数控铣床电主轴系统的设计.doc

上传人:奥沙丽水 文档编号:90455 上传时间:2025-07-10 格式:DOC 页数:71 大小:2.12MB
下载 相关 举报
数控铣床电主轴系统的设计.doc_第1页
第1页 / 共71页
数控铣床电主轴系统的设计.doc_第2页
第2页 / 共71页
数控铣床电主轴系统的设计.doc_第3页
第3页 / 共71页
数控铣床电主轴系统的设计.doc_第4页
第4页 / 共71页
数控铣床电主轴系统的设计.doc_第5页
第5页 / 共71页
点击查看更多>>
资源描述

1、优秀完整毕业设计资料,欢迎下载借鉴!目 录引 言11.数控铣床简介31.1.数控铣床组成31.2.数控铣床的工作原理41.3数控铣床加工的特点41.4数控铣床加工的主要对象42.电主轴概述52.1电主轴的基本概念52.2电主轴单元关键技术52.2.1高速精密轴承技术62.2.2高速精密电主轴的动态性能和热态性能设计72.2.3高速电动机设计及驱动技术72.2.4高速电主轴的精密加工和精密装配技术82.2.5高速精密电主轴的润滑技术82.2.6高速精密电主轴的冷却技术92.3高速电主轴发展及现状92.3.1高速电主轴技术的发展及现状92.3.2主轴单元结构形式研究的发展102.4电主轴对高速加工

2、技术及现代数控机床发展的意义112.5内装式电主轴系统的研究123.电主轴工作原理及结构143.1电主轴的基本结构143.1.1轴壳143.1.2转轴143.1.3轴承153.1.4定子与转子153.2电主轴的工作原理153.3电主轴的基本参数163.3.1电主轴的型号163.3.2转速173.3.3输出功率173.3.4 输出转矩173.3.5电主轴转矩和转速、功率的关系173.3.6 恒转速调速173.3.7 恒功率调速183.3.8 轴承中径183.4自动换刀装置184. 电主轴结构设计194.1主轴的设计194.1.1.铣削力的计算194.1.2 主轴当量直径的计算204.2 高速电主

3、轴单元结构参数静态估算204.2.1 高速电主轴单元结构静态估算的内容与目的204.2.2轴承的选择和基本参数204.3 轴承的预紧214.4 主轴轴承静刚度的计算214.4.1 主轴单元主要结构参数确定及刚度验算234.4.2主轴单元主要结构参数确定244.4.3主轴强度的校核274.4.4主轴刚度的校核294.4.5主轴的精密制造304.5主轴电机314.5.1电机选型314.6 主轴轴承324.6.1轴承简介324.6.2陶瓷球轴承324.6.3陶瓷球轴承的典型结构334.7 主轴轴承精度对主轴前端精度影响344.8拉刀机构设计344.8.1刀具接口344.8.2拉刀杆尺寸设计364.8

4、3夹具体结构尺寸设计364.8.4 松、拉刀位移的确定384.8.5碟型弹簧的设计与计算394.9 HSK工具系统结构特点分析414.10 HSK工具系统的静态刚度444.10.1 HSK工具系统的变形转角与极限弯矩445.电主轴的润滑与冷却475.1 润滑介绍475.1.1润滑的作用和目的475.1.2 电主轴润滑的主要类型475.1.3 油气润滑的原理和优点495.2电主轴的冷却505.2.1电主轴的热源分析505.2.2电主轴的冷却方法515.3 电主轴的防尘和密封516.电主轴的驱动和控制526.1 恒转矩变频驱动和参数设置526.2 恒功率变频驱动和参数设置536.3 矢量控制驱动

5、器的驱动和控制546.4 普通变频器原理566.5本设计采用的变频器原理576.6 主轴准停596.6.1主轴的准停功能596.6.2主轴准停的工作原理596.6.3主轴准停控制方法597主轴动平衡627.1 动平衡介绍627.2 动平衡设计63总 结65致 谢66参考文献67引 言高速机床是实现高速切削加工的前提和条件。高速数控机床是装备制造业的技术基础和发展方向之一,是装备制造业的战略性产业。高速数控机床的工作性能,首先取决于高速主轴的性能。高速铣床上的电主轴系统多采用高速电主轴。高速电主轴是由内装式交流变频伺服电机直接驱动,机床主轴转速高,功率大,结构简单,在高转速下可保持良好的动平衡!

