药学专业生物化学概述.ppt

上传人:本田雅阁 文档编号:3008072 上传时间:2019-06-23 格式:PPT 页数:384 大小:5.87MB
返回 下载 相关 举报
药学专业生物化学概述.ppt_第1页
第1页 / 共384页
药学专业生物化学概述.ppt_第2页
第2页 / 共384页
药学专业生物化学概述.ppt_第3页
第3页 / 共384页
药学专业生物化学概述.ppt_第4页
第4页 / 共384页
药学专业生物化学概述.ppt_第5页
第5页 / 共384页
点击查看更多>>
资源描述

《药学专业生物化学概述.ppt》由会员分享,可在线阅读,更多相关《药学专业生物化学概述.ppt(384页珍藏版)》请在三一文库上搜索。

1、各种蛋白质的含氮量很接近,平均为16。,由于体内的含氮物质以蛋白质为主,因此,只要测定生物样品中的含氮量,就可以根据以下公式推算出蛋白质的大致含量:,100克样品中蛋白质的含量 (g %) = 每克样品含氮克数 6.25100,1/16%,蛋白质元素组成的特点,(一)侧链含烃链的氨基酸属于非极性脂肪族氨基酸,(二)侧链有极性但不带电荷的氨基酸是极性中性氨基酸,(三)侧链含芳香基团的氨基酸是芳香族氨基酸,(四)侧链含负性解离基团的氨基酸是酸性氨基酸,(五)侧链含正性解离基团的氨基酸属于碱性氨基酸,三、20种氨基酸具有共同或特异的理化性质,两性解离及等电点,氨基酸是两性电解质,其解离程度取决于所处

2、溶液的酸碱度。,等电点(isoelectric point, pI) 在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。此时溶液的pH值称为该氨基酸的等电点。,(一)氨基酸具有两性解离的性质,(二)含共轭双键的氨基酸具有紫外吸收性质,色氨酸、酪氨酸的最大吸收峰在 280 nm 附近。,大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法。,芳香族氨基酸的紫外吸收,四、蛋白质是由许多氨基酸残基组成的多肽链,肽键(peptide bond)是由一个氨基酸的-羧基与另一个氨基酸的-氨基脱水缩合而形成的化学

3、键。,(一)氨基酸通过肽键连接而形成肽 (peptide),一级结构是蛋白质空间构象和特异生物学功能的基础,但不是决定蛋白质空间构象的唯一因素。,二、多肽链的局部主链构象为蛋白质 二级结构,蛋白质的二级结构是指多肽链骨架中原子的局部空间排列,不涉及侧链的构象,也就是该肽段主链骨架原子的相对空间位置,主要有-螺旋、-折叠、-转角和无规则卷曲。维持二级结构的力量为氢键。,三、在二级结构基础上多肽链进一步折叠形成蛋白质三级结构,整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在三维空间的排布位置。,定义:,(一)三级结构是指整条肽链中全部氨基酸残基的相对空间位置,(三)分子伴侣参与蛋白质折叠

4、,分子伴侣(chaperon)通过提供一个保护环境从而加速蛋白质折叠成天然构象或形成四级结构。,分子伴侣可逆地与未折叠肽段的疏水部分结合随后松开,如此重复进行可防止错误的聚集发生,使肽链正确折叠。,分子伴侣也可与错误聚集的肽段结合,使之解聚后,再诱导其正确折叠。,分子伴侣在蛋白质分子折叠过程中二硫键的正确形成起了重要的作用。,亚基之间的结合主要是氢键和离子键。,四、含有二条以上多肽链的蛋白质具有四级结构,蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。,有些蛋白质分子含有二条或多条多肽链,每一条多肽链都有完整的三级结构,称为蛋白质的亚基 (subunit)。,

5、(一)一级结构是空间构象的基础,一、蛋白质一级结构是高级结构与功能的基础,蛋白质结构与功能的关系,协同效应(cooperativity),一个寡聚体蛋白质的一个亚基与其配体结合后,能影响此寡聚体中另一个亚基与配体结合能力的现象,称为协同效应。 如果是促进作用则称为正协同效应 (positive cooperativity) 如果是抑制作用则称为负协同效应 (negative cooperativity),变构效应(allosteric effect),蛋白质空间结构的改变伴随其功能的变化,称为变构效应。,一、蛋白质具有两性电离的性质,蛋白质分子除两端的氨基和羧基可解离外,氨基酸残基侧链中某些基

6、团,在一定的溶液pH条件下都可解离成带负电荷或正电荷的基团。,当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。,蛋白质的等电点( isoelectric point, pI),蛋白质的理化性质,水化膜,带负电荷的蛋白质,溶液中蛋白质的聚沉,三、蛋白质空间结构破坏而引起变性,在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。,蛋白质的变性(denaturation),变性的本质:破坏非共价键和二硫键,不改变蛋白质的一级结构。 造成变性的因素:

