液压系统设计与计算.ppt

上传人:苏美尔 文档编号:9187333 上传时间:2021-02-06 格式:PPT 页数:78 大小:1.26MB
返回 下载 相关 举报
液压系统设计与计算.ppt_第1页
第1页 / 共78页
液压系统设计与计算.ppt_第2页
第2页 / 共78页
液压系统设计与计算.ppt_第3页
第3页 / 共78页
液压系统设计与计算.ppt_第4页
第4页 / 共78页
液压系统设计与计算.ppt_第5页
第5页 / 共78页
点击查看更多>>
资源描述

《液压系统设计与计算.ppt》由会员分享,可在线阅读,更多相关《液压系统设计与计算.ppt(78页珍藏版)》请在三一文库上搜索。

1、1,第十一章 液压传动系统的设计计算,2,本章提要,本章介绍设计液压传动系统的基本步骤和方法,对于一般的液压系统,在设计过程中应遵循以下几个步骤: 明确设计要求,进行工况分析; 拟定液压系统原理图; 计算和选择液压元件; 发热及系统压力损失的验算; 绘制工作图,编写技术文件。 上述工作大部分情况下要穿插、交叉进行,对于比较复杂的系统,需经过多次反复才能最后确定;在设计简单系统时,有些步骤可以合并或省略。通过本章学习,要求对液压系统设计的内容、步骤、方法有一个基本的了解。,3,液压传动系统的设计是整机设计的一部分,它除了应符合主机动作循环和静、动态性能等方面的要求外,还应当满足结构简单,工作安全

2、可靠,效率高,经济性好,使用维护方便等条件。 液压系统的设计,根据系统的繁简、借鉴的资料多少和设计人员经验的不同,在做法上有所差异。各部分的设计有时还要交替进行,甚至要经过多次反复才能完成。 下面对液压系统的设计步骤予以介绍。,1 液压传动系统的设计计算,4,1.1 明确设计要求、工作环境,进行工况分析,液压系统的动作和性能要求主要有: 运动方式、行程、速度范围、负载条件、运动平稳性、精度、工作循环和动作周期、同步或联锁等。就工作环境而言,有环境温度、湿度、尘埃、防火要求及安装空间的大小等。 要使所设计的系统不仅能满足一般的性能要求,还应具有较高的可靠性、良好的空间布局及造型。,1.1.1 明

3、确设计要求及工作环境,5,工况分析,就是查明每个执行元件的速度和负载的变化规律,必要时还应作出速度、负载随时间或位移变化的曲线图。 就缸而言,负载主要由六部分组成,即工作负载,导向摩擦负载,惯性负载,重力负载,密封负载和背压负载。,1.1.2 执行元件的工况分析,6,(1) 工作负载,不同的机器有不同的工作负载。工作负载与液压缸运动方向相反时为正值,方向相同时为负值。,导向摩擦负载是指液压缸驱动运动部件时所受的导轨摩擦阻力。,(2) 导向摩擦负载,惯性负载是运动部件在启动加速或制动减速时的惯性力,其值可按牛顿第二定律求出。,(3) 惯性负载,7,(4) 重力负载,密封负载是指液压缸密封装置的摩

4、擦力,一般通过液压缸的机械效率加以考虑,常取机械效率值为0.900.97。,(5) 密封负载,背压负载是指液压缸回油腔压力所造成的阻力。,(6) 背压负载,8,液压缸各个主要工作阶段的机械负载F可按下列公式计算,空载启动加速阶段:,快速阶段:,工进阶段:,制动减速:,(10.4),(10.5),(10.6),(10.7),9,液压系统原理图是表示液压系统的组成和工作原理的重要技术文件。拟定液压系统原理图是设计液压系统的第一步,它对系统的性能及设计方案的合理性、经济性具有决定性的影响。,1.2 液压系统原理图的拟定,1.2.1 确定油路类型,一般具有较大空间可以存放油箱的系统,都采用开式油路;相

