毕业设计(论文)-600T液压机设计计算说明书.doc

上传人:来看看 文档编号:3945042 上传时间:2019-10-10 格式:DOC 页数:32 大小:1.52MB
返回 下载 相关 举报
毕业设计(论文)-600T液压机设计计算说明书.doc_第1页
第1页 / 共32页
毕业设计(论文)-600T液压机设计计算说明书.doc_第2页
第2页 / 共32页
毕业设计(论文)-600T液压机设计计算说明书.doc_第3页
第3页 / 共32页
毕业设计(论文)-600T液压机设计计算说明书.doc_第4页
第4页 / 共32页
毕业设计(论文)-600T液压机设计计算说明书.doc_第5页
第5页 / 共32页
点击查看更多>>
资源描述

《毕业设计(论文)-600T液压机设计计算说明书.doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)-600T液压机设计计算说明书.doc(32页珍藏版)》请在三一文库上搜索。

1、武汉科技大学 Wu han university of seience and technology 王圣威 学号200903486012前言 伴随着科学技术的迅猛发展和我国改革开放的不断深入,我国经济建设的水平也迅速提高,人们的思想观念也发生了巨大的变化。当前,高等职业教育已发展成为一种具有巨大影响力的新的教学形式,本教材就是为了适应这种需要而编写的。本书是高职高专技术教育机电一体化、模具、数控、自动化等专业的教学用书,是作者结合高职高专教学改革的要求及现代工业自动化飞速发展的需求,经过多年的教学、科研及生产的实践,参考最新技术资料编写的, 力求满足广大读者的需要。 With the rap

2、id development of science and technology and the deepening of Chinas reform and opening up, Chinas rapid economic development levels are also increased, peoples thinking has undergone tremendous changes. At present, the higher vocational education has developed into a great influence on the new form

3、s of teaching, the textbook is to meet this need and prepared.This book is a vocational and technical education mechatronics, mold, CNC, automation and other professional teaching book, the author is with the requirements of vocational education reform and the rapid development of modern industrial

4、automation needs, after years of teaching, research and Production practices, prepared by reference to the latest technical information, and strive to meet the needs of readers目录第1章 绪论 21.1 液压传动与控制概述 31.2 液压机的发展及工艺特点 6第2章液压机液压系统工况分析2.2 600T工况分析 62.3负载图和速度图的绘制 7第3章 液压机液压系统原理图设计 31 自动补油的保压回路设计 732 释压回

5、路设计 833液压机液压系统原理图拟定 9第4章 液压系统的计算和元件选型 41 确定液压缸主要参数 1142液压元件的选择 12第5章 液压缸的结构设计5.1 液压缸主要尺寸的确定 215.2 液压缸的结构设计 23第6章 液压集成油路的设计 61液压集成回路设计 2662底板及供油块设计 27第7章 液压站结构设计71 液压站的结构型式 2772 液压泵的安装方式 7.3液压油箱的设计 317.4液压站的结构设计 32 绪论1.1 液压传动与控制概述液压传动与控制是以液体(油、高水基液压油、合成液体)作为介质来实现各种机械量的输出(力、位移或速度等)的。它与单纯的机械传动、电气传动和气压传

6、动相比,具有传递功率大,结构小、响应快等特点,因而被广泛的应用于各种机械设备及精密的自动控制系统。液压传动技术是一门新的学科技术,它的发展历史虽然较短,但是发展的速度却非常之快。自从1795年制成了第一台压力机起,液压技术进入了工程领域;1906年开始应用于国防战备武器。第二次世界大战期间,由于军事工业迫切需要反应快、精度高的自动控制系统,因而出现了液压伺服控制系统。从60年代起,由于原子能、空间技术、大型船舰及电子技术的发展,不断地对液压技术提出新的要求,从民用到国防,由一般的传动到精确度很高的控制系统,这种技术得到更加广泛的发展和应用。在国防工业中:海、陆、空各种战备武器均采用液压传动与控