6、数控铣床高速主轴单元包括主轴动力源、主轴、轴承和机架等几个部分,它影响加工系统的精度、稳定性及应用范围,其动力学性能及稳定性对高速加工起着关键的作用。高速高精度主轴单元系统,应该具有刚性好、回转精度高、运转时温升小、稳定性好、功耗低、寿命长、可靠性高等优点,同时,制造及操作成本也要中。要满足这些要求,主轴的制造及动平衡、主轴的支撑、主轴系统的润滑和冷却、主轴系统的刚性等是很重要的。高速主轴单元的类型主要有电主轴、气动主轴、水动主轴等。不同类型的高速主轴单元输出功率相差较大。高速加工机床主轴要求在极短的时间内实现升降速,并在指定位置快速准停。这就需要主轴有较高的角减速度和角加速度。如果通过传动带

7、等中间环节,不仅会在高速状态下打滑,产生振动和噪声,而且增加转动惯量,给机床快速准、停造成困难!电主轴是一种新型的机械结构形式。是一种主轴电机一体化的主轴单元,即所谓的内装式电机主轴。它采用无外壳电机,将带有冷却套的电机定子装配在主轴单元的壳体内,转子和机床主轴旋转部分做成一体,主轴的变速范围完全由交流电机控制。这种结构大大简化了主传动的机械结构,取消了带传动和齿轮传动,从而把机床主传动链的长度缩短为零,实现了机械的 “零传动”。这种主轴电动机和主机主轴 “合二为一”的传动结构形式,使主轴组件从主机的传动系统和整体结构中相对独立出来,可以做成 “主轴单元 ”,通常称为 “电主轴”。其英文的称谓

8、有多种,比如Electro-spindle、Motor Spindle和Motorized Spindle。它是随着电气传动技术 (变频调速技术、电动机矢量控制技术等)的迅速发展而日趋完善。由于电主轴主要采用交流高频电动机,也称为“高频主轴”(High Frequency Spindle)。由于没有中间传动环节 ,有时称为“直接传动主轴”(Direct Drive Spindle)。电主轴是一种智能型功能部件,具有转速高、功率大、高速运行的可靠性和安全性等优点。电动机内置于主轴部件后,不可避免的将会产生发热的问题,从而需要设计专门用于冷却电动机的油冷或水冷系统。高频电动机要有变频器类的驱动器,

9、以实现主轴转速的变换。高速轴承有时要有专门的润滑装置。另外为了保证高速回转部件的安全,还要有报警及停车用的传感器及其控制系统等一系列支持电主轴运转的外围设备和技术。因此,“电主轴”的概念不应该简单的理解为只是一根主轴套筒,而是一个完整的、在机床数控系统监控下的子系统总之,电主轴具有结构紧凑、重量轻、惯性小及动态特性好和改善机床动平衡,避免振动和噪声等特点发展越来越快。 而高速电主轴单元技术的发展,可以带动高速进给、高性能道具、检测与控制等一系列相关技术的发展。因此各工业国家都十分关注电主轴单元技术的研究与发展。1.数控铣床简介1.1.数控铣床组成数控铣床的基本组成见图1.1,它由床身、立柱、主

10、轴箱、工作台、滑鞍、滚珠丝杠、伺服电机、伺服装置、数控系统等组成。床身用于支撑和连接机床各部件。主轴箱用于安装主轴。主轴下端的锥孔用于安装铣刀。当主轴箱内的主轴电机驱动主轴旋转时,铣刀能够切削工件。主轴箱还可沿立柱上的导轨在Z 向移动,使刀具上升或下降。工作台用于安装工件或夹具。工作台可沿滑鞍上的导轨在X 向移动,滑鞍可沿床身上的导轨在Y 向移动,从而实现工件在X和Y 向的移动。无论是X、Y 向,还是Z 向的移动都是靠伺服电机驱动滚珠丝杠来实现的。伺服装置用于驱动伺服电机。控制器用于输入零件加工程序和控制机床工作状态。控制电源用于向伺服装置和控制器供电。图1.1 数控铣床的基本组成图数控铣床的

11、机械结构,除铣床基础部件外,由下列各部分组成:1.主传动系统;2.进给系统;3.实现工件回转、定位、的装置和附件;4.实现某些部件动作和辅助功能的系统和装置,如液压、气动、润滑、冷却等系统和排屑、防护等装置;5.刀架或自动换刀装置(ATC);6.自动托盘交换装置(APC);7.特殊功能装置,如刀具破损监控、精度检测和监控装置;8.为完成自动化控制功能的各种反馈信号装置及元件。1.2.数控铣床的工作原理根据零件形状、尺寸、精度和表面粗糙度等技术要求制定加工工艺,选择加工参数。通过手工编程或利用CAM 软件自动编程,将编好的加工程序输入到控制器。控制器对加工程序处理后,向伺服装置传送指令。伺服装置

12、向伺服电机发出控制信号。主轴电机使刀具旋转,X、Y 和Z向的伺服电机控制刀具和工件按一定的轨迹相对运动,从而实现工件的切削。1.3数控铣床加工的特点(1)用数控铣床加工零件,精度很稳定。如果忽略刀具的磨损,用同一程序加工出的零件具有相同的精度。(2)数控铣床尤其适合加工形状比较复杂的零件,如各种模具等。(3)数控铣床自动化程度很高,生产率高,适合加工批量较大的零件。1.4数控铣床加工的主要对象(1) 平面类零件 加工面平行或垂直与水平面,或加工面与水平面的夹角为定角的饿零件为平面类零件。平面类零件一般只需用三坐标数控铣床的两坐标联动(即两轴半坐标联动)就可以加工出来。(2) 变斜角类零件加工面

