势阱深度也就不同。 从而电荷包就要沿着表面从电势能

6、高的地方向电势能低的地方流动。,三相CCD的时钟波形刚好互相错开T/3周期,因此时钟电压波形每变化T/3周期,电荷包就要转移过一个极板,每变化一个周期,即转移过三个极板。 同理,除了有三相CCD外,还有二相的、四相的CCD。,二相CCD的时钟波形对称,但氧化层(SiO2)厚度不均匀,从而极板下面的势阱也不均匀。因此电荷包也会沿着表面从电势能高的地方向电势能低的地方流动。 对于二相CCD,时钟电压波形每变化T/2,电荷包将转移过一个极板,每变化一个周期,则转移过二个极板。由此可见,CCD具有移位寄存器的功能。,电荷包的输出机构,利用二极管的输出机构,CCD电荷包输出机构的形式很多,其中最简单的是

7、利用二极管的输出机构,与123相连的电极称为栅极,与OG相连的电极称为输出栅,输出栅的右边就是输出二极管。 输出栅和其它栅极一样,加正电压时,它下面的半导体表面也产生势阱。它的势阱介于3的势阱和输出二极管耗尽区之间,能够把二者连通起来,因此可以通过改变OG上所加的电压来控制它下面的通道。 例如,电荷包已由2转入3,当3下的势阱由深变浅的同时, OG下的势陇正好也比较深,这时3势阱中的电荷包就能够通过OG下的势阱流入输出二极管的耗尽区。,因输出二极管是反偏置的,内部有很强的自建电场,因此电荷包一进入二极管的耗尽区,即可被迅速地拉走,成为输出回路的电子流。 因此,在没有电荷包输出时,a点为高电平,

8、而有电荷包输出时,因为电子流通过负载电阻要产生电压降,a点则为低电平,a点电压降低的程度正比于电荷包所携带的电量,所以这个电压变化即是输出信号。,实用固体摄象器件都是在一块硅片上同时制作出光电二极管阵列和CCD移位寄存器两部分。 光电二极管阵列专门用来完成光电变换和光积分, CCD移位寄存器专门用来完成光生电荷转移。因为这种转移不是借助于外来的扫描,而是依靠驱动脉冲来完成的,故也称为自扫描。 根据光敏象素的排列方式,CCD摄象器件分为线阵列和面阵列两大类。,CCD摄象器件,线阵CCD外形,线阵列CCD摄象器件,光电二极管阵列和CCD移位寄存器统一集成在一块半导体硅片上,分别由不同的脉冲驱动。

9、设衬底为PSi,光电二极管阵列中各单元彼此被SiO2隔离开,排成一行,每个光电二极管即为一个象素。各光电二极管的光电变换作用和光生电荷的存储作用,与分立元件时的原理相同。 如图中p(行扫描电压)为高电平时,各光电二极管为反偏置,光生的电子-空穴对中的空穴被PN结的内电场推斥,通过衬底入地,而电子则积存于PN结的耗尽区中。 在入射光的持续照射下,内电场的分离作用也在持续地进行,从而即可得到光生电荷的积累,转移栅(x)由铝条或多晶硅构成,转移栅接低电平时,在它下面的衬底中将形成高势垒,使光电二极管阵列与CCD移位寄存器彼此隔离。 转移栅接高电平时,它下面衬底中的势垒被拆除,成为光生电荷(电荷包)流

10、入CCD的通道。 这时,电荷包并行地流入CCD移位寄存器,接着,在驱动脉冲的作用下,电荷包按着它在CCD中的空间顺序,通过输出机构串行地转移出去。,对于二相CCD,时钟电压波形,每变化T/2,电荷包将转移过一个极板,变化一个周期,则转移过二个极板。 因为二相CCD是二个极板对应着一个光敏元,所以时钟波形变化一个周期,电荷包所转移过的空间距离也是一个光敏元的中心距。 对于三相CCD,时钟电压波形每变化T/3周期,电荷包就要转移过一个极板,每变化一个周期,即转移过三个极板,时钟电压波形变化一个周期,电荷包所转移过的空间距离,正好是一个光敏元的中心距。,对于线阵列CCD摄象器件来说,不论是三相的还是