7、制。如飞机、坦克、舰艇、雷达、火炮、导弹及火箭等。在民用工业中:有机床工业、冶金工业、工程机械、农业方面,汽车工业、轻纺工业、船舶工业。另外,近几年又出现了太阳跟踪系统、海浪模拟装置、飞机驾驶模拟、船舶驾驶模拟器、地震再现、火箭助飞发射装置、宇航环境模拟、高层建筑防震系统及紧急刹车装置等,均采用了液压技术。总之,一切工程领域,凡是有机械设备的场合,均可采用液压技术。它的发展如此之快,应用如此之广,其原因就是液压技术有着优异的特点,归纳起来液压动力传动方式具有显著的优点:其单位重量的输出功率和单位尺寸输出功率大;液压传动装置体积小、结构紧凑、布局灵活,易实现无级调速,调速范围宽,便于与电气控制相

8、配合实现自动化;易实现过载保护与保压,安全可靠;元件易于实现系列化、标准化、通用化;液压易与微机控制等新技术相结合,构成“机-电-液-光”一体化便于实现数字化。1.2 液压机的发展及工艺特点 液压机是制品成型生产中应用最广的设备之一,自19世纪问世以来发展很快,液压机在工作中的广泛适应性,使其在国民经济各部门获得了广泛的应用。由于液压机的液压系统和整机结构方面,已经比较成熟,目前国内外液压机的发展不仅体现在控制系统方面,也主要表现在高速化、高效化、低能耗;机电液一体化,以充分合理利用机械和电子的先进技术促进整个液压系统的完善;自动化、智能化,实现对系统的自动诊断和调整,具有故障预处理功能;液压

9、元件集成化、标准化,以有效防止泄露和污染等四个方面。作为液压机两大组成部分的主机和液压系统,由于技术发展趋于成熟,国内外机型无较大差距,主要差别在于加工工艺和安装方面。良好的工艺使机器在过滤、冷却及防止冲击和振动方面,有较明显改善。在油路结构设计方面,国内外液压机都趋向于集成化、封闭式设计,插装阀、叠加阀和复合化元件及系统在液压系统中得到较广泛的应用。特别是集成块可以进行专业化的生产,其质量好、性能可靠而且设计的周期也比较短。近年来在集成块基础上发展起来的新型液压元件组成的回路也有其独特的优点,它不需要另外的连接件其结构更为紧凑,体积也相对更小,重量也更轻无需管件连接,从而消除了因油管、接头引

10、起的泄漏、振动和噪声。逻辑插装阀具有体积小、重量轻、密封性能好、功率损失小、动作速度快、易于集成的特点,从70年代初期开始出现,至今已得到了很快的发展。我国从1970年开始对这种阀进行研究和生产,并已将其广泛的应用于冶金、锻压等设备上,显示了很大的优越性。液压机工艺用途广泛,适用于弯曲、翻边、拉伸、成型和冷挤压等冲压工艺,压力机是一种用静压来加工产品。适用于金属粉末制品的压制成型工艺和非金属材料,如塑料、玻璃钢、绝缘材料和磨料制品的压制成型工艺,也可适用于校正和压装等工艺。 由于需要进行多种工艺,液压机具有如下的特点:(1) 工作台较大,滑块行程较长,以满足多种工艺的要求;(2) 有顶出装置,

11、以便于顶出工件;(3) 液压机具有点动、手动和半自动等工作方式,操作方便;(4) 液压机具有保压、延时和自动回程的功能,并能进行定压成型和定程成型的操作,特别适合于金属粉末和非金属粉末的压制;(5) 液压机的工作压力、压制速度和行程范围可随意调节,灵活性大。现代装备的要求制造队大型锻造液压机1 大压力 百万千万瓦核点段件所需最大刚锭已达600T ,大型岗顶的镦粗,压实。大型封头,管板的锻造均需大压力。2 高效率130MN级大型液压机的锻件产量不于10万瓦T/年。为此,必须使压力既具备有高效率的生产。提高效率的途径不外三点: 一是提高压力机的压下速度的频次:二是操作机,三是:降低故障率 3 高精