7、如加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂等 。,应用举例: 临床医学上,变性因素常被应用来消毒及灭菌。 此外, 防止蛋白质变性也是有效保存蛋白质制剂(如疫苗等)的必要条件。 防止变性:低温保存生物制品 取代变性:乳品解毒(用于急救重金属中毒),若蛋白质变性程度较轻,去除变性因素后,蛋白质仍可恢复或部分恢复其原有的构象和功能,称为复性(renaturation) 。,四、蛋白质在紫外光谱区有特征性吸收峰,由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm波长处有特征性吸收峰。蛋白质的OD280与其浓度呈正比关系,因此可作蛋白质定量测定。,核酸的分类及分布,存在于细胞

8、核和线粒体,分布于细胞核、细胞质、线粒体,(deoxyribonucleic acid, DNA),(ribonucleic acid, RNA),脱氧核糖核酸,核糖核酸,脱氧核苷,嘌呤N-9 或嘧啶N-1与脱氧核糖C-1通过-N-糖苷键相连形成脱氧核苷(deoxyribonucleoside)。,二、DNA是脱氧核苷酸通过3,5-磷酸二酯键连接形成的大分子,一个脱氧核苷酸3的羟基与另一个核苷酸5的-磷酸基团缩合形成磷酸二酯键(phosphodiester bond)。 多个脱氧核苷酸通过磷酸二酯键构成了具有方向性的线性分子,称为多聚脱氧核苷酸(polydeoxynucleotide),即DN

9、A链。,交替的磷酸基团和戊糖构成了DNA的骨架 (backbone)。,DNA链的方向是5 3,三、RNA也是具有3,5-磷酸二酯键的线性大分子,RNA也是多个核苷酸分子通过酯化反应形成的线性大分子,并且具有方向性;,RNA的戊糖是核糖; RNA的嘧啶是胞嘧啶和尿嘧啶。,DNA和RNA的区别,两条多聚核苷酸链在空间的走向呈反向平行(anti-parallel)。两条链围绕着同一个螺旋轴形成右手螺旋(right-handed)的结构。双螺旋结构的直径为2.37nm,螺距为3.54nm。 脱氧核糖和磷酸基团组成的亲水性骨架位于双螺旋结构的外侧,疏水的碱基位于内侧。 双螺旋结构的表面形成了一个大沟(

10、major groove)和一个小沟(minor groove)。,(二) DNA双螺旋结构模型要点,1.DNA是反向平行、右手螺旋的双链结构,亲水性的骨架位于双链的外侧。 疏水性的碱基位于双链的内侧。,骨架与碱基,相邻两个碱基对会有重叠,产生了疏水性的碱基堆积力(base stacking interaction)。 碱基堆积力和互补碱基对的氢键共同维系着DNA结构的稳定。,3.疏水作用力和氢键共同维系着DNA双螺旋结构的稳定。,二、DNA的高级结构是超螺旋结构,超螺旋结构(superhelix 或supercoil) DNA双螺旋链再盘绕即形成超螺旋结构。,正超螺旋(positive su

11、percoil) 盘绕方向与DNA双螺旋方同相同。,负超螺旋(negative supercoil) 盘绕方向与DNA双螺旋方向相反。,DNA的基本功能是以基因的形式荷载遗传信息,并作为基因复制和转录的模板。它是生命遗传的物质基础,也是个体生命活动的信息基础。,基因从结构上定义,是指DNA分子中的特定区段,其中的核苷酸排列顺序决定了基因的功能。,三、DNA是遗传信息的物质基础,RNA与蛋白质共同负责基因的表达和表达过程的调控。 RNA通常以单链的形式存在,但有复杂的局部二级结构或三级结构。 RNA比DNA小的多。 RNA的种类、大小和结构远比DNA表现出多样性。,RNA的结构与功能,RNA的种

12、类、分布、功能,信使RNA(messenger RNA, mRNA)是合成蛋白质的模板。 不均一核RNA(hnRNA)含有内含子(intron)和外显子(exon)。 外显子是氨基酸的编码序列,而内含子是非编码序列。 hnRNA经过剪切后成为成熟的mRNA。,一、mRNA是蛋白质合成中的模板,从AUG 开始,每三个核苷酸为一组编码了一个氨基酸,称为三联体密码(codon)。 成熟的mRNA由氨基酸编码区和非编码区构成。 5-末端的帽子(cap)结构和3-末端的多聚A尾(poly-A tail)结构。,成熟的真核生物mRNA,帽子结构:m7GpppNm,(一)大部分真核细胞mRNA的5末端都以7