13、与水平面夹角呈连续变化的零件称为变斜角零件。此类零件的变斜角加工面不能展开为平面,最好采用四坐标、五坐标数控铣床摆角加工。(3) 曲面类零件 加工面为空间曲面的零件称为曲面类零件。也不能展开为平面,一般采用球头刀在三轴数控铣床上加工。2.电主轴概述2.1电主轴的基本概念加工中心是集机、电、液、气、计算机和信息控制等各种技术于一体的机电一体化的典型产品,最能体现高速、高效、超精、数字化及结构紧凑等当今最先进、最流行的技术水平。它广泛应用于能源、交通、原材料、农机、军工、轻纺织机械、汽车、模具等各个工业部门的机械制造领域中,它的技术水平高速及其在金属切削机床产量和总拥有量中的百分比是衡量一个国家机

14、械工业制造水平的重要标志。电主轴是一套组件,它包括电主轴本身及其附件:电主轴、高频变频装置、油雾润滑装置、冷却装置、内置编码器、换刀装置。高速主轴单元是高速机床最为关键的部件。高速主轴单元的主要类型有电主轴、气动主轴、水动主轴等等。主轴部件是加工中心的主要功能部件,是决定机床高速化和高精度的关键部分,始终是机床技术发展的基础。随着电气传动技术(变频调速技术、电动机矢量控制等)的迅速发展和日趋完善,高速数控机床主传动的机械结构已得到极大的简化,基本上取消了带轮传动和齿轮传动。机床主轴由内装式电动机直接驱动,从而把机床主传动链的长度缩短为零,实现机床的“零传动”。这种主轴电动机和主机主轴 “合二为

15、一”的传动结构形式,使主轴组件从机床的传动系统和整体结构中相对独立出来,因此可以做成 “主轴单元 ”,通常称为 “电主轴”。其英文的称谓有多种,比如Electro-spindle、Motor Spindle和Motorized Spindle等等。它是随着电气传动技术 (变频调速技术、电动机矢量控制技术等)的迅速发展而日趋完善。由于电主轴主要采用交流高频电动机,也称为“高频主轴”(High Frequency Spindle)。由于没有中间传动环节 ,有时称为“直接传动主轴”(Direct Drive Spindle)。电主轴是一种智能型功能部件,不但转速高、功率大、具有调速范围广、振动噪声小

16、而且便于控制、能实现定向准停、准速、准位等功能。2.2电主轴单元关键技术电主轴单元是一套组件,它是一项涉及电主轴本身及其附件的系统工程,其系统框图如图2.1。电主轴单元所融合的技术主要包括以下几方面。 图2.1 系统框图2.2.1高速精密轴承技术实现电主轴高速化和精密化的关键是轴承的应用。目前在大功率高速精密电主轴中应用的轴承主要是角接触陶瓷球轴承和液体东静压轴承。空气轴承不时和于大功率场合,磁悬浮轴承由于价格昂贵、控制系统复杂,其实用性受到限制。角接触球轴承是精密数控机床常用的主轴支撑。由于滚球高速运转时会产生巨大的离心力和陀螺力矩,采用陶瓷球和钢质套圈混合轴承成为一种选择。最常用的陶瓷球

17、材料是。陶瓷具有密度小、热膨胀系数小、弹性模量大和硬度高等优点。用它作为高速主轴轴承的滚动元件,可大大减少滚球的离心力和陀螺力矩,从而使轴承获得高速度、低温升和长寿命的性能。除混合轴承外,目前国内已开始在高速精密主轴上试验采用全陶瓷球轴承,其内外套圈、保持架和陶瓷球采用的材料有、和聚四氟乙烯等。陶瓷球的等静压成型和烧结是保证陶瓷球强度的基础,球的加工精度靠加工和检测来保证。目前国内滚球的加工精度可达G5级以上。对于全陶瓷球轴承,除陶瓷球外,陶瓷内外圈的精密加工也是关键,需要设计专门的工装固定内外圈坯件才能实现精密加工,内外沟道的加工精度的一致性也要靠恰当的工装和工序来保证。尽管目前高速精密电主

18、轴的支撑绝大部分为角接触陶瓷球轴承,但由于在极限转速和大负载工况下滚动轴承的功能丧失很快,液体动静压轴承的研究一直为国内外电主轴企业及专家重视。动静压轴承作为电主轴轴承的主要技术难点是实现高速化,对其关键技术的研究主要有:动静压轴承的层流、紊流流体惯性的计算算法研究;动静压轴承层油腔结构的研究;轴承温升及热变形控制技术的研究及润滑介质的研究等。2.2.2高速精密电主轴的动态性能和热态性能设计高速精密电主轴设计目标要求主轴刚度高、精度高、抗振性好、可靠性高。传统的动力学分析常常将轴承刚度用假设的弹簧代替,利用有限元或传递矩阵法等数值计算方法计算主轴的各阶固有频率和振型,并在设计时使主轴的一阶固有