12、度 为提高钢锭和锻件的利用率,降低锻件的成本,中小压力机的锻件尺寸误差应1mm,大型压力机应23mm .4 高自动话水平 高自动化水平是高效率和高精度的保证。大众型锻造液压力机应实现如下自动化功能: 主机和操作机联动:自动换刀上刀旋转:锻件尺寸的测量和自动控制;部分锻造工序的自动执行紧急工艺数据的实时存储;一般故障的自动诊断及报警:生产管理数据的自动采集和处理。二600t液压机液压系统工况分析本机器(见图1.1)适用于可塑性材料的压制工艺。如冲压、弯曲、翻边、薄板拉伸等。也可以从事校正、压装、砂轮成型、冷挤金属零件成型、塑料制品及粉末制品的压制成型。本机器具有独立的动力机构和电气系统。采用按钮

13、集中控制,可实现调整、手动及半自动三种操作方式。本机器的工作压力、压制速度、空载快速下行和减速的行程范围均可根据工艺需要进行调整,并能完成一般压制工艺。此工艺又分定压、定程两种工艺动作供选择。定压成型之工艺动作在压制后具有保压、延时、自动回程、延时自动退回等动作。 本机器主机呈长方形,外形新颖美观,动力系统采用液压系统,结构简单、紧凑、动作灵敏可靠。该机并设有脚踏开关,可实现半自动工艺动作的循环。2.2 工况分析本次设计在毕业实习调查的基础上,用类比的方法初步确定了立式安装的主液压缸活塞杆带动滑块及动横梁在立柱上滑动下行时,运动部件的质量为800Kg。1工作负载 工件的压制抗力即为工作负载:2

14、. 摩擦负载 静摩擦阻力: 动摩擦阻力: 3. 惯性负载 自重: 4. 液压缸在各工作阶段的负载值:其中: 液压缸的机械效率,一般取=0.9-0.97。工况负载组成推力 F/ 2.3负载图和速度图的绘制:负载图按上面的数值绘制,速度图按给定条件绘制,如图: 三 液压机液压系统原理图设计31 自动补油的保压回路设计考虑到设计要求,保压时间要达到5s,压力稳定性好。若采用液压单向阀回路保压时间长,压力稳定性高,设计中利用换向阀中位机能保压,设计了自动补油回路,且保压时间由电气元件时间继电器控制,在0-20min内可调整。此回路完全适合于保压性能较高的高压系统,如液压机等。自动补油的保压回路系统图的

15、工作原理:按下起动按纽,电磁铁1YA通电,换向阀6接入回路时,液压缸上腔成为压力腔,在压力到达预定上限值时压力继电器11发出信号,使换向阀切换成中位;这时液压泵卸荷,液压缸由换向阀M型中位机能保压。当液压缸上腔压力下降到预定下限值时,压力继电器又发出信号,使换向阀右位接人回路,这时液压泵给液压缸上腔补油,使其压力回升。回程时电磁阀2YA通电,换向阀左位接人回路,活塞快速向上退回。32 释压回路设计:释压回路的功用在于使高压大容量液压缸中储存的能量缓缓的释放,以免她突然释放时产生很大的液压冲击。一般液压缸直径大于25mm、压力高于7Mpa时,其油腔在排油前就先须释压。根据设计很实际的生产需要,选

16、择用节流阀的释压回路。其工作原理:按下起动按钮,换向阀6的右位接通,液压泵输出的油经过换向阀6的右位流到液压缸的上腔。同时液压油的压力影响压力继电器。当压力达到一定压力时,压力继电器发出信号,使换向阀5回到中位,电磁换向阀10接通。液压缸上腔的高压油在换向阀5处于中位(液压泵卸荷)时通过节流阀9、换向阀10回到油箱,释压快慢由节流阀调节。当此腔压力降至压力继电器的调定压力时,换向阀6切换至左位,液控单向阀7打开,使液压缸上腔的油通过该阀排到液压缸顶部的副油箱13中去。使用这种释压回路无法在释压前保压,释压前有保压要求时的换向阀也可用M型,并且配有其它的元件。机器在工作的时候,如果出现机器被以外