13、-甲基鸟嘌呤-三磷酸核苷为起始结构,mRNA的帽结构可以与帽结合蛋白(cap binding protein,CBP)结合。,真核生物的mRNA 的3-末端转录后加上一段长短不一的聚腺苷酸。,(二)在真核生物mRNA的3末端有多聚腺苷酸结构,mRNA核内向胞质的转位 mRNA的稳定性维系 翻译起始的调控,帽子结构和多聚A尾的功能,(三)mRNA依照自身的碱基顺序指导蛋白质氨基酸顺序的合成,从mRNA分子5末端起的第一个AUG开始,每3个核苷酸为一组称为密码子(codon)或三联体密码(triplet code)。,AUG被称为起始密码子;决定肽链终止的密码子则称为终止密码子。,位于起始密码子和

14、终止密码子之间的核苷酸序列称为开放阅读框(open reading frame, ORF),决定了多肽链的氨基酸序列 。,转运RNA(transfer RNA, tRNA)在蛋白质合成过程中作为各种氨基酸的载体, 将氨基酸转呈给mRNA。 由7495核苷酸组成; 占细胞总RNA的15%; 具有很好的稳定性。,二、tRNA是蛋白质合成中的氨基酸载体,tRNA具有局部的茎环(stem-loop)结构或发卡(hairpin)结构。,(二)tRNA具有茎环结构,tRNA的二级结构 三叶草形,氨基酸臂 DHU环 反密码环 TC环 附加叉,tRNA的3-末端都是以CCA结尾。 3-末端的A与氨基酸共价连结

15、,tRNA成为了氨基酸的载体。 不同的tRNA可以结合不同的氨基酸。,(三)tRNA的3-末端连接氨基酸,tRNA的反密码子环上有一个由三个核苷酸构成的反密码子(anticodon)。 tRNA上的反密码子依照碱基互补的原则识别mRNA上的密码子。,(四)tRNA的反密码子识别mRNA的密码子,核蛋白体RNA(ribosomal RNA,rRNA)是细胞内含量最多的RNA(80)。 rRNA与核蛋白体蛋白结合组成核蛋白体(ribosome),为蛋白质的合成提供场所。,三、以rRNA为组分的核蛋白体是蛋白质合成的场所,核酶,某些小RNA分子具有催化特定RNA降解的活性,这种具有催化作用的小RNA

16、亦被称为核酶(ribozyme)或催化性RNA(catalytic RNA)。,原核生物基因表达的特异性,五、核酸在真核细胞和原核细胞中表现了不同的时空特性,真核生物基因表达的特异性,核酸在波长 260nm 处有强烈的吸收,是由碱基的共轭双键所决定的。这一特性常用作核酸的定性和定量分析。,一、核酸分子具有强烈的紫外吸收,二、DNA变性是双链解离为单链的过程,在某些理化因素作用下,DNA双链解开成两条单链的过程。,定义,DNA变性的本质是双链间氢键的断裂。,增色效应(hyperchromic effect):DNA变性时其溶液OD260增高的现象。,DNA解链时的紫外吸收变化,DNA的解链曲线,

17、连续加热DNA的过程中以温度相对于A260值作图,所得的曲线称为解链曲线。,解链过程中,紫外吸光度的变化达到最大变化值的一半时所对应的温度。,解链温度(melting temperature,Tm),三、变性的核酸可以复性或形成杂交双链,当变性条件缓慢地除去后,两条解离的互补链可重新配对,恢复原来的双螺旋结构,这一现象称为DNA复性(renaturation) 。,减色效应:DNA复性时,其溶液OD260降低。,热变性的DNA经缓慢冷却后即可复性,这一过程称为退火(annealing) 。,不同种类的DNA单链分子或RNA分子放在同一溶液中,只要两种单链分子之间存在着一定程度的碱基配对关系,在

18、适宜的条件可以在不同的分子间形成杂化双链(heteroduplex)。 这种杂化双链可以在不同的DNA与DNA之间形成,也可以在DNA和RNA分子间或者RNA与RNA分子间形成。这种现象称为核酸分子杂交。,核酸分子杂交(hybridization),依据底物不同分类 DNA酶(deoxyribonuclease, DNase): 专一降解DNA。 RNA酶 (ribonuclease, RNase): 专一降解RNA。 依据切割部位不同 核酸内切酶:分为限制性核酸内切酶和非特异性限制性核酸内切酶。 核酸外切酶:53或35核酸外切酶。,核酸酶是指所有可以水解核酸的酶。,核酸酶,酶的概念,目前将生

19、物催化剂分为两类: 酶 、 核酶(脱氧核酶),酶是一类对其特异底物具有高效催化作用的蛋白质。,酶的不同形式:,单体酶(monomeric enzyme):仅具有三级结构的酶。 寡聚酶(oligomeric enzyme):由多个相同或不同亚基以非共价键连接组成的酶。 多酶体系(multienzyme system):由几种不同功能的酶彼此聚合形成的多酶复合物。 多功能酶(multifunctional enzyme)或串联酶(tandem enzyme):一些多酶体系在进化过程中由于基因的融合,多种不同催化功能存在于一条多肽链中,这类酶称为多功能酶。,酶的分子结构与功能,一、酶的分子组成中常含