19、频率高于设计的主轴最高转速所对应的频率。该方法还能解释随着主轴速度升高,球轴承离心力变化导致主轴固有频率变化等动力学现象。但该方法对球轴承刚度的非线性变化特点没有充分考虑。根据电主轴的实际运行特点,有必要将“轴承主轴电动机轴承座”作为一个系统进行动力学分析,同时充分考虑支承刚度非线性、主轴热扩散及热变形等热态性能对主轴动态性能的影响,并对整个电主轴进行动态优化设计,而轴承系统的动力学仿真是基础。主轴动态性能设计的关键技术有:滚动接触界面的非线性刚度变化规律。滚动轴承的支承刚度与运转速度之间、载荷与变形之间是非线性的关系,且由于有限个滚动体的存在、轴承元件接触表面的加工几何误差、轴承材料的弹性及

20、外力的变化等,使得轴承的刚度成为时变函数。在考虑定位预紧和定压预紧两种预紧方式、计算球与内外圈沟道接触载荷和接触角的基础上,计算每个球与内外圈沟道接触点的接触刚度,需要根据轴承内部变形的几何关系,提出合适的计算轴承径向刚度、轴向刚度和角刚度的方法。主轴的热变形和热扩散规律。高速精密主轴单元各零件的刚度及精密都较高,主轴的弹性变形所引起的误差常常很小,而运动副间的摩擦发热和温升却不可避免。在各类误差中,热变形引起的误差往往比其他误差更为突出。高速旋转状态下,主轴多个支承轴承和电动机转子是电主轴多区段的主要热源,会直接导致主轴热变形,改变轴承的预紧状况,影响主轴的加工精度,严重时甚至会烧毁轴承,导

21、致主轴损坏。为了避免这种危害,对主轴热变形和热扩散的研究至关重要,而建立高速精密主轴多区段热扩散、热变形及主轴热变形与振动耦合规律的数学模型,是主轴系统动力学分析的一个关键。主轴热分析可在获得正确的主轴热传导系数后,采用有限元法进行研究,预测主轴热变形后引起的间隙变化对轴承及主轴部件性能的影响,并在主轴系统设计、制造、装配过程中做出补偿,防止主轴单元工作精度降低。2.2.3高速电动机设计及驱动技术电主轴是电动机与主轴结合在一起的产物,电动机的转子即为主轴的旋转部分,理论上可以把主轴看作一台高速电动机,其关键技术是高速运动的动平衡。电主轴实现高速化存在的问题,从机械方面考虑主要是轴承发热和振动问

22、题;从设计方面考虑主要是定转子功率密度和线圈发热问题;从驱动和控制角度考虑主要是调速性能问题。异步型电主轴的主要优点在于结构简单、制造工艺相对成熟、驱动系统易于实现高速化,其不足之处在于转子发热严重、低速性能不好、转子参数受温度影响大,难于实现精密控制。异步型电主轴功率容量大、转速提高时,常常需配备中心冷却系统以降低主轴升温,同时,在主轴结构设计时,对轴承采用恒压预紧方式,以克服主轴轴向热变形带来的影响。对于同步型电主轴,其优点在于: 转子不发热,从原理上避免了旋转轴热变形和向轴承散热等问题。 转子无损耗,功率密度大,工作效率高,功率因数高,与同容量的异步电动机相比,其驱动装置容量较小。 体积

23、和重量大为减小,转动惯量小,易于快速起动和准停。 与同体积的异步电动机相比,其输出转矩大一倍以上。 低速性能好。 易于实现精密控制。2.2.4高速电主轴的精密加工和精密装配技术为了保证电主轴在高速运转时的回转精度和刚度,其关键零件必须进行精密加工或超精密加工。主轴单元的精密加工件包括主轴、箱体、先后轴承座以及随主轴高速旋转的轴承隔圈和定位过盈套等。主轴与轴承的配合面、主轴锥孔与刀柄的配合面、主轴拉刀孔的表面、主轴前后轴承德同轴度、主轴的径向圆跳动是必须保证的主要精度指标。主轴单元的精密装配包括主轴与电动机转子、主轴与前后轴承、主轴与轴承隔圈和定位过盈套、主轴与刀具、轴系于轴承座、轴承座与壳体之