5、反,凡允许采用辅助泵进行补油,并借此进行冷却交换来达到冷却目的的系统,可采用闭式油路。通常节流调速系统采用开式油路,容积调速系统采用闭式回路。,10,根据各类主机的工作特点、负载性质和性能要求,先确定对主机主要性能起决定性影响的主要回路,然后再考虑其它辅助回路。例如: 对于机床液压系统,调速和速度换接回路是主要回路; 对于压力机液压系统,调压回路是主要回路; 有垂直运动部件的系统要考虑平衡回路; 惯性负载较大的系统要考虑缓冲制动回路。 有多个执行元件的系统可能要考虑顺序动作、同步回路; 有空载运行要求的系统要考虑卸荷回路等。,1.2.2 选择液压回路,11,将挑选出来的各典型回路合并、整理,增

6、加必要的元件或辅助回路,加以综合,构成一个结构简单,工作安全可靠、动作平稳、效率高、调整和维护保养方便的液压系统,形成系统原理图。,1.2.3 绘制液压系统原理图,12,1.3 液压元件的计算和选择,结构参数的确定是指根据执行元件工作压力和最大流量确定执行元件的排量或油缸面积。,1.3.1 执行元件的结构形式及参数的确定,表10.1选择执行元件的形式,13,工作压力是确定执行元件结构参数的主要依据。它的大小影响执行元件的尺寸和成本,乃至整个系统的性能,工作压力选得高,执行元件和系统的结构紧凑,但对元件的强度,刚度及密封要求高,且要采用较高压力的液压泵。 反之,如果工作压力选得低,就会增大执行元

7、件及整个系统的尺寸,使结构变得庞大,所以应根据实际情况选取适当的工作压力。,(1)初选执行元件的工作压力,14,(2)确定执行元件的主要结构参数,以缸为例,主要结构尺寸指缸的内径D和活塞杆的直径d,计算后按系列标准值确定D和d。 对有低速运动要求的系统,尚需对液压缸有效工作面积进行验算,即应保证:,(10.8),验算结果若不能满足式(10.8),则说明按所设计的结构尺寸和方案达不到所需要的最低速度,必须修改设计。,式中:A液压缸工作腔的有效工作面积; 控制执行元件速度的流量阀最小稳定流量; 液压缸要求达到的最低工作速度。,15,(3)复算执行元件的工作压力,当液压缸的主要尺寸D、d计算出来以后

8、,要按系列标准圆整,有必要根据圆整值对工作压力进行一次复算。 在按上述方法确定的工作压力还没有计算回油路的背压,所确定的工作压力只是执行元件为了克服机械总负载所需要的那部分压力,在结构参数D、d确定之后,取适当的背压估算值,即可求出执行元件工作腔的压力。,16,对于单杆液压缸,其工作压力P可按下列公式复算。,式中:F液压缸在各工作阶段的最大机械总负载; 、 分别为缸无杆腔和有杆腔的有效面积; 液压缸回油路的背压。,17,(4)执行元件的工况图,即执行元件在一个工作循环中的压力、流量、功率对时间或位移的变化曲线图。将系统中各执行元件的工况图加以合并,便得到整个系统的工况图。 液压系统的工况图可以

9、显示整个工作循环中的系统压力、流量和功率的最大值及其分布情况,为后续设计步骤中选择元件、选择回路或修正设计提供合理的依据。 对于简单系统,其工况图的绘制可省略。,18,先根据设计要求和系统工况确定泵的类型,然后根据液压泵的最大供油量和系统工作压力来选择液压泵的规格。,1.3.2 选择液压泵,(10.11),式中: 执行元件的最高工作压力; 进油路上总的压力损失。,(1) 液压泵的最高供油压力,19,液压泵的最大供油量为:,(2)确定液压泵的最大供油量,(10.11),式中: K系统的泄漏修正系数,一般取 K=1.11.3; 同时动作的各执行元件所需流量之和的最大值。,20,液压泵的规格型号按计

10、算值在产品样本选取,为了使液压泵工作安全可靠,液压泵应有一定的压力储备量,通常泵的额定压力可比工作压力高25%60%。泵的额定流量则宜与相当,不要超过太多,以免造成过大的功率损失。,(3)选择液压泵的规格型号,21,驱动泵的电机根据驱动功率和泵的转速来选择。 在整个工作循环中,泵的压力和流量在较多时间内皆达到最大工作值时,驱动泵的电动机功率为:,(4)选择驱动液压泵的电动机,(10.13),式中: 液压泵的总效率,数值可见产品样本。 限压式变量叶片泵的驱动功率,可按泵的实际压力流量特性曲线拐点处的功率来计算。 工作中泵的压力和流量变化较大时,可分别计算出各个阶段所需的驱动功率,然后求其均方根值