20、有辅助因子,蛋白质部分:酶蛋白 (apoenzyme),辅助因子 (cofactor),金属离子,小分子有机化合物,全酶 (holoenzyme),单纯酶 (simple enzyme) 结合酶 (conjugated enzyme),全酶分子中各部分在催化反应中的作用:,酶蛋白决定反应的特异性 辅助因子决定反应的种类与性质,金属离子的作用: 参与催化反应,传递电子; 在酶与底物间起桥梁作用; 稳定酶的构象; 中和阴离子,降低反应中的静电斥力等。,小分子有机化合物是一些化学稳定的小分子物质,称为辅酶 (coenzyme)。,其主要作用是参与酶的催化过程,在反应中传递电子、质子或一些基团。 辅酶

21、的种类不多,且分子结构中常含有维生素或维生素类物质。,辅酶中与酶蛋白共价结合的辅酶又称为辅基(prosthetic group)。,辅基和酶蛋白结合紧密,不能通过透析或超滤等方法将其除去,在反应中不能离开酶蛋白,如FAD、FMN、生物素等。,二、酶的活性中心是酶分子中执行其催化功能的部位,酶分子中氨基酸残基侧链的化学基团中,一些与酶活性密切相关的化学基团。,必需基团(essential group),指必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。,酶的活性中心 (active center),底 物,活性中心以外的必需基团,结合基团,催化基团,

22、活性中心,三、同工酶,同工酶 (isoenzyme)是指催化相同的化学反应,而酶蛋白的分子结构理化性质乃至免疫学性质不同的一组酶。,根据国际生化学会的建议,同工酶是由不同基因编码的多肽链,或由同一基因转录生成的不同mRNA所翻译的不同多肽链组成的蛋白质。 同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中,它使不同的组织、器官和不同的亚细胞结构具有不同的代谢特征。这为同工酶用来诊断不同器官的疾病提供了理论依据。,在反应前后没有质和量的变化; 只能催化热力学允许的化学反应; 只能加速可逆反应的进程,而不改变反应的平衡点。,酶与一般催化剂的共同点:,酶的作用机制,(一)酶促反应具

23、有极高的效率,一、酶促反应的特点,酶的催化效率通常比非催化反应高1081020倍,比一般催化剂高1071013倍。 酶的催化不需要较高的反应温度。 酶和一般催化剂加速反应的机理都是降低反应的活化能(activation energy)。酶比一般催化剂更有效地降低反应的活化能。 酶的催化效率可用酶的转换数 (turnover number) 来表示。酶的转换数是指在酶被底物饱和的条件下,每个酶分子每秒钟将底物转化为产物的分子数。,二、酶通过促进底物形成过渡态而提高反应速率,(一)酶比一般催化剂更有效地降低反应活化能,酶和一般催化剂一样,加速反应的作用都是通过降低反应的活化能 (activatio

24、n energy) 实现的。,活化能:底物分子从初态转变到活化态所需的能量。,1913年Michaelis和Menten提出反应速率与底物浓度关系的数学方程式,即米曼氏方程式,简称米氏方程式 (Michaelis equation)。,S:底物浓度 V:不同S时的反应速率 Vmax:最大反应速率(maximum velocity) m:米氏常数(Michaelis constant),E与S形成ES复合物的反应是快速平衡反应,而ES分解为E及P的反应为慢反应,反应速率取决于慢反应即 V = k3ES。 (1) S的总浓度远远大于E的总浓度,因此在反应的初始阶段,S的浓度可认为不变即S =St。

25、,米曼氏方程式推导基于两个假设:,米曼氏方程式推导过程:,ES的生成速率 = ES的分解速率,则(2)变为: (EtES) S = Km ES,整理得:,k1 (EtES) S = k2 ES + k3 ES,当反应处于稳态时:,当底物浓度很高,将酶的活性中心全部饱和时,即Et =ES,反应达最大速率 Vmax = k3ES = k3Et (5),将(5)代入(4)得米氏方程式:,(二)Km与Vm是有意义的酶促反应动力学参数,Km值的推导 Km与Vmax的意义,当反应速率为最大反应速率一半时:,Km值的推导,Km = S,Km值等于酶促反应速率为最大反应速率一半时的底物浓度,单位是mol/L。

26、,Km与Vmax的意义,定义:Km等于酶促反应速率为最大反应速率一半时的底物浓度。 意义: Km是酶的特征性常数之一,只与酶的结构、底物和反应环境(如,温度、pH、离子强度)有关,与酶的浓度无关。 Km可近似表示酶对底物的亲和力; 同一酶对于不同底物有不同的Km值。,Km值,Vmax,意义:Vmax=k3 E,定义:Vm是酶完全被底物饱和时的反应速率,与酶浓度成正比。,如果酶的总浓度已知,可从Vmax计算酶的转换数(turnover number),即动力学常数k3。,1. 双倒数作图法(double reciprocal plot),又称为 林-贝氏(Lineweaver- Burk)作图法