24、间的精密装配。精密装配要保证的主要两点是电主轴整体刚度和整体的动平衡精度。围绕精密加工和精密装配开发的工装和专用机床是高速精密电主轴核心技术的重要组成部分。此外,高速主轴上旋转刀具的装配也是精密装配工艺需要考虑的因素。2.2.5高速精密电主轴的润滑技术电主轴的润滑一般采用定时定量的油气润滑,也可以采用脂润滑,但其相应的速度要大打折扣。定时就是指每隔一定的时间间隔注一次油,定量是指通过一个叫做定量阀的器件,精确地控制每次润滑油的注油量。油气润滑,通常是润滑油在压缩空气的携带下,被吹入陶瓷球轴承。油气润滑技术中,油亮控制显得十分重要,如果过少,起不到润滑作用;过多,又会在轴承高速旋转时因油的阻力而

25、发热。2.2.6高速精密电主轴的冷却技术为了尽快使高速运行的电主轴散热,通常对电主轴的外壁通以循环冷却剂,而冷却剂的温度通过冷却装置来保持。2.3高速电主轴发展及现状2.3.1高速电主轴技术的发展及现状 早在20世纪50年代,就已经出现了用于磨削小孔的高频电主轴,当时的变频器采用的是真空电子管,虽然转速高,但传递的功率小,转矩也小。随着高速切削发展的需要和功率电子器件、微电子器件和计算机技术的发展,产生了全固态元件的变频器和矢量控制驱动器;加上混合陶瓷球轴承的出现,使得在20世纪80年代末、90年代初出现了用于铣削、钻削、加工中心及车削等加工的大功率、大转矩、高转速的电主轴。国外高速电主轴技术

26、发展较快,中等规格的加工中心的主轴转速目前己普遍达到10000r/min甚至更高。1976年美国的Vought公司首次推出一台超高速铣床,采用了Bryant内装式电机主轴系统,最高转速达到了20,OOOr/min,功率为15KW。到90年代末期,电主轴发展的水平是:转速40,000 r/min,功率40 KW(即所谓的“40-40水平”)。但2001年美国Cincinnati公司为宇航工业生产了Super Mach大型高速加工中心,其电主轴最高转速达60,000 r/min,功率为80 KW。目前世界各主要工业国家均有装备优良的专业电主轴生产厂,批量生产一系列用于加工中心和高速数控机床的电主轴

27、其中最著名的生产厂家有:瑞士的FISCHER公司、IBAG公司和STEP-TEC公司,德国的GMN公司和FAG公司,美国的PRECISE公司,意大利的GAMFIOR公司和FOEMAT公司,日本的NSK公司和KOYO公司,以及瑞典的SKF公司等公司。高速电主轴生产技术的突破,大大推动了世界高速加工技术的发展与应用。从80年代中后期以来,商品化的超高速切削机床不断出现,超高速机床从单一的超高速铣床发展成为超高速车铣床、钻铣床乃至各种加工中心等。德国、美国、瑞士、英国、法国、日本也相继推出了自己的超高速机床。其中日本工业界善于汲取各国的研究成果并及时应用到新产品开发中去,尤其在超高速切削机床的研究

28、和开发方面后来居上,现己跃居世界领先地位。日本厂商现己成为世界上超高速机床的主要提供者。在我国,也开始有厂家生产超高速机床。中国机床工具行业近几年的快速发展,受到世界机床制造业界瞩目。代表当今机床技术发展主流的数控机床,更是异军突起,国产数控机床在高速、多轴、复合、精密以及自动化等方面都取得了明显的进展。尤其在数控机床的高速化和品种发展上进步明显。在CIMT2003届展会的高速加工中心展品有30多台,占参展国产加工中心总数的30%。在高速加工中心展品中,宁江机床集团公司的NJ-5HMC40卧式加工中心最高主轴转速达40000r /min,快速行程达60m/min。在高精度产品中有北京机床研究所

29、的高速立式加工中心,成都托普数控机床公司的PMC600高速立式加工中心,大连机床集团有限公司的DHSC500高速卧式加工中心,沈阳机床股份有限公司的BW60HS/1卧式加工中心等。高速加工机床的涌现及超高速切削技术的发展,带动了相关技术及数控功能部件的专业化生产。数控功能部件是指数控系统、主轴单元、数控刀架和转台、滚珠丝杠副和滚动直线导轨副、刀库和机械手、高速防护装置等。它们是数控机床的核心组成部分。主机技术水平的不断提高,要求配套的功能部件也必须迅速提高自身的水平。功能部件技术水平的高低、性能的优劣以及整体的社会配套水平,都直接决定和影响着数控机床整机的技术水平和性能,也制约着主机的发展速度

30、没有高质量的功能部件,数控机床的迅速发展也将成为一句空话。国产电主轴技术水平的高低必然影响产品在主机上的应用。我国数控机床的发展历程充分证明,数控功能部件产业发展的滞后,始终是制约我国数控机床发展的瓶颈问题之一。功能部件跟不上,发展数控机床将成为空话。我国数控机床整体技术水平的发展和提高,最终离不开先进的功能部件产业的支持。我们要抓住目前的黄金发展机遇,学习国外同行的先进技术,探索国际合作途径,共同为做大做强数控功能部件产业,为国产数控机床的发展而努力奋斗。2.3.2主轴单元结构形式研究的发展从电主轴的结构形式来看,早期主轴单元的结构比较简单,主轴仅由套轴向预紧面对面配置的320C系列圆锥滚