17、的杂物或工件卡死,这是泵工作的时候,输出的压力油随着工作的时间而增大,而无法使液压油到达液压缸中,为了保护液压泵及液压元件的安全,在泵出油处加一个直动式溢流阀1,起安全阀的作用,当泵的压力达到溢流阀的导通压力时,溢流阀打开,液压油流回油箱。起到保护作用。在液压系统中,一般都用溢流阀接在液压泵附近,同时也可以增加液压系统的稳定性。使零件的加工精度增高。33液压机液压系统原理图拟定液压机的主要运动是上滑块机构和下滑快顶出机构的运动,上滑块机构由主液压缸(上缸)驱动,顶出机构有辅助液压缸(下缸)驱动。液压机的上滑块机构通过四个导柱向导。主缸驱动。实现上滑块机构“快速下行 慢速加压保压延时快速回程原位

18、停止”的动作循环。下缸布置在工作台中间孔内,驱动下滑块顶出机构实现“向上顶出向下退回”或“浮动压边下行停止顶出”的两种动作循环。如图1-1所示。液压机液压系统以压力控制为主。系统具有压高 大流量 大功率的特点。如何提高系统效率,防止系统产生液压冲击是该系统设计中需要注意的问题。上液压缸工作循环 (1) 快速下行。按下起动按钮,电磁铁1YA通电,这时的油路为: 液压缸上腔的供油的油路 变量泵1换向阀6右位节流阀8压力继电器11液压缸15 液压缸下腔的回油路液压缸下腔15液控单向阀7换向阀6右位电磁阀5背压阀4油箱油路分析:变量泵1的液压油经过换向阀6的右位,液压油分两条油路:一条油路通过节流阀7

19、流经继电器11,另一条路直接流向液压缸的上腔和压力表。使液压缸的上腔加压。液压缸15下腔通过液控单向阀7经过换向阀6的右位流经背压阀,再流到油箱。因为这是背压阀产生的背压使接副油箱旁边的液控单向阀7打开,使副油箱13的液压油经过副油箱旁边的液控单向阀14给液压缸15上腔补油。使液压缸快速下行,另外背压阀接在系统回油路上,造成一定的回油阻力,以改善执行元件的运动平稳性。(2) 保压时的油路情况:油路分析:当上腔快速下降到一定的时候,压力继电器11发出信号,使换向阀6的电磁铁1YA断电,换向阀回到中位,利用变量泵的柱塞孔从吸油状态过渡到排油状态,其容积的变化是由大变小,而在由增大到缩小的变化过程中

20、,必有容积变化率为零的一瞬间,这就是柱塞孔运动到自身的中心线与死点所在的面重合的这一瞬间,这时柱塞孔的进出油口在配油盘上所在的位置,称为死点位置。柱塞在这个位置时,既不吸油,也不排油,而是由吸转为排的过渡状态。液压系统保压。而液压泵1在中位时,直接通过背压阀直接回到油箱。(3) 回程时的油路情况: 液压缸下腔的供油的油路:变量泵1换向阀6左位液控单向阀7液压油箱15的下腔液压缸上腔的回油油路: 液压腔的上腔液控单向阀14副油箱13 液压腔的上腔节流阀8换向阀6左位电磁阀5背压阀4油箱油路分析: 当保压到一定时候,时间继电器发出信号,使换向阀6的电磁铁2YA通电,换向阀接到左位,变量泵1的液压油

21、通过换向阀旁边的液控单向阀流到液压缸的下腔,而同时液压缸上腔的液压油通过节流阀9(电磁铁6YA接通),上腔油通过换向阀10接到油箱,实现释压,另外一部分油通过主油路的节流阀流到换向阀6,再通过电磁阀19,背压阀11流回油箱。实现释压。下液压缸的工作循环: 向上顶出时,电磁铁4YA通电,5YA失电。 进油路:液压泵换向阀19左位单向节流阀18下液压缸下腔回油路:下液压缸上腔换向阀19左位油箱 当活塞碰到上缸盖时,便停留在这个位置上。 向下退回是在4YA失电,3YA通电时产生的, 进油路:液压泵换向阀19右位单向节流阀17下液压缸上腔回油路:下液压缸下腔换向阀19右位油箱 原位停止是在电磁铁3YA