27、,(三)m值与max值可以通过作图法求取,五、抑制剂可逆地或不可逆地降低酶促反应速率,酶的抑制剂(inhibitor),酶的抑制区别于酶的变性:,抑制剂对酶有一定选择性 引起变性的因素对酶没有选择性,凡能使酶的催化活性下降而不引起酶蛋白变性的物质称为酶的抑制剂。,竞争性抑制作用的抑制剂与底物竞争结合酶的活性中心,有些抑制剂与底物的结构相似,能与底物竞争酶的活性中心,从而阻碍酶底物复合物的形成。这种抑制作用称为竞争性抑制作用。,定义,特点,抑制程度取决于抑制剂与酶的相对亲和力及底物浓度;,I与S结构类似,竞争酶的活性中心;,动力学特点:Vmax不变,表观Km增大。,有些抑制剂与酶活性中心外的必需

28、基团相结合,不影响酶与底物的结合,酶和底物的结合也不影响酶与抑制剂的结合。底物和抑制剂之间无竞争关系。但酶-底物-抑制剂复合物(ESI)不能进一步释放出产物。这种抑制作用称作非竞争性抑制作用。,非竞争性抑制作用的抑制剂不改变酶对底物的亲和力,定义,特点,抑制剂与酶活性中心外的必需基团结合,底物与抑制剂之间无竞争关系;,抑制程度取决于抑制剂的浓度;,动力学特点:Vmax降低,表观Km不变。,抑制剂仅与酶和底物形成的中间产物(ES)结合,使中间产物ES的量下降。这样,既减少从中间产物转化为产物的量,也同时减少从中间产物解离出游离酶和底物的量。这种抑制作用称为反竞争性抑制作用。,定义,反竞争性抑制作

29、用的抑制剂仅与酶-底物复合物结合,特点:,抑制剂只与酶底物复合物结合;,抑制程度取决与抑制剂的浓度及底物的浓度;,动力学特点:Vmax降低,表观Km降低。,各种可逆性抑制作用的比较,变构效应剂 (allosteric effector),变构调节 (allosteric regulation),变构酶 (allosteric enzyme),变构部位 (allosteric site),一些代谢物可与某些酶分子活性中心外的某部分可逆地结合,使酶构象改变,从而改变酶的催化活性,此种调节方式称变构调节。,(一)变构酶通过变构调节酶的活性,一、调节酶实现对酶促反应速率的快速调节,变构酶常为多个亚基构

30、成的寡聚体,具有协同效应。,酶的变构调节是体内代谢途径的重要快速调节方式之一。,(二)酶的化学修饰调节是通过某些化学基团与酶的共价结合与分离实现的,在其他酶的催化作用下,某些酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性,此过程称为共价修饰。,共价修饰(covalent modification),有些酶在细胞内合成或初分泌时只是酶的无活性前体,此前体物质称为酶原。,在一定条件下,酶原向有活性酶转化的过程。,(三)酶原的激活使无活性的酶原转变成有催化活性的酶,酶原 (zymogen),酶原的激活,酶原激活的机理,酶原激活的生理意义,避免细胞产生的酶对细胞进行自身消化

31、,并使酶在特定的部位和环境中发挥作用,保证体内代谢正常进行。 有的酶原可以视为酶的储存形式。在需要时,酶原适时地转变成有活性的酶,发挥其催化作用。,淀粉是植物中养分的储存形式。,淀粉颗粒,糖原是动物体内葡萄糖的储存形式。,一、糖的主要生理功能是氧化供能,糖在生命活动中的主要作用是提供碳源和能源。,如糖可提供合成某些氨基酸、脂肪、胆固醇、核苷等物质的原料。,作为机体组织细胞的组成成分。,提供合成体内其他物质的原料。,如糖是糖蛋白、蛋白聚糖、糖脂等的组成成分。,概 述,食物中含有的大量纤维素,因人体内无-糖苷酶而不能对其分解利用,但却具有刺激肠蠕动等作用,也是维持健康所必需。,糖的吸收,吸收部位:

32、小肠上段,吸收形式:单糖,糖的无氧分解,在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(glycolysis),亦称糖的无氧氧化(anaerobic oxidation)。 糖酵解的反应部位:胞浆。,一、糖无氧氧化反应过程分为酵解途径和乳酸生成两个阶段,第一阶段:由葡萄糖分解成丙酮酸(pyruvate),称之为糖酵解途径(glycolytic pathway)。 第二阶段:由丙酮酸转变成乳酸。,糖酵解分为两个阶段:,葡萄糖磷酸化为6-磷酸葡萄糖,葡萄糖,6-磷酸葡萄糖 (glucose-6-phosphate, G-6-P),(一)葡萄糖经酵解途径分解为两分