31、子轴承支承。圆锥滚子轴承具承受较大轴向和径向联合载荷的能力,径向和轴向刚度高,主轴单元具良好的动力学特性。由于这种主轴单元的速度性能受到限制,在高速场很少采用,其值一般小于。SKF公司于1955年所提出的著名的主轴单元,其径向载荷靠NN30K系双列圆柱滚子轴承支承,轴向载荷靠轴向预紧的2844系列双向推力角接球轴承承受和轴向定位。这种主轴单元刚性好,但由于双向推力角接触球轴承的摩擦力矩和接触角较大,其速度性能受到了限制,值一般小于。为了改善主轴速度性能,上个世纪八十年代又出现了一种主轴单元:它的工作端用三套主轴轴承代替双列圆柱滚子轴承和双向推力角接触球轴承,值可达到。近年来,为适应机床提高生产

32、效率和加工精度的需要,进一步改善主轴单元的结构,如在传动端用双联配置的主轴轴承代替双列圆柱滚子轴承进一步提高速度性能,工作端可以采用双联、三联甚至四联配置的主轴轴承以适应不同的刚度性能要求,采用定位和定压预紧以及定压和定位预紧转换,以适应主轴单元不同的速度和刚性要求,值可达到。根据主电动机与主轴轴承相对位置的不同,高速电主轴单元主要有两种结构布局设计方式:(l)主电机置于主轴前、后轴承之间。它采用两支承结构,前轴承比后轴承尺寸大,均分别用串联安装方式,前后支承受力方式为外撑式。后支承选用小尺寸轴承,虽然会降低速度回数值,这对主轴整体刚性影响不大,但它改变了工作条件,对保持整个轴系的使用寿命十分

33、有利。这种结构的优点是主轴单元的轴向尺寸较短,主轴刚度大,输出功率大,较适合大中型高速机床。(2)主电动机置于主轴后轴承之后,即主轴箱和主电机作轴向的同轴布置,这种方式减少了电主轴前端的悬伸量,电机的散热条件较好,但整个电主轴单元的出力较小,轴向尺寸大,常用于小型高速机床。2.4电主轴对高速加工技术及现代数控机床发展的意义以高切削速度、高进给速度、高加工精度为主要特征的高速加工是当代四大先进制造技术之一,是制造技术产生第二次革命性飞跃的一项高新技术。当今世界各国都竞相发展自己的高速加工技术,并成功应用,产生了巨大的经济效益。要发展和应用高速加工技术,首先必须有性能优良的高速数控机床,而数控机床

34、性能的好坏则首先取决于高速主轴。高速加工的主要优势是:加工时间大幅度缩短,加工节拍只有原来的1/4,这意味着一台高速机床可以代替4台普通CNC机床。表面质量高,不用再进行比如打磨等表面处理工序。零件可换性好,有利于模具行业制造。零件变形小,可以加工很薄的零件。从管理角度看,高速机床的投资可以很快回收,并能缩短交货期,占地面积小,人工数量可减少。因此,近年来高速加工技术发展十分迅猛,在航空航天、汽车工业、模具加工和摩托车工业等工业生产中得到广泛应用。现代高速加数控机床主轴的主要形式就是电主轴,并且已在机械、电子、航空航天、国防、冶金、食品、化工、医药和光学等领域内显示期旺盛的生命力;其性能的好坏

35、在很大程度上决定了整台高速机床的加工精度和生产效率。因此,电主轴单元技术的发展也对现代数控机床的发展及高速加工技术产生了深远的影响。主要体现在以下几个方面:促进了高速加工技术与机床的发展。电主轴是由内装式电动机直接驱动,更容易满足高速加工对机床“高速度、高精度、高可靠性及小振动”的要求,与机床高速进给系统、高速刀具系统一起组成高速切削所需要的必备条件。电主轴技术与电动机变频、闭环矢量控制、交流伺服控制等技术结合,可以满足车削、铣削、镗削、钻削、磨削等金属切削加工的需要。简化结构,促进机床结构模块化。电主轴可以根据用途、结构、性能参数等特征形成标准化、系列化产品,供用户选用,从而促进机床结构模块

36、化。降低机床成本,缩短机床研制周期。一方面,标准化、系列化的电主轴产品易于形成专业化、规模化生产,实现功能部件的低成本制造;另一方面,采用电主轴后,机床结构的简单化和模块化,也有利于基地机床成本。此外,还可以缩短机床研制周期,适应目前快速多变的市场趋势。改善机床性能,提高其可靠性。采用电主轴结构的数控机床,由于结构简化,传动、连接环节减少,因此,提高了机床的可靠性;技术成熟、功能完善、性能优良、质量可靠的电主轴功能部件是机床的性能更加完善,可靠性得到进一步提高。实现某些高档数控机床的特殊要求。有些高档数控机床,如并联运动机床、五面体加工中心、小孔和超小孔加工机床等,必须采用电主轴才能满足完善的