11、即可。,22,各种阀类元件的规格型号,按液压系统原理图和系统工况提供的情况从产品样本中选取,各种阀的额定压力和额定流量,一般应与其工作压力和最大通过流量相接近。 具体选择时,应注意溢流阀按液压泵的最大流量来选取;流量阀还需考虑最小稳定流量,以满足低速稳定性要求。,1.3.3 选择阀类元件,23,油管的规格尺寸大多由所连接的液压元件接口处尺寸决定,只有对一些重要的管道才验算其内径和壁厚。 对于固定式的液压设备,常将液压系统的动力源,阀类元件集中安装在主机外的液压站上,这样能使安装与维修方便,并消除了动力源的振动与油温变化对主机工作精度的影响。,1.3.4 选择液压辅助元件,24,1.4 液压系统

12、技术性能的验算,液压系统初步设计完成之后,需要对它的主要性能加以验算,以便评判其设计质量,并改进和完善液压系统。,10.1.4.1 系统压力损失的验算,画出管路装配草图后,即可计算管路的沿程压力损失,局部压力损失,它们的计算公式详见液压流体力学,管路总的压力损失为沿程损失与局部损失之和。 在系统的具体管道布置情况没有明确之前,通常用液流通过阀类元件的局部压力损失来对管路的压力损失进行概略地估算。,25,1.4.2 系统发热温升的验算,液压系统在工作时,有压力损失,容积损失和机械损失,这些损耗能量的大部分转化为热能,使油温升高从而导致油的粘度下降,油液变质,机器零件变形,影响正常工作。为此,必须

13、将温升控制在许可范围内。 单位时间的发热量为液压泵的输入功率与执行元件的输出功率之差。,26,一般情况下,液压系统的工作循环往往有好几个阶段,其平均发热量为各个工作周期发热量的时均值,即,(10.14),式中第个工作阶段系统的输入功率; 第个工作阶段系统的输出功率; 工作循环周期; 第个工作阶段的持续时间; 总的工作阶段数。,27,液压系统在工作中产生的热量,主要经油箱散发到空气中去,油箱在单位时间散发热量的可按下式计算,(10.15),式中: A油箱的散热面积; 液压系统的温升; 油箱的散热系数,其值可查阅液压设计手册。,计算温升值如果超过允许值,应采取适当的冷却措施。,28,1.5 绘制正

14、式工作图和编制技术文件,10.1.5.1 绘制正式工作图,正式工作图包括液压系统原理图、液压系统装配图、液压缸等非标准元件装配图及零件图。液压系统原理中应附有液压元件明细表,表中标明各液压元件的型号规格、压力和流量等参数值,一般还应绘出各执行元件的工作循环图和电磁铁的动作顺序表。 液压系统装配图是液压系统的安装施工图,包括油箱装配图,管路安装图等。,29,1.5.2 编制技术文件,技术文件一般包括液压系统设计计算说明书,液压系统使用及维护技术说明书,零、部件目录表及标准件、通用件、外购件表等。,30,2 液压系统设计举例,某厂要设计制造一台双头车床,加工压缩机拖车上一根长轴两端的轴颈。由于零件

15、较长,拟采用零件固定,刀具旋转和进给的加工方式。其加工动作循环是快进工进快退停止。同时要求各个车削头能单独调整。其最大切削力在导轨中心线方向估计为12000N,所要移动的总重量估计为15000N,工作进给要求能在0.0201.2mmin范围内进行无级调速,快速进、退速度一致,为 4 mmin,试设计该液压传动系统。,31,机床的外形示意图。,1-左主轴头;2-夹具;3-右主轴头;4-床身;5-工件,32,2.1 确定对液压系统的工作要求,根据加工要求,刀具旋转由机械传动来实现;主轴头沿导轨中心线方向的“快进一工进快退停止”工作循环拟采用液压传动方式来实现。故拟选定液压缸作执行机构。 考虑到车削