33、子丙酮酸,1,3-二磷酸甘油酸转变成3-磷酸甘油酸,在以上反应中,底物分子内部能量重新分布,生成高能键,使ADP磷酸化生成ATP的过程,称为底物水平磷酸化(substrate level phosphorylation) 。,1,3-二磷酸 甘油酸,3-磷酸甘油酸,(二)丙酮酸转变成乳酸,反应中的NADH+H+ 来自于上述第6步反应中的 3-磷酸甘油醛脱氢反应。,丙酮酸,乳酸,乳酸脱氢酶 (Lactate dehydrogenase, LDH),NADH + H+,NAD+,糖酵解的代谢途径,E2,E1,E3,产能的方式和数量 方式:底物水平磷酸化 净生成ATP数量:从G开始 22-2= 2A

34、TP 从Gn开始 22-1= 3ATP 终产物乳酸的去路 释放入血,进入肝脏再进一步代谢: 分解利用 乳酸循环(糖异生),除葡萄糖外,其它己糖也可转变成磷酸己糖而进入酵解途径。,三、糖酵解的主要生理意义是在机体缺氧的情况下快速供能,是机体在缺氧情况下获取能量的有效方式。 是某些细胞在氧供应正常情况下的重要供能途径。, 无线粒体的细胞,如:红细胞, 代谢活跃的细胞,如:白细胞、骨髓细胞,糖的有氧氧化(aerobic oxidation)指在机体氧供充足时,葡萄糖彻底氧化成H2O和CO2,并释放出能量的过程。是机体主要供能方式。,部位:胞液及线粒体,概念,糖的有氧氧化,一、糖有氧氧化的反应过程包括

35、糖酵解途径、丙酮酸氧化脱羧、三羧酸循环及氧化磷酸化,第一阶段:酵解途径,第二阶段:丙酮酸的氧化脱羧,第三阶段:三羧酸循环,G(Gn),第四阶段:氧化磷酸化,丙酮酸,乙酰CoA,H2O,O,ATP,ADP,TAC循环,胞液,线粒体,三羧酸循环(Tricarboxylic Acid Cycle, TAC)也称为柠檬酸循环,这是因为循环反应中的第一个中间产物是一个含三个羧基的柠檬酸。由于Krebs正式提出了三羧酸循环的学说,故此循环又称为Krebs循环,它由一连串反应组成。,二、三羧酸循环是以形成柠檬酸为起始物的循环反应系统,概述,反应部位:线粒体,(一)TCA循环由8步代谢反应组成,乙酰CoA与草

36、酰乙酸缩合成柠檬酸 柠檬酸经顺乌头酸转变为异柠檬酸 异柠檬酸氧化脱羧转变为-酮戊二酸 -酮戊二酸氧化脱羧生成琥珀酰CoA 琥珀酰CoA合成酶催化底物水平磷酸化反应 琥珀酸脱氢生成延胡索酸 延胡索酸加水生成苹果酸 苹果酸脱氢生成草酰乙酸,NADH+H+,NAD+,NAD+,NADH+H+,GTP,GDP+Pi,FAD,FADH2,NADH+H+,NAD+,H2O,CoASH,柠檬酸合酶,顺乌头酸梅,异柠檬酸脱氢酶,-酮戊二酸脱氢酶复合体,琥珀酰CoA合成酶,琥珀酸脱氢酶,延胡索酸酶,苹果酸脱氢酶,GTP,GDP,ATP,ADP,核苷二磷酸激酶,经过一次三羧酸循环, 消耗一分子乙酰CoA; 经四次

37、脱氢,二次脱羧,一次底物水平磷酸化; 生成1分子FADH2,3分子NADH+H+,2分子CO2, 1分子GTP; 关键酶有:柠檬酸合酶,-酮戊二酸脱氢酶复合体, 异柠檬酸脱氢酶。,整个循环反应为不可逆反应。,三羧酸循环的要点:,1TCA循环中有3个关键酶,柠檬酸合酶 异柠檬酸脱氢酶 -酮戊二酸脱氢酶,概念,磷酸戊糖途径(pentose phosphate pathway)是指由葡萄糖生成磷酸戊糖及NADPH+H+,前者再进一步转变成3-磷酸甘油醛和6-磷酸果糖的反应过程。,一、磷酸戊糖途径生成NADPH和磷酸戊糖,葡萄糖的其他代谢途径,总反应式:,(三)磷酸戊糖途径的生理意义在于生成NADPH

38、和5-磷酸核糖,2提供NADPH作为供氢体参与多种代谢反应,1为核酸的生物合成提供核糖,(1)NADPH是体内许多合成代谢的供氢体; (2)NADPH参与体内羟化反应; (3)NADPH还用于维持谷胱甘肽(glutathione,GSH)的还原状态。,1. 葡萄糖单元以-1,4-糖苷键形成长链。 2. 约10个葡萄糖单元处形成分枝,分枝处葡萄糖以-1,6-糖苷键连接,分支增加,溶解度增加。 3. 每条链都终止于一个非还原端.非还原端增多,以利于其被酶分解。,糖原的结构特点及其意义:,UDPG可看作“活性葡萄糖”,在体内充作葡萄糖供体。,3.1-磷酸葡萄糖转变成尿苷二磷酸葡萄糖,+,PPi,UD