22、,4YA都断电,换向阀19处于中位时得到的。四 液压系统的计算和元件选型41 确定液压缸主要参数: 按液压机床类型初选液压缸的工作压力为25Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。快进时采用差动连接,并通过充液补油法来实现,这种情况下液压缸无杆腔工作面积应为有杆腔工作面积的6倍,即活塞杆直径与缸筒直径满足的关系。快进时,液压缸回油路上必须具有背压,防止上压板由于自重而自动下滑,根据液压系统设计简明手册表2-2中,可取=1Mpa,快进时,液压缸是做差动连接,但由于油管中有压降存在,有杆腔的压力必须大于无杆腔,估计时可取,快退时,回油腔是有背压的,这时亦按2Mpa来估算。1) 计算液压

23、缸的面积可根据下列图形来计算 液压缸工作腔的压力 Pa 液压缸回油腔的压力 Pa 故:0.2648D=d= D=0.3277=0.299m当按GB2348-80将这些直径圆整成进标准值时得:,由此求得液压缸面积的实际有效面积为:2) 液压缸实际所需流量计算 工作快速空程时所需流量液压缸的容积效率,取 工作缸压制时所需流量 工作缸回程时所需流量42液压元件的选择42.1确定液压泵规格和驱动电机功率 由前面工况分析,由最大压制力和液压主机类型,初定上液压泵的工作压力取为,考虑到进出油路上阀和管道的压力损失为(含回油路上的压力损失折算到进油腔),则液压泵的最高工作压力为 上述计算所得的是系统的静态压

24、力,考虑到系统在各种工况的过渡阶段出现的动态压力往往超过静态压力,另外考虑到一定压力贮备量,并确保泵的寿命,其正常工作压力为泵的额定压力的80%左右因此选泵的额定压力应满足:液压泵的最大流量应为:式中液压泵的最大流量同时动作的各执行所需流量之和的最大值,如果这时的溢流阀正进行工作,尚须加溢流阀的最小溢流量。系统泄漏系数,一般取,现取。1选择液压泵的规格由于液压系统的工作压力高,负载压力大,功率大。大流量。所以选轴向柱塞变量泵。柱塞变量泵适用于负载大、功率大的机械设备(如龙门刨床、拉床、液压机),柱塞式变量泵有以下的特点:1) 工作压力高。因为柱塞与缸孔加工容易,尺寸精度及表面质量可以达到很高的

25、要求,油液泄漏小,容积效率高,能达到的工作压力,一般是(),最高可以达到。 2) 流量范围较大。因为只要适当加大柱塞直径或增加柱塞数目,流量变增大。 3) 改变柱塞的行程就能改变流量,容易制成各种变量型。 4) 柱塞油泵主要零件均受压,使材料强度得到充分利用,寿命长,单位功率重量小。但柱塞式变量泵的结构复杂。材料及加工精度要求高,加工量大,价格昂贵。根据以上算得的和在查阅相关手册机械设计手册成大先P20-195得:现选用,排量63ml/r,额定压力32Mpa,额定转速1500r/min,驱动功率59.2KN,容积效率,重量71kg,容积效率达92%。2 与液压泵匹配的电动机的选定 由前面得知,

26、本液压系统最大功率出现在工作缸压制阶段,这时液压泵的供油压力值为26Mpa,流量为已选定泵的流量值。液压泵的总效率。柱塞泵为,取0.82。 选用1000r/min的电动机,则驱动电机功率为选择电动机 ,其额定功率为18.5KW。4.2.2阀类元件及辅助元件的选择1. 对液压阀的基本要求:(1). 动作灵敏,使用可靠,工作时冲击和振动小。油液流过时压力损失小。(2). 密封性能好。结构紧凑,安装、调整、使用、维护方便,通用性大2. 根据液压系统的工作压力和通过各个阀类元件及辅助元件型号和规格主要依据是根据该阀在系统工作的最大工作压力和通过该阀的实际流量,其他还需考虑阀的动作方式,安装固定方式,压