11、二相的,都有单侧传输和双侧传输两种结构形式。 单侧传输的特点是结构简单,但电荷包转移所经过的极板数多,传输效率低。 双侧传输的特点是结构复杂一些,但电荷包转移所经过的极板数只是单侧传输的一半,所以损耗小,传输效率高。 一般光敏元位数少的片子,多采用单侧传输结构,而位数多的片子,则多采用双侧传输结构。,面阵CCD,面阵CCD能在x、y两个方向都能实现电子自扫描,可以获得二维图像。,面阵列CCD摄象器件,RAIN (PHOTONS),BUCKETS (PIXELS),VERTICAL CONVEYOR BELTS (CCD COLUMNS),HORIZONTAL CONVEYOR BELT (SE

12、RIAL REGISTER),MEASURING CYLINDER (OUTPUT AMPLIFIER),1.Principle of CCD,1.5 Charge Transfer of Area CCD,Exposure finished, buckets now contain samples of rain.,1.Principle of CCD,1.5 Charge Transfer of Area CCD,Conveyor belt starts turning and transfers buckets. Rain collected on the vertical convey

13、or is tipped into buckets on the horizontal conveyor.,1.Principle of CCD,1.5 Charge Transfer of Area CCD,Vertical conveyor stops. Horizontal conveyor starts up and tips each bucket in turn into the measuring cylinder .,1.Principle of CCD,1.5 Charge Transfer of Area CCD,After each bucket has been mea

14、sured, the measuring cylinder is emptied , ready for the next bucket load.,1.Principle of CCD,1.5 Charge Transfer of Area CCD,1.Principle of CCD,1.5 Charge Transfer of Area CCD,1.Principle of CCD,1.5 Charge Transfer of Area CCD,1.Principle of CCD,1.5 Charge Transfer of Area CCD,1.Principle of CCD,1.

15、5 Charge Transfer of Area CCD,1.Principle of CCD,1.5 Charge Transfer of Area CCD,1.Principle of CCD,1.5 Charge Transfer of Area CCD,A new set of empty buckets is set up on the horizontal conveyor and the process is repeated.,1.Principle of CCD,1.5 Charge Transfer of Area CCD,1.Principle of CCD,1.5 C

16、harge Transfer of Area CCD,1.Principle of CCD,1.5 Charge Transfer of Area CCD,1.Principle of CCD,1.5 Charge Transfer of Area CCD,1.Principle of CCD,1.5 Charge Transfer of Area CCD,1.Principle of CCD,1.5 Charge Transfer of Area CCD,1.Principle of CCD,1.5 Charge Transfer of Area CCD,1.Principle of CCD

17、,1.5 Charge Transfer of Area CCD,1.Principle of CCD,1.5 Charge Transfer of Area CCD,1.Principle of CCD,1.5 Charge Transfer of Area CCD,1.Principle of CCD,1.5 Charge Transfer of Area CCD,1.Principle of CCD,1.5 Charge Transfer of Area CCD,1.Principle of CCD,1.5 Charge Transfer of Area CCD,1.Principle

18、of CCD,1.5 Charge Transfer of Area CCD,1.Principle of CCD,1.5 Charge Transfer of Area CCD,1.Principle of CCD,1.5 Charge Transfer of Area CCD,1.Principle of CCD,1.5 Charge Transfer of Area CCD,Eventually all the buckets have been measured, the CCD has been read out.,1.Principle of CCD,1.5 Charge Tran

19、sfer of Area CCD,Principle of CCD,Charge Transfer of Area CCD,光敏区是由光敏CCD阵列构成的,其作用是光电变换和在自扫描正程时间内进行光积分,暂存区是由遮光的CCD构成的,它的位数和光敏区一一对应,其作用是在自扫描时间内,迅速地将光敏区里整帧的电荷包转移到它里面暂存起来。 然后,光敏区开始进行第二帧的光积分,而暂存区则利用这个时间,将电荷包一次一行地转移给CCD移位寄存器,变为串行信号输出。 当CCD移位寄存器将其中的电荷包输出完了以后,暂存区里的电荷包再向下移动一行给CCD移位寄存器。 当暂存区中的电荷包全部转移完毕后,再进行第二