16、进给系统传动功率不大,且要求低速稳定性好,粗加工时负载有较大变化,故拟选用调速阀、变量泵组成的容积节流调速方式。 为了自动实现上述工作循环,并保证零件一定的加工长度(该长度并无过高的精度要求),拟采用行程开关及电磁换向阀实现顺序动作。,33,2.2 拟定液压系统工作原理图,系统同时驱动两个车削头,且动作相同。为保证快速进、退速度相等,并减小液压泵的流量规格,拟选用差动连接回路。,34,由快进转工进时,采用机动滑阀。工进终了时。压下电器行程开关返回。快退到终点,压下电器行程开关,运动停止。,分别调节两个调速阀,可使两车削头有较高的同步精度。,快进转工进后,系统压力升高,遥控顺序阀打开,回油经背压

17、阀回油箱。背压阀使工进时运动平稳。,35,图10.2双头车床液压系统工作原理图,36,2.3 计算和选择液压元件,2.3.1 液压缸的计算,10.3液压缸受力图,(1)工作负载及惯性负载计算,37,工作负载: N 油缸所要移动负载总重量: N 选取工进时速度的最大变化量: m/s 选取: s,38,缸的密封阻力通常折算为克服密封阻力所需的等效压力乘以液压缸的有效面积。若密封结构为Y型,可取 Peq=0.2MPa,缸的有效面积初估值为 A1=80mm,则密封力为:,(2) 密封阻力的计算,39,图10.4导轨结构受力示意图,(3)导轨摩擦阻力的计算,40,(4)回油背压造成的阻力计算,回油背压,

18、一般为 0.3-0.5MPa,取回油背压 Pb=0.3MPa,考虑两边差动比为2,且已知液压缸进油腔的活塞面积 A1=80 mm,取有杆腔活塞面积A2=40 mm,将上述值代入公式得:,(N),(N),分析液压缸各工作阶段中受力情况,得知在工进阶段受力最大,作用在活塞上的总载荷:,41,(5)确定液压缸的结构尺寸和工作压力,根据经验确定系统工作压力,选取 P=3MPa,则工作腔的有效工作面积和活塞直径分别为:,因为液压缸的差动比为2,所以活塞杆直径为:,42,根据液压技术行业标准,选取标准直径,则液压缸实际计算工作压力为:,实际选取的工作压力为:,43,由于左右两个切削头工作时需做低速进给运动

19、,在确定油缸活塞面积 A1之后,还必须按最低进绘速度验算油缸尺寸。即应保证油缸有效工作面积 A1为:,qmin流量阀最小稳定流量,在此取调速阀最小稳定流量为50ml/min; vmin活塞最低进绘速度,本题给定为20mmmin。,式中:,44,根据上面确定的液压缸直径,油缸有效工作面积为:,验算说明活塞面积能满足最小稳定速度要求。,45,2.3.2 油泵的计算,对于调速阀进油节流调速系统,管路的局部压力损失一般取 ,取总压力损失 , 则液压泵的实际计算工作压力:,(1) 确定油泵的实际工作压力,选择油泵,46,取液压系统的泄露系数 kl= 1.1 ,则液压泵的流量为:,当液压缸左右两个切削头快

20、进时,所需的最大流量之和为:,47,因该系统选用变量泵,所以应算出空载快速、最大工进时所需的功率,按两者的最大值选取电机的功率。,最大工进:此时所需的最大流量为:,选取液压泵的总效率为:=0.8,则工进时所需的液压泵的最大功率为:,(2) 确定液压泵电机的功率,48,导轨摩擦力:,空载条件下的总负载:,49,空载快速时液压泵所需的最大功率为:,选取空载快速条件下的系统压力损失,则空载快速条件下液压泵的输出压力为:,故应按最大工进时所需功率选取电机。,50,2.3.3 选择控制元件,控制元件的规格应根据系统最高工作压力和通过该阀的最大流量,在标准元件的产品样本中选取。,方向阀:按 , 选35D2