27、力损失数值,工作性能参数和工作寿命等条件来选择标准阀类的规格: 序号元件名称估计通过流量型号规格1斜盘式柱塞泵156.863SCY141B32Mpa,驱动功率59.2KN2WU网式滤油器160WU-160*18040通径,压力损失0.01MPa3直动式溢流阀120DBT1/315G2410通径,32Mpa,板式联接4背压阀80YF3-10B10通径,21Mpa,板式联接5二位二通手动电磁阀8022EF3-E10B6三位四通电磁阀10034DO-B10H-T10通径,压力31.5MPa7液控单向阀80YAF3-E610B32通径,32MPa8节流阀80QFF3-E10B10通径,16MPa9节流

28、阀80QFF3-E10B10通径,16MPa10二位二通电磁阀3022EF3B-E10B6通径,压力20 MPa11压力继电器DP1-63B8通径,10.5-35 MPa12压力表开关KFL830E32Mpa,6测点13油箱14液控单向阀YAF3-E610B32通径,32MPa15上液压缸16下液压缸17单向节流阀48ALF3E10B10通径,16MPa18单向单向阀48ALF3E10B10通径,16MPa19三位四通电磁换向阀2534DO-B10H-T20减压阀40JF3-10B4.2.3 管道尺寸的确定油管系统中使用的油管种类很多,有钢管、铜管、尼龙管、塑料管、橡胶管等,必须按照安装位置、

29、工作环境和工作压力来正确选用。本设计中油管采用钢管,因为本设计中所须的压力是高压,P=31.25MPa , 钢管能承受高压,价格低廉,耐油,抗腐蚀,刚性好,但装配是不能任意弯曲,常在装拆方便处用作压力管道一中、高压用无缝管,低压用焊接管。本设计在弯曲的地方可以用管接头来实现弯曲。尼龙管用在低压系统;塑料管一般用在回油管用。胶管用做联接两个相对运动部件之间的管道。胶管分高、低压两种。高压胶管是钢丝编织体为骨架或钢丝缠绕体为骨架的胶管,可用于压力较高的油路中。低压胶管是麻丝或棉丝编织体为骨架的胶管,多用于压力较低的油路中。由于胶管制造比较困难,成本很高,因此非必要时一般不用。1. 管接头的选用:管

30、接头是油管与油管、油管与液压件之间的可拆式联接件,它必须具有装拆方便、连接牢固、密封可靠、外形尺寸小、通流能力大、压降小、工艺性好等各种条件。管接头的种类很多,液压系统中油管与管接头的常见联接方式有:焊接式管接头、卡套式管接头、扩口式管接头、扣压式管接头、固定铰接管接头。管路旋入端用的连接螺纹采用国际标准米制锥螺纹(ZM)和普通细牙螺纹(M)。锥螺纹依靠自身的锥体旋紧和采用聚四氟乙烯等进行密封,广泛用于中、低压液压系统;细牙螺纹密封性好,常用于高压系统,但要求采用组合垫圈或O形圈进行端面密封,有时也采用紫铜垫圈。液压系统中的泄漏问题大部分都出现在它管系中的接头上,为此对管材的选用,接头形式的确

31、定(包括接头设计、垫圈、密封、箍套、防漏涂料的选用等),管系的设计(包括弯管设计、管道支承点和支承形式的选取等)以及管道的安装(包括正确的运输、储存、清洗、组装等)都要考虑清楚,以免影响整个液压系统的使用质量。国外对管子的材质、接头形式和连接方法上的研究工作从不间断,最近出现一种用特殊的镍钛合金制造的管接头,它能使低温下受力后发生的变形在升温时消除即把管接头放入液氮中用芯棒扩大其内径,然后取出来迅速套装在管端上,便可使它在常温下得到牢固、紧密的结合。这种“热缩”式的连接已经在航空和其它一些加工行业中得到了应用,它能保证在4055Mpa的工作压力下不出现泄漏。本设计根据需要,选择卡套式管接头。要

32、求采用冷拔无缝钢管。2. 管道内径计算: (1)式中 Q通过管道内的流量 v管内允许流速 ,见表:允许流速推荐值油液流经的管道推荐流速 m/s液压泵吸油管液压系统压油管道36,压力高,管道短粘度小取大值液压系统回油管道1.52.6 (1). 液压泵压油管道的内径: 取v=4m/s 根据机械设计手册成大先P20-641查得:取d=20mm,钢管的外径 D=28mm; 管接头联接螺纹M272。(2). 液压泵回油管道的内径:取v=2.4m/s 根据机械设计手册成大先P20-641查得:取d=25mm,钢管的外径 D=34mm; 管接头联接螺纹M332。3. 管道壁厚的计算 式中: p管道内最高工作