39、PG焦磷酸化酶,2Pi+能量,1- 磷酸葡萄糖,尿苷二磷酸葡萄糖 (uridine diphosphate glucose, UDPG),糖原n 为原有的细胞内的较小糖原分子,称为糖原引物(primer), 作为UDPG 上葡萄糖基的接受体。,2.脱枝酶的作用,转移葡萄糖残基 水解-1,6-糖苷键,脱枝酶,(debranching enzyme),磷酸化酶,转移酶活性,-1,6糖苷酶活性,在几个酶的共同作用下,最终产物中约85%为1-磷酸葡萄糖,15%为游离葡萄糖。,二、肝糖原分解产物葡萄糖可补充血糖,亚细胞定位:胞浆,肝糖元的分解过程:,1.糖原的磷酸解,糖原分解 (glycogenolys

40、is )习惯上指肝糖原分解成为葡萄糖的过程。,肌糖原的分解,肌糖原分解的前三步反应与肝糖原分解过程相同,但是生成6-磷酸葡萄糖之后,由于肌肉组织中不存在葡萄糖-6-磷酸酶,所以生成的6-磷酸葡萄糖不能转变成葡萄糖释放入血,提供血糖,而只能进入酵解途径进一步代谢。 肌糖原的分解与合成与乳酸循环有关。,糖原的合成与分解总图,调节小结:,双向调控:对合成酶系与分解酶系分别进行调节,如加强合成则减弱分解,或反之。,双重调节:别构调节和共价修饰调节。,肝糖原和肌糖原代谢调节各有特点:如分解肝糖原的激素主要为胰高血糖素,分解肌糖原的激素主要为肾上腺素。,关键酶调节上存在级联效应。,关键酶都以活性、无(低)

41、活性二种形式存在,二种形式之间可通过磷酸化和去磷酸化而相互转变。,糖异生的主要原料为乳酸、氨基酸及甘油。,乳酸来自肌糖原分解。这部分糖异生主要与运动强度有关。 而在饥饿时,糖异生的原料主要为氨基酸和甘油。,四、肌中产生的乳酸运输至肝进行糖异生形成乳酸循环,肌收缩(尤其是供氧不足时)通过糖酵解生成乳酸。肌内糖异生活性低,所以乳酸通过细胞膜弥散进入血液后,再入肝,在肝内异生为葡萄糖。葡萄糖释入血液后又可被肌摄取,这就构成了一个循环,此循环称为乳酸循环,也称Cori循环。 乳酸循环的形成是由于肝和肌组织中酶的特点所致。,糖异生活跃 有葡萄糖-6磷酸酶,【,】,循环过程,肝,肌肉,葡萄糖,葡萄糖,葡萄

42、糖,酵解途径,丙酮酸,乳酸,NADH,NAD+,乳酸,乳酸,NAD+,NADH,丙酮酸,糖异生途径,血液,糖异生低下 没有葡萄糖-6磷酸酶,【,】,生理意义,乳酸再利用,避免了乳酸的损失。,防止乳酸的堆积引起酸中毒。,乳酸循环是一个耗能的过程,2分子乳酸异生为1分子葡萄糖需6分子ATP。,甘油三酯,甘油磷脂 (phosphoglyceride),胆固醇酯,X=胆碱、水、乙醇胺、丝氨酸、甘油、肌醇、磷脂酰甘油等。,脂类物质的基本构成:,哺乳动物不饱和脂酸按(或n)编码体系分类,十二指肠下段及空肠上段。,二、饮食脂肪在小肠被吸收,吸收部位,吸收方式,长链脂酸及2-甘油一酯,肠粘膜细胞(酯化成TG)

43、,胆固醇及游离脂酸,肠粘膜细胞(酯化成CE),溶血磷脂及游离脂酸,肠粘膜细胞(酯化成PL),甘油一酯途径,一、血脂是血浆所含脂类的统称,血浆所含脂类统称血脂,包括:甘油三酯、磷脂、胆固醇及其酯以及游离脂酸。,外源性从食物中摄取 内源性肝、脂肪细胞及其他组织合成后释放入血,定义:,来源:,超速离心法:CM、VLDL、LDL、HDL,乳糜微粒 chylomicron ( CM),极低密度脂蛋白 very low density lipoprotein (VLDL),低密度脂蛋白 low density lipoprotein (LDL),高密度脂蛋白 high density lipoprotei