37、功能要求。2.5内装式电主轴系统的研究内装式电主轴系统把主轴与电动机有机地结合在一起,经驱动控制器供电,使之输出相应的转速和扭矩。在编码系统的控制下,该驱动器能方便地控制电动机实现准速、准停和准位等功能。内装式电主轴系统由内装式电主轴单元、驱动控制器、编码系统、直流母线能耗制动器和通讯电缆组成(见图2.2)常见的数控机床与电主轴系统的配置可由下列简式来表述:加工中心+电主轴单元十编码系统+闭环式驱动控制器+直流母线能耗制动器车削中心+电主轴单元+编码系统十有C轴定位的闭环式驱动控制器十直流母线能耗制动器。图2.2 内装式电主轴系统结构简图内装式电主轴单元是电主轴系统的核心。高性能的电主轴单元具

38、有高速、高精度、高效、低振动和低噪声等特点,便于实现主轴系统智能化控制。内装式电主轴单元由下列各部件及系统组成:(l)电动机 接受驱动控制器提供的中频电,并将其转换成电主轴的机械能。(2)支承 按数控机床对主轴系统的特殊要求设置的支承系统,它是决定电主轴单元精度、刚度的主要因素。(3)冷却系统 为将电主轴电动机及轴承高速运转时产生的热能带走而设置在电主轴内腔的热交换器。(4)松拉刀系统 为电主轴单元实现气(液)动松拉刀而设置在转轴体内的机构。其中拉刀器由电主轴转速、传递扭矩的不同可选用HSK、瓣爪、钢球拉刀等不同型式。(5)松刀气、液压缸 电主轴松刀时向松拉刀机构提供动力源的部件。(6)轴承自

39、动卸载系统 电主轴处于松刀状态时,用以自动卸去轴承上承受的过大冲击负荷的系统。(7)刀具冷却系统 在统一设计前提下,电主轴单元对刀具冷却通道采取统筹兼顾的措施。常见的电主轴单元中刀具冷却形式可分两种:超高速电主轴刀具冷却选用内冷式,高速电主轴刀具冷却选用外冷式。(8)编码安装调整系统加工中心、大型数控车用电主轴需具备准停、准位功能,因此,必须在电主轴单元中安装能实现速度反馈和传递位置信号的磁性编码器。其中钢质码盘应安装在转轴本体上,接收器应牢靠地安装在电主轴外壳上,以实现准确的相角控制以及进给的配合,同时应便于调整。3.电主轴工作原理及结构3.1电主轴的基本结构高速电主轴要获得好的动态性能和使

40、用寿命,必须对电主轴各个部分进行精心设计和制造。电主轴的基本结构包括以下几个部分:轴壳、转轴、轴承、定子和转子。电主轴基本结构原理如图2-1所示。对电主轴的结构设计就是围绕这几个部分展开的。 3.1 电主轴基本结构原理图3.1.1轴壳 轴壳是高速电主轴的主要部件。轴壳的尺寸精度和位置精度直接影响主轴综合精度。通常将轴承座孔直接设计在轴壳上。电主轴为加装电动机定子,必须开放一端。大型或特种电主轴,为方便制造、节省材料,可以将轴壳两端均设计成开放型。高速、大功率和超高速电主轴,应该严格控制整机装配精度。3.1.2转轴 转轴是高速电主轴的主要回转主体,其制造精度直接影响电主轴的最终精度。成品转轴的形

41、位公差和尺寸精度要求都很高。当转轴高速运转时,由偏心质量引起的振动,严重影响其动态性能。因此,必须对转轴进行严格的动平衡,部分安装在转轴上的零件也应随转轴一起进行动平衡。3.1.3轴承高速电主轴的核心支撑部件是高速精密轴承。这种轴承具有高速性能好、动载荷承载能力高、润滑性能好、发热量小等优点。近年来,相继开发研制了陶瓷轴承、动静压轴承和磁浮轴承。目前应用最多的高速主轴轴承还是混合陶瓷球轴承,即滚动体使用热压陶瓷球,轴承套圈仍为钢圈。这种轴承标准化程度高,对机床结构改动小,便于维护保养,特别适合高速运行场合。为了延长轴承的使用寿命,可增加滚道的耐磨性,对滚道进行涂层处理或其他表面处理。用其组装的