21、5B(滑阀机能O型)。,单向阀:按 , 选I25B。,调速阀:按工进最大流量 , 工作压力 选Q10B。,51,背压阀:调至 , 流量为 选B10。,行程阀:按 , 选22C25B。,调速阀:按工进最大流量 , 工作压力 选Q10B。,顺序阀:调至大于 ,保证快进时不打开。 选XB10B。,52,2.3.3 油管及其它辅助装置的选择,本系统的功率小,又采用限压式变量泵,发热少,所取油箱容量又较大,故不必进行系统温升的验算。,确定钢管通经、外径、壁厚、连接螺纹及推荐流量。 在液压泵的出口,按流量27.5lmin,查表取管路通径为10; 在液压泵的入口,选择较粗的管道,选取管径为12; 其余油管按

22、流量12.51min,查表取8。 对于一般低压系统,油箱的容量一般取泵流量的35倍,本题取4倍,其有效容积:,53,附: 液压缸的设计与计算,液压缸的计算及验算方法 首先根据使用要求确定液压缸的类型,再按负载和运动要求确定液压缸的主要结构尺寸,必要时需进行强度验算,最后进行结构设计。 液压缸的主要尺寸包括液压缸的内径D、缸的长度L、活塞杆直径d。主要根据液压缸的负载、活塞运动速度和行程等因素来确定上述参数。,54,液压缸的结构,图 3.9 双作用单活塞杆液压缸结构图 l 缸底;2 卡键;3、5、9、11 密封圈;4 活塞;6 缸筒; 7 活塞杆;8 导向套;10 缸盖;12 防尘圈;13 耳轴

23、,55,图 3.9 双作用单活塞杆液压缸结构图 l 缸底;2 卡键;3、5、9、11 密封圈;4 活塞;6 缸筒; 7 活塞杆;8 导向套;10 缸盖;12 防尘圈;13 耳轴,单活塞杆液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成。缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接。为了保证液压缸的可靠密封,在相应部位设置了密封圈3、5、9、11和防尘圈12。,56,-缸筒与端盖的连接,图3.8缸体与缸盖的连接结构,缸体组件,57,(2)半环式连接,分为外半环连接和内半环连接两种连接形式。,(1)法兰式连接,58,(3)螺纹式连接,外螺纹连接,内螺

24、纹连接,59,(5)焊接式连接,(4)拉杆式连接,60,缸筒 是液压缸的主体,其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造,要求表面粗造度在0.1m0.4m。,端盖 装在缸筒两端,与缸筒形成封闭油腔,同样承受很大的液压力,因此,端盖及其连接件都应有足够的强度。,导向套 对活塞杆或柱塞起导向和支承作用,有些液压缸不设导向套,直接用端盖孔导向。,缸筒,端盖和导向套的材料选择和技术要求可参考液压设计手冊。,61,活塞组件,活塞组件由活塞、密封件、活塞杆和连接件等组成。,活塞与活塞杆的连接形式,如图3.9所示,活塞与活塞杆的连接最常用的有螺纹连接和半环连接形式,除此之外还有整体式结构、焊接式

25、结构、锥销式结构等。,62,活塞装置主要用来防止液压油的泄漏。对密封装置的基本要求是具有良好的密封性能,并随压力的增加能自动提高密封性。除此以外,摩擦阻力要小,耐油。 油缸主要采用密封圈密封,密封圈有O形、V形、Y形及组合式等数种,其材料为耐油橡胶、尼龙、聚氨脂等。,(1)O形密封圈,O形密封圈的截面为圆形,主要用于静密封。与唇形密封圈相比,运动阻力较大,作运动密封时容易产生扭转,故一般不单独用于油缸运动密封。,63,(1)O形密封圈,图3.10 O型密封圈的结构原理,(a)普通型,(b)有挡板型,64,O形圈密封的原理:任何形状的密封圈在安装时,必须保证适当的预压缩量,过小不能密封,过大则摩