44、n (HDL),来源:,三、血浆脂蛋白是血脂的运输形式, 但代谢和功能各异,(一)乳糜微粒,代谢:,来源:,+ apo B100、E,代谢:,VLDL,VLDL 残粒,LDL,LPL,LPL、HL,LPL脂蛋白脂肪酶 HL 肝脂肪酶,FFA,外周组织,FFA,肝细胞合成的TG 磷脂、胆固醇及其酯,以肝脏为主,小肠可合成少量。,(二)极低密度脂蛋白,VLDL受体代谢途径:,LDL 的 代 谢,代谢:,新生HDL,HDL3,HDL2,LCAT:卵磷脂胆固醇酯酰转移酶 CETP:胆固醇酯转运蛋白, 使HDL表面卵磷脂2位脂酰基转移到胆固醇3位羟基生成溶血卵磷脂及胆固醇酯 使胆固醇酯进入HDL内核逐渐

45、增多 使新生HDL成熟,LCAT的作用(由apo A激活):,主要是参与胆固醇的逆向转运(reverse cholesterol transport, RCT),即将肝外组织细胞内的胆固醇,通过血循环转运到肝,在肝转化为肝汁酸后排出体外。 HDL是apo的储存库。,HDL的生理功能:,血浆脂蛋白代谢总图,(二)动脉粥样硬化,动脉粥样硬化(atherosclerosis,AS)指一类动脉壁的退行性病理变化,是心脑血管疾病的病理基础,发病机理十分复杂。,1. LDL和VLDL具有致AS作用,As的病理基础之一是大量脂质沉积于动脉内皮下基质,被平滑肌、巨噬细胞等吞噬形成泡沫细胞。 血浆LDL水平升高

46、往往与AS的发病率呈正相关。,2. HDL具有抗AS作用,血浆HDL浓度与AS的发生呈负相关。,(1)肝外组织的胆固醇转运至肝,降低了动脉壁胆固醇含量; (2)抑制LDL氧化的作用,机制:,定义 脂肪动员(fat mobilization)是指储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为FFA及甘油,并释放入血以供其他组织氧化利用的过程。,二、甘油三酯的分解代谢主要是脂酸的氧化,(一)脂肪动员是甘油三酯分解的起始步骤,组 织:除脑组织外,大多数组织均可进 行, 其中肝、肌肉最活跃。,亚细胞:胞液、线粒体,部位,(三)脂酸经-氧化分解供能,活化:消耗2个高能磷酸键,-氧化:,每轮循环 四个重复步骤

47、:脱氢、水化、再脱氢、硫解产物:1分子乙酰CoA 1分子少两个碳原子的脂酰CoA 1分子NADH+H+ 1分子FADH2,4. 脂酸氧化是体内能量的重要来源, 以16碳软脂酸的氧化为例,7 轮循环产物:8分子乙酰CoA 7分子NADH+H+ 7分子FADH2,能量计算: 生成ATP 810 + 72.5 + 71.5 = 108 净生成ATP 108 2 = 106,3.奇数碳原子脂酸的氧化丙酰CoA,Ile Met Thr Val 奇数碳脂酸 胆固醇侧链,CH3CH2COCoA,D-甲基丙二酰CoA,L-甲基丙二酰CoA,琥珀酰CoA,TAC,乙酰乙酸(acetoacetate) 、-羟丁酸

48、(-hydroxybutyrate)、丙酮(acetone)三者总称为酮体(ketone bodies)。,血浆水平:0.030.5mmol/L(0.35mg/dl),代谢定位: 生成:肝细胞线粒体 利用:肝外组织(心、肾、脑、骨骼肌等)线粒体,(五)酮体的生成和利用,CoASH,CoASH,NAD+,NADH+H+,-羟丁酸 脱氢酶,HMGCoA 合酶,乙酰乙酰CoA硫解酶,HMGCoA 裂解酶,1.酮体在肝细胞中生成,NAD+,NADH+H+,琥珀酰CoA,琥珀酸,CoASH+ATP,PPi+AMP,CoASH,2.酮体在肝外组织利用,琥珀酰CoA转硫酶 (心、肾、脑及骨骼肌的线粒体),乙酰乙酰CoA硫激酶 (肾、心和脑的线粒体),乙酰乙酰CoA硫解酶(心、肾、脑及骨骼肌线粒体),3.酮体生成的生理意义,酮体是肝脏输出能源的一种形式。并且酮体可通过血脑屏障,是肌肉尤其是脑组织的重要能源。 酮体利用的增加可减少糖的利用,有利于维持血糖水平恒定,节省蛋白质的消耗。,三、脂酸在脂酸合成酶系的催化下合成,组 织:肝(主要)、肾、脑、肺、乳腺及脂肪等组织 亚细胞: 胞液:主要合成16碳的软脂酸(棕榈酸) 肝线粒体、内质网:碳链延长,1. 合成部位,(一)软脂酸的合成,NADPH的来源:,磷酸戊糖途

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1