42、高速电主轴,能兼有高速、高刚度、大功率、长寿命等优点。3.1.4定子与转子高速电主轴的定子由具有高磁导率的优质矽钢片叠压而成,叠压成型的定子内腔带有冲制嵌线槽。转子是中频电动机的旋转部分,它的功能是将定子的电磁场能量转换成机械能。转子由转子铁心、鼠笼、转轴三部分组成。由于电主轴单元是机械主轴和电动机转子的合成体,因此其精度要求高于一般主轴,加工难度更大,需要很好的工艺分析和正确的工艺路线。由于高速主轴的极限转速高,为了保证电主轴运行的稳定性,防止振动发生,电动机转子与主轴的联接也采用同主轴轴承紧固相似的结构。转子与机床主轴过盈配合量的大小是影响主轴性能的重要因素。由于主轴的转速高,在高速下,会

43、产生很大的离心力,转子与主轴在径向上将产生不同程度的膨胀,这将会影响到主轴与转子的配合。过盈量太小的配合将会影响主轴传递转矩的能力,甚至松动,产生振动;过盈量太大,将会使装配难度加大,影响装配精度,甚至破坏配合表面。因此,必须对电动机转子与机床主轴间的过盈量进行研究,以适应高速电主轴设计工作的需要。3.2电主轴的工作原理高速电主轴的工作原理是:高速电主轴的电动机部分由产生旋转磁场的定子绕组和把电能转换为机械能的转子组成。高速电主轴的定子和转子之间的空隙是形成功率输出有效部分的主要部分。电主轴持续工作功率主要取决于电动机的机械效率和冷却效果,机械效率的高低则主要取决于轴承高速化参数n值,为轴承中

44、径,n为主轴转速。电主轴的线圈相位互差120度,安放在定子铁心的槽内,通以三相交流电,三相线圈各自形成一个正弦交变磁场,这三个对称的交变磁场互相叠加,合成一个强度不变,磁极朝一定方向恒速旋转的磁场,磁场转速就是电主轴的同步转速。异步电动机的同步转速n由输入电动机定子线圈电流的频率f和电动机定子的极对数p决定(n=60f/p)。电主轴就是利用变换输入电动机定子绕组的电流的频率和励磁电压来获得各种转速。在加工和制动过程中,通过提供相当于最大转矩的频率进行加减速,以免电动机温升过高。由于电动机旋转磁场的方向取决于输入三相交流电的相序,便可改变电主轴的旋转方向。电主轴运转中,将会产生如振动、轴承发热、

45、精度低和寿命低等问题。所以通常从转速提出相应的功率参数、体积参数和刚度参数,作为定性评价高速电主轴的可比度: 式中 -功率参数,=n; -体积参数,= K -常数,取; A -单位线负载; -空气隙磁通密度。上式表明,和值一经确定,电主轴的电磁负荷也就可以大致确定。增大 值必将导致 或增大提高值要受到临界转速以及转子表面线速度的限制;的提高易导致电主轴的功率下降和温度升高;值增大,使轴承的动载荷增大,振动加大,降低轴承的寿命。理论分析及实验表明:轴承是制约电主轴的功率输出和精度的主要部件。所以,高速主轴轴承是电主轴的核心部分,使用 值高的主轴轴承可以有效的提高电主轴的性能。 3.3电主轴的基本

46、参数电主轴的性能是通过一些技术特性参数来表示的其中电主轴的主要参数有:电主轴的最高转速和恒功率转速范围;电机主轴的额定功率和最大扭矩;电机主轴前、后轴承直径和前后轴承跨距。其中主轴的最高转速、前后轴承直径和额定功率为基本参数。3.3.1电主轴的型号电主轴的型号一般由电主轴代号、安装尺寸及转速代码等组成。一般电主轴型号中含有套筒直径、最高转速和输出功率等参数。3.3.2转速转速是电主轴的一个重要技术指标,电主轴转速可在一定范围内通过变频器实现无级变速,电主轴转速和频率成正比关系。同步转速由下式计算可得。 n=60f/p 式中 f-变频器输出频率; p-驱动电动机的极对数。电主轴一般为异步电动机,

47、其实际转速比同步电动机的转速稍低。选择电主轴时要注意实际工作转速不得高于最高转速。临界转速是指一个回转质量统(包括道具在内)在某一特定的支承条件下,产生系统最低一阶共振时的转速。掌握这个临界转速,对高速回转部件的安全运转至关重要。3.3.3输出功率输出功率表示电主轴的做功能力,一般用P表示电主轴功率一般随电源频率和电压变化而变化(恒功率调速除外),电主轴铭牌标称电压、转速下的满载输出功率,电主轴的输出功率一般随转速的降低而降低,选择电主轴时要考虑这一点。3.3.4 输出转矩输出转矩表示电主轴输出力的大小,一般用M表示,电主轴的转矩指标有最大转矩和额定转速,最大转矩表示电主轴的过载能力,额定转矩表示负载能力。如电主轴承担的转矩超过最大转矩时,电主轴转速会发生陡降或停转,电主轴的最大转矩一般为额定转矩的2倍左右,在使用和选

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 汽车/机械/制造 > 数控机床

宁ICP备18001539号-1