33、压力 Pa d管道内径 m管道材料的许用应力 Pa,管道材料的抗拉强度 Pan安全系数,对钢管来说,时,取n=8;时,取n=6; 时,取n=4。根据上述的参数可以得到:我们选钢管的材料为45#钢,由此可得材料的抗拉强度=600MPa; (1) . 液压泵压油管道的壁厚 (2). 液压泵回油管道的壁厚 所以所选管道适用。4. 液压系统的验算上面已经计算出该液压系统中进,回油管的内径分别为32mm,42mm。但是由于系统的具体管路布置和长度尚未确定,所以压力损失无法验算。4.2.1系统温升的验算在整个工作循环中,工进阶段所占的时间最长,且发热量最大。为了简化计算,主要考虑工进时的发热量。一般情况下

34、,工进时做功的功率损失大引起发热量较大,所以只考虑工进时的发热量,然后取其值进行分析。当V=10mm/s时,即v=600mm/min即 此时泵的效率为0.9,泵的出口压力为26MP,则有即此时的功率损失为:假定系统的散热状况一般,取,油箱的散热面积A为系统的温升为根据机械设计手册成大先P20-767:油箱中温度一般推荐30-50所以验算表明系统的温升在许可范围内。 五 液压缸的结构设计5.1 液压缸主要尺寸的确定1) 液压缸壁厚和外经的计算液压缸的壁厚由液压缸的强度条件来计算。液压缸的壁厚一般指缸筒结构中最薄处的厚度。从材料力学可知,承受内压力的圆筒,其内应力分布规律应壁厚的不同而各异。一般计

35、算时可分为薄壁圆筒和厚壁圆筒。液压缸的内径D与其壁厚的比值的圆筒称为薄壁圆筒。工程机械的液压缸,一般用无缝钢管材料,大多属于薄壁圆筒结构,其壁厚按薄壁圆筒公式计算 设 计 计 算 过 程式中 液压缸壁厚(m); D液压缸内径(m); 试验压力,一般取最大工作压力的(1.251.5)倍; 缸筒材料的许用应力。无缝钢管:。 =22.9则在中低压液压系统中,按上式计算所得液压缸的壁厚往往很小,使缸体的刚度往往很不够,如在切削过程中的变形、安装变形等引起液压缸工作过程卡死或漏油。因此一般不作计算,按经验选取,必要时按上式进行校核。液压缸壁厚算出后,即可求出缸体的外经为2) 液压缸工作行程的确定液压缸工

36、作行程长度,可根据执行机构实际工作的最大行程来确定,并参阅P12表2-6中的系列尺寸来选取标准值。液压缸工作行程选 缸盖厚度的确定一般液压缸多为平底缸盖,其有效厚度t按强度要求可用下面两式进行近似计算。无孔时 有孔时 式中 t缸盖有效厚度(m); 缸盖止口内径(m); 缸盖孔的直径(m)。液压缸:无孔时 取 t=65mm有孔时取 t=50mm5.2 液压缸的结构设计液压缸主要尺寸确定以后,就进行各部分的结构设计。主要包括:缸体与缸盖的连接结构、活塞与活塞杆的连接结构、活塞杆导向部分结构、密封装置、排气装置及液压缸的安装连接结构等。由于工作条件不同,结构形式也各不相同。设计时根据具体情况进行选择