26、擦力增大,且易于损坏。因此,安装密封圈的沟槽尺寸和表面精度必须按有关手册给出的数据严格保证。 在动密封中,当压力大于10MPa时,O形圈就会被挤入间隙中而损坏,为此需在O形圈低压侧设置聚四氟乙烯或尼龙制成的挡圈,双向受高压时,两侧都要加挡圈。,(a)普通型 (b)有挡板型 图3.10 O型密封圈的结构原理,65,V形圈的截面为V形,如图3.11所示,V形密封装置是由压环、V形圈和支承环组成。当工作压力高于10MPa时,可增加V形圈的数量,提高密封效果。安装时,V形圈的开口应面向压力高的一侧。,66,Y形密封圈的截面为Y形,属唇形密封圈。它是一种摩擦阻力小、寿命较长的密封圈,应用普遍。Y形圈主要

27、用于往复运动的密封。根据截面长宽比例的不同,Y形圈可分为宽断面和窄断面两种形式,图3.12所示为宽断面Y形密封圈。,67,图3.12 Y形密封圈,Y形圈安装时,唇口端面应对着液压力高的一侧。当压力变化较大,滑动速度较高时,要使用支承环,以固定密封圈,如图3.12(b)所示。,68,缓冲装置,为了防止这种危害,保证安全,应采取缓冲措施,对液压缸运动速度进行控制。,当液压缸带动质量较大的部件作快速往复运动时,由于运动部件具有很大的动能,因此当活塞运动到液压缸终端时,会与端盖碰撞,而产生冲击和噪声。这种机械冲击不仅引起液压缸的有关部分的损坏,而且会引起其它相关机械的损伤。,69,缓冲装置,图3.13

28、 液压缸缓冲装置,70,当活塞移至端部,缓冲柱塞开始插入缸端的缓冲孔时,活塞与缸端之间形成封闭空间,该腔中受困挤的剩余油液只能从节流小孔或缓冲柱塞与孔槽之间的节流环缝中挤出,从而造成背压迫使运动柱塞降速制动,实现缓冲。,71,排气装置,液压传动系统往往会混入空气,使系统工作不稳定,产生振动、爬行或前冲等现象,严重时会使系统不能正常工作。,因此,设计液压缸时,必须考虑空气的排除。,对于速度稳定性要求较高的液压缸和大型液压缸,常在液压缸的最高处设置专门的排气装置,如排气塞、排气阀等。当松开排气塞或阀的锁紧螺钉后,低压往复运动几次,带有气泡的油液就会排出,空气排完后拧紧螺钉,液压缸便可正常。,72,

29、液压缸工作压力的确定,液压缸要承受的负载包括有效工作负载、摩擦阻力和惯性力等。液压缸的工作压力按负载确定。对于不同用途的液压设备,由于工作条件不同,采用的压力范围也不同。设计时,液压缸的工作压力可按负载大小及液压设备类型参考表来确定。,73,3.3.1 液压缸主要尺寸的确定,液压缸内径D和活塞杆直径d可根据最大总负载和选取的工作压力来定,对单杆缸而言,有:,74,式(3.17)中的杆径d可根据工作压力选取,见表3.4;当液压缸的往复速度比有一定要求时,由式(3.7)得杆径为,75,计算所得的液压缸内经D和活塞杆直经d应圆整为标准系列,参见新编液压工程手册。 液压缸的缸筒长度由活塞最大行程、活塞

30、长度、活塞杆导向套长度、活塞杆密封长度和特殊要求的长度确定。其中活塞长度为(0.6-1.0)D,导向套长度为(0.6-1.5)d。为减少加工难度,一般液压缸缸筒长度不应大于内径的20-30倍。,76,液压缸的校核,缸筒壁厚的验算,中、高压液压缸一般用无缝钢管做缸筒,大多属薄壁筒,即/D0.08。此时,可根据材料力学中薄壁圆筒的计算公式验算缸筒的壁厚,即,当/D0.3时,可用下式校核缸筒壁厚,77,当液压缸采用铸造缸筒时,壁厚由铸造工艺确定,这时应按厚壁圆筒计算公式验算壁厚。当/D=0.08-0.3时,可用下式校核缸筒的壁厚,78,活塞杆长度根据液压缸最大行程L而定。对于工作行程中受压的活塞杆,当活塞杆长度L与其直径d之比大于15时,应对活塞杆进行稳定性验算。 关于稳定性验算的内容可查阅液压设计手册。,液压缸稳定性验算,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 科普知识


经营许可证编号:宁ICP备18001539号-1