20、帧转移。,CCD的主要参量,转移效率和损耗率,电荷包从一个势阱向另一个势阱中转移,不是立即的和全部的,而是有一个过程。为了描述电荷包转移的不完全性,引入转移效率的概念。,在一定的时钟脉冲驱动下,设电荷包的原电量为Q0,转移到下一个势阱时电荷包的电量为Q1,则转移效率定义为 =Q1/Q0,表示残留于原势阱中的电量与原电量之比: =1- 如果线阵列CCD共有n个极板,则总效率为n。,引起电荷包转移不完全的主要原因是表面态对电子的俘获和时钟频率过高,所以表面沟道CCD在使用时,为了减少损耗,提高转移效率,常采用偏置电荷技术,即在接收信息电荷之前,就先给每个势阱都输入一定量的背景电荷,使表面态填满。这

21、样,即使是零信息,势阱中也有一定量的电荷。因此,也称这种技术为“胖零(fat zero)”技术。 另外,体内沟道CCD采取体内沟道的传输形式,有效避免了表面态俘获,提高了转移效率和速度。,曲线A为没有“胖o”电荷,曲线B为加入了50“胖o”电荷测得的。,CCD的主要参量,时钟频率的上、下限,CCD是利用极板下半导体表面势阱的变化来储存和转移信息电荷的,所以它必须工作于非热平衡态。 时钟频率过低,热生载流子就会混入到信息电荷包中去而引起失真, 时钟频率过高,电荷包来不及完全转移,势阱形状就变了,这样,残留于原势阱中的电荷就必然多,损耗率就必然大。 因此,使用时,对时种频率的上、下限要有一个大致的

22、估计。,对于三相CCD,电荷包从前一个势阱转移到后一个势阱所需的时间为T/3,所以 f下1/3 对于二相CCD, f下1/2,f下决定于非平衡载流子的平均寿命,一般为毫秒量级。电荷包在相邻两电极之间的转移时间t,应小于,,f上决定于电荷包转移的损耗率,就是说,电荷包的转移要有足够的时间,电荷包转移所需的时间应使之小于所允许的值。时钟频率上限f上可作如下估算,设D为CCD势阱中电量因热扩散作用衰减的时间常数,与材料和极板的结构有关,一般为10-8s级。若使不大于要求的0值,对于三相CCD, f上-1/(3Dln0) 对于二相CCD, f上-1/(2Dln0),光谱特性,现在固件摄象器件中的感光元

23、件都是用半导体硅材料来作的,所以灵敏范围为0.41.15m左右,但光谱特性曲线不象单个硅光电二极管那么锐利,峰值波长为0.650.9m左右。,CCD的光谱特性,光电特性,在低照度下,CCD的输出电压与照度有良好的线性关系。照度超过1001x以后,输出有饱和现象。,CCD的光电特性,CCD的分类彩色CCD,CCD的分类微光CCD,光学耦合方式是利用光学成像系统将像增强器和CCD藕合起来; 光纤耦合方式是用光学纤维面板将像增强器和CCD直接耦合起来。,光学耦合像增强器,CCD的分类微光CCD,CCD的分类微光CCD,电子轰击型CCD,入射光户照射光阴极转换为光电子,光电子被加速(约10一15kv)

24、并聚焦成像在CCD芯片亡, 损失掉一部分能量后,在CCD像敏元中产生信号电荷, 积分结束时信号电荷被转移到寄存器输出。,这种微光CCD与硅增强靶摄像管的结构十分相似,只是把靶换成CCD芯片。,CCD摄象器件的应用,CCD摄象器件为固体器件,它的体积小、重量轻; 工作电压低、惰性小、功耗小、输入光的动态范围大、扫描无畸变、机械抗震性能好; 线阵CCD多用于文字字符识别、传真和尺寸检测; 面阵CCD主要用于小型摄象机。,线阵CCD在 扫描仪中的应用,线阵CCD用于字符识别,数码相机的结构解剖 (索尼F828),CCD,CCD数码摄像机,CMOS图像传感器是采用互补金属-氧化物-半导体工艺制作的另一类图像传感器,简称CMOS。现在市售的视频摄像头多使用CMOS作为光电转换器件。虽然目前的CMOS图像传感器成像质量比CCD略低,但CMOS具有体积小、耗电量小、售价便宜的优点。随着硅晶圆加工技术的进步,CMOS的各项技术指标有望超过CCD,它在图像传感器中的应用也将日趋广泛。,CMOS图像传感器,CMOS视频摄像头,带红外LED照明的CMOS视频摄像头,CMOS视频摄像头的外部结构,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1