37、。设 计 计 算 过 程1) 缸体与缸盖的连接形式缸体与缸盖的连接形式与工作压力、缸体材料以及工作条件有关。本次设计中采用外半环连接,如下图1所示:图1 缸体与缸盖外半环连接方式优点: 优点:结构较简单 (2)加工装配方便 缺点 :(1) 外型尺寸大 (2)缸筒开槽,削弱了强度,需增加缸筒壁厚2)活塞杆与活塞的连接结构 参阅P15表2-8,采用组合式结构中的螺纹连接。如下图2所示: 图2 活塞杆与活塞螺纹连接方式特点:结构简单,在振动的工作条件下容易松动,必须用锁紧装置。应用较多,如组合机床与工程机械上的液压缸。2) 活塞杆导向部分的结构(1)活塞杆导向部分的结构,包括活塞杆与端盖、导向套的结

38、构,以及密封、防尘和锁紧装置等。导向套的结构可以做成端盖整体式直接导向,也可做成与端盖分开的导向套结构。后者导向套磨损后便于更换,所以应用较普遍。导向套的位置可安装在密封圈的内侧,也可以装在外侧。机床和工程机械中一般采用装在内侧的结构,有利于导向套的润滑;而油压机常采用装在外侧的结构,在高压下工作时,使密封圈有足够的油压将唇边张开,以提高密封性能。参阅P16表2-9,在本次设计中,采用导向套导向的结构形式,其特点为:导向套与活塞杆接触支承导向,磨损后便于更换,导向套也可用耐磨材料。盖与杆的密封常采用Y形、V形密封装置。密封可靠适用于中高压液压缸。防尘方式常用J形或三角形防尘装置活塞及活塞杆处密

39、封圈的选用活塞及活塞杆处的密封圈的选用,应根据密封的部位、使用的压力、温度、运动速度的范围不同而选择不同类型的密封圈。参阅P17表2-10,在本次设计中采用O形密封圈。六 液压集成油路的设计通常使用的液压元件有板式和管式两种结构。管式元件通过油管来实现相互之间的连接,液压元件的数量越多,连接的管件越多,结构越复杂,系统压力损失越大,占用空间也越大,维修、保养和拆装越困难。因此,管式元件一般用于结构简单的系统。板式元件固定在板件上,分为液压油路板连接、集成块连接和叠加阀连接。把一个液压回路中各元件合理地布置在一块液压油路板上,这与管式连接比较,除了进出液压油液通过管道外,各液压元件用螺钉规则地固

40、定在一块液压阀板上,元件之间由液压油路板上的孔道勾通。板式元件的液压系统安装 、调试和维修方便,压力损失小,外形美观。但是,其结构标准化程度差, 互换性不好,结构不够紧凑,制造加工困难,使用受到限制。此外,还可以把液压元件分别固定在几块集成块上,再把各集成块按设计规律装配成一个液压集成回路,这种方式与油路板比较,标准化、系列化程度高,互换性能好,维修、拆装方便,元件更换容易;集成块可进行专业化生产,其质量好、性能可靠而且设计生产周期短。使用近年来在液压油路板和集成块基础上发展起来的新型液压元件叠加阀组成回路也有其独特的优点,它不需要另外的连接件,由叠加阀直接叠加而成。其结构更为紧凑,体积更小,

41、重量更轻,无管件连接,从而消除了因油管、接头引起的泄漏、振动和噪声。本次设计采用系统由集成块组成,由于本液压系统的压力比较大,所以调压阀选择DB/DBW型直动溢流阀,而换向阀等以及其他的阀采用广州机床研究所的GE系列阀。液压集成块结构与设计61液压集成回路设计1)把液压回路划分为若干单元回路,每个单元回路一般由三个液压元件组成,采用通用的压力油路P和回油路T,这样的单元回路称液压单元集成回路。设计液压单元集成回路时,优先选用通用液压单元集成回路,以减少集成块设计工作量,提高通用性。2)把各个液压单元集成回路连接起来,组成液压集成回路,一个完整的液压集成回路由底板、供油回路、压力控制回路、方向回路、调速回路、顶盖及测压回路等单元液压集成回路组成。液压集成回路设计完成后,要和液压回路进行比较,分析工作原理是否相同,否则说明液压集成回路出了差错。6.2底板及供油块设计上图为底板块及供油块,其作用是连接集成块组。液压泵供应的压力油P由底板引入各集成块,液压系统回油路T及泄漏油路L经底板引入液压油箱冷却沉淀。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 其他


经营许可证编号:宁ICP备18001539号-1